ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbiotechnology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1603337
Efficient expression of a novel α-amylase for reduction of tobacco starch and smoke hazard
Provisionally accepted- 1Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- 2Inner Mongolia Kunming Cigarettes LLC, Hohht, China
- 3State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- 4Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, Hebei Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The combustion of excessive starch in tobacco leaves leads to more harmful substances, adversely affecting the sensory properties of tobacco and posing significant risks to human health. Therefore, there is an urgent need to develop specific amylases targeting tobacco starch to address these issues. In this study, 5 different α-amylase genes were selected for recombinant expression in Bacillus amyloliquefaciens BAX-5, and the amyA(LC) (derived from Bacillus amyloliquefaciens MK10163) was confirmed to be the optimal gene. Then, the αamylase activity was further increased by screening host bacteria BAX-5 and signal peptides SP003 (derived from the dacB gene of Bacillus subtilis 168). Subsequently, the α-amylase properties were characterized, such as temperature tolerance, pH tolerance and metal ion. Through replacement of culture medium, the recombinant strain BAX-5/PT-17SP003amyA(LC) produced the maximum α-amylase activity of 904.91 IU/mL, which was about 4 times higher than that of the original culture medium. Finally, the α-amylase Amy (LC) was applied to the enzyme treatment of tobacco leaves, and the evaluation results showed that α-amylase Amy (LC) could play a positive role in reducing damage and enhancing quality of cigarettes. This research provides a novel enzymatic resource for the development of amylases, and it has enormous market potential and application value.
Keywords: Tobacco starch, α-amylase, Bacillus amyloliquefaciens, Expression optimization, Application evaluation
Received: 31 Mar 2025; Accepted: 26 May 2025.
Copyright: © 2025 Han, Hao, Zou, Sun, Zhang, Niu, Lu, HUANG, Ye and Wei. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Changwen Ye, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
Xuetuan Wei, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.