REVIEW article
Front. Immunol.
Sec. Vaccines and Molecular Therapeutics
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1618406
Harnessing Cellular Immunity for Next-Generation Vaccines Against Respiratory Viruses: Mechanisms, Platforms, and Optimization Strategies
Provisionally accepted- 1Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- 2Hangzhou Center for Disease Control and Prevention (HZCDC), Hangzhou, Zhejiang Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Respiratory tract infections, such as influenza, respiratory syncytial virus (RSV) infection, and COVID-19, remain a persistent threat to global public health due to their high transmissibility and disease burden. Vaccination, as a key preventive strategy, not only reduces the risk of infection but also blocks transmission by activating adaptive immunity. While traditional vaccine evaluations have primarily focused on humoral immunity, growing evidence highlights the critical role of T lymphocyte-mediated cellular immunity in clearing virus-infected cells, establishing long-term immune memory, and responding to viral mutations. This review systematically summarizes the cellular immune responses induced by vaccines against respiratory tract infections and their correlation with protective efficacy. It also outlines evaluation methodologies such as flow cytometry, providing a theoretical foundation for optimizing vaccine design and assessment, and advancing the development of effective, broad-spectrum vaccines.
Keywords: upper respiratory tract infection, Vaccine, humoral immunity, Cellular immunity, Vaccine optimizationIntroduction 1.Introduction
Received: 12 May 2025; Accepted: 25 Jul 2025.
Copyright: © 2025 Chen, Hu, Li, Wu, Tie, Wu, Li, Li and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Keda Chen, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.