REVIEW article
Front. Immunol.
Sec. Nutritional Immunology
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1619926
This article is part of the Research TopicImmunometabolism: Exploring the Nexus of Metabolism and Immune Function in Health and DiseaseView all 4 articles
The diverse interaction of metabolism, immune response, and viral pathogens
Provisionally accepted- Kazusa DNA Research Institute, Kisarazu, Japan
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
During viral infections, both innate and adaptive immune responses are activated to establish host defense mechanisms. In innate immunity, the STING and MAVS pathways, which recognize viral genomes, play a central role in inducing type I interferons (IFN-I), a group of antiviral cytokines. Concurrently, adaptive immune responses, particularly those mediated by T cells, contribute to viral clearance and the establishment of immune memory through the recognition of viral antigens. Recently, numerous studies have highlighted the impact of alterations in lipid metabolism on host immune cells during viral infections. Because viruses lack the ability to synthesize their own lipid membranes, they rely on host lipid metabolic pathways to support their replication. In addition, IFN-I signaling has been shown to suppress the expression of lipid metabolic genes and promote the generation of antiviral lipids. Furthermore, following viral infection, both innate and adaptive immune cells rewire various metabolic pathways, including lipid metabolism, glycolysis, the tricarboxylic acid cycle, and amino acid metabolism, to mount effective antiviral responses. This review focuses on recent advances in our understanding of lipid metabolic reprogramming during viral infection at both the cellular and systemic levels, and how such metabolic changes shape and regulate immune responses.
Keywords: Lipid Metabolism, Virus infections, T cells, cGAS-STING, SCD2
Received: 29 Apr 2025; Accepted: 14 Jul 2025.
Copyright: © 2025 Kanno, Miyako and ENDO. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Yusuke ENDO, Kazusa DNA Research Institute, Kisarazu, Japan
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.