REVIEW article
Front. Microbiol.
Sec. Microbiological Chemistry and Geomicrobiology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1607370
This article is part of the Research TopicMicrobial Interactions with Metals/Minerals: From Environmental Aspects to ApplicationsView all articles
Quorum Sensing in Biofilm-mediated Heavy Metal Resistance and Transformation: Environmental Perspectives and Bioremediation
Provisionally accepted- University of Milan, Milan, Italy
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Quorum sensing is a fundamental mechanism of bacterial cell-to-cell communication that enables microbial communities to adapt to environmental stresses. Although the role of quorum sensing in biofilm formation and heavy metal resistance has been studied across various bacterial species, significant research gaps remain regarding the specific quorum sensingregulated metabolic pathways involved in heavy metal resistance and transformation, as well as their functional roles in bioremediation. This review provides a comprehensive overview of the connection between quorum sensing and heavy metal resistance and transformation, considering both cellular and ecological perspectives. It highlights recent advancements in understanding quorum sensing-regulated biofilm dynamics and identifies a lack of knowledge related to quorum sensing-mediated heavy metal resistance in natural ecosystems.Furthermore, innovative quorum sensing-based strategies for optimizing bioremediation are explored. By emphasizing the ecological and practical implications of quorum sensing-driven bioremediation, this review aims to contribute to the development of more effective and sustainable approaches for mitigating heavy metal pollution.
Keywords: heavy metal, Quorum Sensing, Biofilm, Extracellular polymeric substances, bioremediation
Received: 07 Apr 2025; Accepted: 04 Jun 2025.
Copyright: © 2025 Mondal, Melzi, Zecchin and Cavalca. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Lucia Cavalca, University of Milan, Milan, Italy
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.