SYSTEMATIC REVIEW article
Front. Microbiol.
Sec. Antimicrobials, Resistance and Chemotherapy
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1542472
Quantifying antimicrobial resistance in food-producing animals in North America
Provisionally accepted- Université du Québec à Montréal, Montreal, Quebec, Canada
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The global misuse of antimicrobial medication has further exacerbated the problem of antimicrobial resistance (AMR), enriching the pool of genetic mechanisms previously adopted by bacteria to evade antimicrobial drugs. AMR can be either intrinsic or acquired. It can be acquired either by selective genetic modification or by horizontal gene transfer that allows microorganisms to incorporate novel genes from other organisms or environments into their genomes. To avoid an eventual antimicrobial mistreatment, the use of antimicrobials in farm animal has been recently reconsidered in many countries. We present a systematic review of the literature discussing the cases of AMR and the related restrictions applied in North American countries (including Canada, Mexico, and the USA). The Google Scholar, PubMed, Embase, Web of Science, and Cochrane databases were searched to find plausible information on antimicrobial use and resistance in food-producing animals, covering the time period from 2015 to 2024. A total of 580 articles addressing the issue of antibiotic resistance in food-producing animals in North America met our inclusion criteria. Different AMR rates, depending on the bacterium being observed, the antibiotic class being used, and the farm animal being considered, have been identified. We determined that the highest average AMR rates have been observed for pigs (60.63% on average), the medium for cattle (48.94% on average), and the lowest for poultry (28.43% on average). We also found that Cephalosporines, Penicillins, and Tetracyclines are the antibiotic classes with the highest average AMR rates (65.86%, 61.32%, and 58.82%, respectively), whereas the use of Sulfonamides and Quinolones leads to the lowest average AMR (21.59% and 28.07%, respectively). Moreover, our analysis of antibiotic-resistant bacteria shows that S. suis and S. auerus provide the highest average AMR rates (71.81% and 69.48%, respectively), whereas Campylobacter spp. provides the lowest one (29.75%). The highest average AMR percentage, 57.46%, was observed in Mexico, followed by Canada at 45.22%, and the USA at 42.25%, which can be explained by various AMR control strategies, such as stewardship programs and AMR surveillance bodies, existing in Canada and the USA. Our review highlights the need for better strategies and regulations to control the AMR spread.
Keywords: antibiotics, Antimicrobial use, antimicrobial resistance, farm animals, Food-producing animal, North America
Received: 09 Dec 2024; Accepted: 01 May 2025.
Copyright: © 2025 Mediouni, Diallo and Makarenkov. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Mohamed Mediouni, Université du Québec à Montréal, Montreal, H2X 3J8, Quebec, Canada
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.