ORIGINAL RESEARCH article

Front. Cell Dev. Biol.

Sec. Cancer Cell Biology

Computational Analysis of Treatment Resistant Cancer Cells

  • DataSet Analysis LLC, San Francisco, United States

Article metrics

View details

63

Views

The final, formatted version of the article will be published soon.

Abstract

ABSTRACT Introduction: Prostate cancer (PC), which is a disease driven by the activity of the androgen receptor (AR), is the most commonly diagnosed malignancy and despite advances in diagnostic and treatment strategies, PC is the second most common cause of cancer mortality in men (Bray et al., 2018). Taxane-based chemotherapy is the only chemotherapy that prolongs survival in metastatic PC patients (Petrylak et al., 2004; Tannock et al., 2004). At the cellular level, taxanes bind to and stabilize microtubules (MTs) inhibiting all MT-dependent intracellular pathways. MTs are highly dynamic polymers that stochastically switch between phases of growth, shrinkage, and pause (Jordan and Wilson, 2004). Altered MT dynamics endow cancer cells with both survival and migratory advantages (Mitchison, 2012). Taxanes inhibit MT dynamics and alter the spatial organization of the MT network, thereby inhibiting intracellular trafficking of molecular cargo critical for tumor survival. In PC specifically, taxanes inhibit transcriptional activity downstream of MT stabilization (Thadani-Mulero et al., 2012) and AR nuclear accumulation (Darshan et al., 2011; Zhu et al., 2010). Methods: Different tubulin inhibitors, even from within the same structural class as the taxanes, affect distinct parameters of MT dynamics (Jordan and Wilson, 2004), yet the selection of taxane for chemotherapy is not based on the particular patterns of dynamic behavior of the MT cytoskeleton in individual patients. We envisage that systematic characterization using quantitative analysis of MT dynamics in PC patient cells expressing clinically relevant protein isoforms (Matov, 2024c; Thoma et al., 2010), before and after treatment with each of the taxanes, will allow us to identify criteria for the selection of the most suitable drug combination at the onset of treatment. Results: We link MT dynamics in the presence of AR variants and sensitivity/resistance to taxanes and connect fundamental research with clinically relevant concepts to elucidate cellular mechanisms of  clinical response to taxanes and, thus, advance the customization of therapy.

Summary

Keywords

Breast cancer type 1 susceptibility protein, Circular hough transform, microtubule dynamics, Taxane resistance, Tubulin bundling, tubulin tyrosination

Received

12 October 2025

Accepted

29 December 2025

Copyright

© 2025 Matov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Alexandre Matov

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Share article

Article metrics