ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Terrestrial Microbiology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1603518
Crop rotation complexity affects soil properties shaping antibiotic resistance gene types and resistance mechanisms
Provisionally accepted- 1College of Urban and Environmental Science, Northwest University, Xi'an, China
- 2Northwest University, Xi'an, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Crop rotation enhances agricultural productivity and soil fertility but may also contribute to the accumulation of antibiotic resistance genes (ARGs). However, the changes in soil ARGs and their associated resistance mechanisms under different crop rotation regimes are not well understood. In this study, we employed metagenomics to comprehensively investigate soil ARGs under different crop rotation regimes and complexity. Our findings revealed that soil properties varied significantly with crop rotation regime and complexity. Specifically, soil pH and the total carbon/nitrogen ratio (C/N) were the highest in bare land (BL) and gradually decreased in the order non-rotation, simple rotation, and complex rotation systems. The composition of soil ARGs exhibited significant differentiation by crop rotation complexity. Furthermore, differential gene analysis identified four specific types of ARGs-glycopeptide, multidrug, fluoroquinolone, and macrolide-lincosamide-streptogramin B (MLSB)-and two resistance mechanisms-cellular protection and efflux pump. Notably, soil microbial biomass carbon, soil microbial biomass nitrogen, and soil organic carbon are significantly correlated with ARGs in complex crop rotation systems, whereas soil pH and C/N ratio show significant associations in BL. The C/N ratio was identified as the most relevant determinant for glycopeptide, multidrug, fluoroquinolone, and MLSB resistance genes. Overall, these findings elucidate key factors associated with ARGs under long-term crop rotation, thereby providing valuable insights into the influence of crop rotation regimes on soil ARGs and enhancing soil fertility by improving soil properties.
Keywords: antibiotic resistance genes, Crop rotation complexity, Crop rotation regimes, Loess plateau, resistance mechanisms, Winter wheat field
Received: 31 Mar 2025; Accepted: 09 Jun 2025.
Copyright: © 2025 Hu, Liu, Wen, Zhou and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Yang Liu, College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
Jun Wang, Northwest University, Xi'an, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.