Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Microbiol.

Sec. Microbial Symbioses

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1598221

Heterorhabditis bacteriophora symbiotic and axenic nematodes modify the Drosophila melanogaster larval microbiome

Provisionally accepted
  • 1George Washington University, Washington, D.C., District of Columbia, United States
  • 2Centre Européen de Ressources Biologiques Marines, ERIC, Paris, France

The final, formatted version of the article will be published soon.

The Drosophila melanogaster microbiome is crucial for regulating physiological processes, including immune system development and function. D. melanogaster offers distinct advantages over vertebrate models, allowing a detailed investigation of host-microbiota interactions and their effects on modulating host defense systems. It is an outstanding model for studying innate immune responses against parasites. Entomopathogenic nematodes (EPNs) activate immune signaling in the fly, leading to immune responses to combat infection. However, the impact of EPN infection on the host larval microbiome remains poorly understood. Therefore, we investigated whether EPN infection affects the D. melanogaster larval microbiome. We infected third-instar D. melanogaster larvae with Heterorhabditis bacteriophora symbiotic nematodes (containing Photorhabdus luminescens bacteria) and axenic nematodes (devoid of symbiotic bacteria). Drosophila melanogaster microbiome analysis revealed statistically significant differences in microbiome composition between uninfected and EPN-infected larvae. Notably, infection with axenic nematodes resulted in 68 unique species, causing a significant shift in the D. melanogaster larval microbiome and an increase in bacterial diversity compared to larvae infected with symbiotic nematodes. This suggests that the absence of the endosymbiont creates ecological niches for unique species and a more diverse microbiome in larvae infected with the axenic nematodes. This research will enhance our understanding of microbial species within the D. melanogaster microbiome that regulate homeostasis during nematode infection. These insights could be beneficial in developing innovative strategies for managing agricultural pests and disease vectors.

Keywords: Insects, innate immunity, Drosophila, Entomopathogenic nematodes, microbiome, Host-Pathogen Interactions

Received: 24 Mar 2025; Accepted: 28 May 2025.

Copyright: © 2025 Mallick, Pavloudi, Saw and Eleftherianos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Ioannis Eleftherianos, George Washington University, Washington, D.C., 20052, District of Columbia, United States

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.