MINI REVIEW article
Front. Cell Dev. Biol.
Sec. Cancer Cell Biology
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1669544
This article is part of the Research TopicAdvancing MYC Targeting Strategies in Cancer TreatmentView all articles
Fueling the Fire – A Pan-Cancer Analysis of MYC-regulated Lipid Metabolism
Provisionally accepted- Oregon State University, Corvallis, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The oncogene MYC and its product c-Myc are responsible for a multitude of changes in cancerous cells that trigger cell growth, proliferation and metastasis. The efforts to understand the multifaceted role of MYC in malignancies have highlighted metabolic reprogramming as a prominent function of this transcription factor, with effects across glycolysis, protein and lipid metabolism, mitochondrial respiration and energy storage. In particular, the role of MYC in lipid metabolism has been the focus of several studies in the past two decades, elucidating how the balance of lipid production and breakdown aids in tumor proliferation. Here, we provide a comprehensive summary of how modulation of MYC alters fatty acid synthesis and degradation, the metabolism of compound lipids, and the consequences for other metabolic pathways. The observed effects are highly cell type-specific, highlighting the MYC network's ability to harness the existing cellular signaling pathways and specific tumor microenvironment to promote tumor growth and metastasis.
Keywords: MYC, Lipids, Metabolism, metabolic reprogramming, fatty acid synthesis, Lipid synthesis
Received: 19 Jul 2025; Accepted: 08 Sep 2025.
Copyright: © 2025 Chatterjee, Beffert and Liefwalker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Daniel F. Liefwalker, Oregon State University, Corvallis, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.