Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Microbiol.

Sec. Terrestrial Microbiology

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1612341

Effects of pathogen infection and Rhizobium inoculation on instantaneous and long-term water use efficiency of peanut with and without drought Running head: Water use efficiency

Provisionally accepted
Zhongling  YangZhongling Yang*Yuxian  ZhangYuxian ZhangYifan  ShenYifan ShenLiwei  ZhangLiwei ZhangYinzhan  LiuYinzhan LiuGuoyong  LiGuoyong LiRui  XiaoRui XiaoJiating  ZhangJiating Zhang
  • Henan University, Kaifeng, China

The final, formatted version of the article will be published soon.

Water Use Efficiency (WUE) is one of the critical indicators to characterize plant adaptation to arid environments, however, the effects of pathogens infection and Rhizobium symbiosis on WUE are not considered in contexts of water stress. A study was conducted in a greenhouse pot to examine the effects of changed soil water conditions on instantaneous Water Use Efficiency (WUEi) and long-term Water Use Efficiency (WUEL) under inoculation Rhizobium, inoculation Fusarium sp., and co-inoculation Rhizobium and Fusarium sp. The results showed that inoculation Fusarium sp. and co-inoculation Rhizobium and Fusarium sp. reduced WUEi by increasing net photosynthetic rate without drought. Inoculation Fusarium sp. and co-inoculation Rhizobium and Fusarium sp. reduced WUEi by decreasing plant height with drought. Inoculation Rhizobium and Fusarium sp. significantly reduced WUEL by lowering intercellular CO2 concentration without drought. Inoculation Rhizobium reduced WUEL by increasing root nodule number with drought. In contrast, drought had no effect on either WUEi or WUEL without inoculation. The results suggest that Fusarium sp. infection is detrimental to instantaneous Water Use Efficiency while inoculation Rhizobium is unfavorable to long-term Water Use Efficiency, regardless of drought effects. Our findings provide a new insight for developing effective water use strategies after pathogen infection or Rhizobium symbiosis under increased precipitation scenarios.

Keywords: Peanuts, drought, greenhouse pot, pathogen, Symbiosis, Water use efficiency

Received: 15 Apr 2025; Accepted: 31 May 2025.

Copyright: © 2025 Yang, Zhang, Shen, Zhang, Liu, Li, Xiao and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Zhongling Yang, Henan University, Kaifeng, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.