ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Antimicrobials, Resistance and Chemotherapy
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1668703
Methylene Blue-Photodynamic Therapy for Microsporum canis Infection: Investigating a Dual Mechanism of Fungicidal Action and Neutrophil Homeostasis Restoration
Provisionally accepted- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Microsporum canis is an increasingly common cause of tinea capitis. Conventional antifungal therapies are limited by toxicity and resistance, creating a need for novel treatments. Antimicrobial photodynamic therapy (aPDT) is a promising alternative. We investigated the efficacy and dual mechanism of methylene blue-photodynamic therapy (MB-PDT) against M. canis, focusing on its effects on the host innate immune response. Methods: The in vitro susceptibility of clinical M. canis isolates was determined by broth microdilution. Fungal ultrastructural changes were examined using transmission electron microscopy. In vivo efficacy was assessed in a murine dermatophytosis model and compared to topical terbinafine. Systemic immunomodulatory effects were evaluated by flow cytometric analysis of peripheral blood neutrophil phenotypes (Dectin-1, Dectin-2) and functional markers (MPO, NOX2). Results: In vitro, MB-PDT demonstrated potent fungicidal activity (Geometric Mean MIC at 80 J/cm²: 0.367 µg/mL; 95% CI: 0.295–0.439 µg/mL). It induced severe ultrastructural damage, including mitochondrial collapse and cell wall disruption. In the murine model, MB-PDT achieved an 80% mycological cure rate, significantly outperforming topical terbinafine (20% cure rate). Mechanistically, M. canis infection induced systemic neutrophil dysfunction, evidenced by a population shift and suppressed MPO and NOX2 expression. MB-PDT treatment reversed this immune dysfunction, restoring neutrophil homeostasis and the expression of key functional markers (MPO, NOX2). Conclusions: MB-PDT is a highly effective treatment for M. canis infection. Its efficacy is based on a dual mechanism: direct fungicidal action through oxidative damage and restoration of host neutrophil function.
Keywords: Microsporum canis, Photodynamic therapy, Methylene Blue, Neutrophils, Immunomodulation, Tinea Capitis
Received: 18 Jul 2025; Accepted: 20 Oct 2025.
Copyright: © 2025 Peng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Gaoyuan Peng, 542677615@qq.com
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.