MINI REVIEW article
Front. Immunol.
Sec. Cancer Immunity and Immunotherapy
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1601266
This article is part of the Research TopicRole of Extracellular Vesicles in Cancer: Implications in Immunotherapeutic ResistanceView all 7 articles
Cancer cell-derived Extracellular Vesicles: A Potential Target for Overcoming Tumor Immunotherapy Resistance and Immune Evasion Strategies
Provisionally accepted- 1Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- 2Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan, Republic of Korea
- 3Department of Microbiology, Wonkwang University School of Medicine, Iksan, Republic of Korea
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Extracellular vesicles (EVs), including exosomes and microvesicles, play crucial roles in cancer progression by mediating the communication between cancer cells and their microenvironment. Cancer cell-derived EVs promote tumor growth, metastasis, and immune evasion by carrying bioactive materials, such as proteins, RNAs, DNA fragments, and lipids. Immunotherapy aims to enhance the immune response against cancer; however, resistance remains a major challenge. Cancer cell-derived EVs contribute to this resistance by delivering immunosuppressive molecules that impair T cell activation, promote the expansion of regulatory T cells (Tregs), and reduce natural killer (NK) cell cytotoxicity, thereby allowing cancer cells to evade immune surveillance. Additionally, cancer cell-derived EVs can carry immune checkpoint proteins, such as Programmed Death-Ligand1 (PD-L1), which bind to the Programmed Death-1 (PD-1) receptor on T cells, leading to T cell exhaustion and reduced anti-tumor activity. This mechanism reflects how cancer cells directly evade immune detection and contributes to the overall resistance to immune checkpoint blockade therapies, such as anti-PD-1 or anti-PD-L1 antibodies. By delivering these immunomodulatory molecules, EVs not only contribute to local immune suppression but also create a systemic environment that is less favorable for effective anticancer immunity. Therefore, understanding the role of EVs in the immunotherapy resistance is crucial for developing targeted strategies to counteract their effects and ultimately improve therapeutic outcomes. Here we encourage researchers to pay more attention to the role of cancer cell-derived EVs in overcoming immunotherapeutic resistance, because such efforts may be one of the most promising approaches to address immunotherapy resistance in the future.
Keywords: extracellular vesicles, Tumor Microenvironment, cancer therapy, Immunotherapeutic resistance, immune checkpoint inhibitors, immune cells
Received: 27 Mar 2025; Accepted: 23 May 2025.
Copyright: © 2025 Ahn, Mun, Han and SEO. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: JAE HO SEO, Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.