ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Aquatic Microbiology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1620942
This article is part of the Research TopicPlankton Metabolisms and Interactions in Fluctuating EnvironmentsView all 4 articles
Eutrophication influences diversity and community-level change points of mycoplankton in subtropical estuaries
Provisionally accepted- 1Guangdong Ocean University, Zhanjiang, China
- 2Kyonggi University, Suwon-si, Republic of Korea
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Mycoplankton are essential for biogeochemical cycles in natural water bodies. However, the distribution of the mycoplanktonic community and its community-level change points in subtropical estuaries remain unclear. In this study, we employed 18S rRNA high-throughput sequencing to explore the mycoplanktonic community structure and environmental thresholds in the Dafengjiang River Estuary. Agaricostilbomycetes and Saccharomycetes are the dominant classes in the Dafengjiang River Estuary. The alpha and beta diversities of the mycoplanktonic communities showed significant differences (p < 0.05) across the seasons. Distance-based redundancy analysis (db-RDA) suggested that the main driver of the total community was eutrophication level, and the key factors for oligotrophication, medium eutrophication, and high eutrophication were dissolved inorganic phosphorus (DIP), ammonium (NH4 + ), and chlorophyll-a (Chl-a), respectively. Threshold Indicator Taxa Analysis (TITAN) exhibited the community-level change points of mycoplankton along the eutrophication gradients were DIP (6-15.5 μg/L), NH4 + (61.5-62.5 μg/L) and Chl-a (2.55-9.3 μg/L), respectively. Random forest analysis revealed that Rhizophydium, Aspergillus and Vanrija were sensitive to eutrophication status and could serve as bioindicator genera for environmental changes. Overall, our study enhances our understanding of the diversity and community-level change points of mycoplankton in subtropical estuaries and lays the theoretical foundation for the environmental monitoring of subtropical estuaries.
Keywords: mycoplankton, community-level change points, Titan, Subtropical estuary, 18S rRNA gene
Received: 01 May 2025; Accepted: 12 Jun 2025.
Copyright: © 2025 Zhong, Chen, Deng, Guan, He, Rajapakshalage, Tang, Hou, Li, Jiang, Huang, Dong and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Nan Li, Guangdong Ocean University, Zhanjiang, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.