ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbial Symbioses
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1658060
This article is part of the Research TopicMicrobial-Fungal Symbioses: Ecological Implications, Environmental Impact, and Biotechnological Applications in Natural and Agricultural SystemsView all articles
Symbiotic relationship between Polyporus umbellatus and Armillaria gallica shapes rhizosphere bacterial community structure and promotes fungal growth
Provisionally accepted- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Abstract Aims Polyporus umbellatus sclerotium, known for its diuretic properties, relies on a symbiotic association with Armillaria for its growth and quality development. However, the impact of soil microorganisms on this symbiosis remains uncertain and warrants investigation. The primary objective of this research is to characterize the microorganisms capable of enhancing the symbiotic interaction between Armillaria gallica and Polyporus umbellatus sclerotia in the rhizosphere soil. Methods Symbiotic cultivation experiments were conducted in woodland habitats with four groups: symbiotic group (Z0), control group (Z1), A. gallica-only group (Z2), and P. umbellatus-only group (Z3). Rhizosphere soil community profiling analysis was conducted using high-throughput sequencing of the bacterial 16S rRNA gene. Subsequently, bacterial strains were isolated, purified, and back-inoculated with A. gallica to assess their effects on this symbiotic relationship. Results A total of 10,009 operational taxonomic units (OTUs) were identified, with the symbiotic group (Z0) showing higher bacterial richness and diversity (ACE, Chao1, Shannon indices) compared to Z2 and Z3. Dominant phyla such as Proteobacteria, Acidobacteriota, and Bacteroidota were notably more abundant in Z0. Notably, Rhodococcus sp. Z2-1 significantly promoted A. gallica rhizomorph growth (diameter increased by 112.2%, branches by 160.9%) and symbiosis establishment (100% contact rate in inoculated pots vs. 0–22.2% in controls). Conclusions The symbiotic relationship between P. umbellatus and A. gallica shapes rhizosphere bacterial communities, with specific bacteria like Rhodococcus sp. enhancing fungal growth and symbiotic efficiency. This study presents the potential for developing a bio-bacterial fertilizer for cultivation of medicinal material.
Keywords: Polyporus umbellatus, Armillaria gallica, Symbiosis, rhizosphere bacterial communities, Rhodococcus sp.
Received: 02 Jul 2025; Accepted: 25 Aug 2025.
Copyright: © 2025 Zhou, Liu, Gao, Li and Guo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Bing Li, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.