Your new experience awaits. Try the new design now and help us make it even better

CORRECTION article

Front. Microbiol.

Sec. Infectious Agents and Disease

Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1669739

Correction: Beyond survival to domination: Brucella's multilayered strategies for evading host immune responses

Provisionally accepted
  • 1School of Basic Medical Sciences, Inner Mongolia Minzu University, tongliao, China
  • 2Department of Clinical Laboratory, Keerqin District First People’s Hospital, tongliao, China
  • 3Department of Polyclinics, Tongliao City Center for Disease Control and Prevention, tongliao, China
  • 4Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous region, Tongliao, China
  • 5Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China

The final, formatted version of the article will be published soon.

The reference for [Bialer et al.,2020;Martín-Martín et al., 2008] was erroneously written as [Bialer, M. G., Sycz, G., Muñoz González, F., Ferrero, M., and Baldi, P. (2020). Adhesins of Brucella: Their roles in the interaction with the host. Pathogens 9:942. doi: 10.3390/pathogens9110942; Martín-Martín, A. I., Caro-Hernández, P., Orduña, A., Vizcaíno, N., and Fernández-Lago, L. (2008). Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect. 10, 706-710. doi: 10.1016/j.micinf.2008. 02.013]. It should be [Bialer, M. G., Sycz, G., Muñoz González, F., Ferrero, M., and Baldi, P. (2020). Adhesins of Brucella: Their roles in the interaction with the host. Pathogens 9:942. doi: 10.3390/pathogens9110942; Fernandez-Prada, C., Zelazowska, E., Nikolich, M., Hadfield, T., Roop, R., Robertson, G., et al. (2003). Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110-2119. doi: 10.1128/IAI.71. 4.2110-2119.2003]. The original version of this article has been updated.The reference for [Atluri et al.,2011;Lee et al.,2014] was erroneously written as [Atluri, V., Xavier, M., de Jong, M., den Hartigh, A., and Tsolis, R. (2011). Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65, 523-541. doi: 10.1146/annurev-micro-090110-102905; Lee, J., Kim, J., Kim, D., Kim, D., Simborio, H., Min, W., et al. (2014). Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus. Vet. Microbiol. 168, 131-140. doi: 10.1016Microbiol. 168, 131-140. doi: 10. /j.vetmic.2013.10. 007.10. 007]. It should be [Atluri, V., Xavier, M., de Jong, M., den Hartigh, A., and Tsolis, R. (2011). Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65, 523-541. doi: 10.1146/annurev-micro-090110-102905;Barquero-Calvo, E., Chaves-Olarte, E., Weiss, D., Guzmán-Verri, C., Chacón-Díaz, C., Rucavado, A., et al. (2007). Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2:e631. doi: 10.1371/journal.pone.0000631]. The original version of this article has been updated.The reference for [Halling, 1998] was erroneously written as [Halling, S. (1998). On the presence and organization of open reading frames of the nonmotile pathogen Brucella abortus similar to class II, III, and IV flagellar genes and to LcrD virulence superfamily. Microb. Comp. Genom. 3, 21-29. doi: 10.1089/omi.1. 1998.3.21]. It should be [Martín-Martín, A. I., Caro-Hernández, P., Orduña, A., Vizcaíno, N., and Fernández-Lago, L. (2008). Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect. 10, 706-710. doi: 10.1016/j.micinf.2008. 02.013]. The original version of this article has been updated.The reference for [Roop et al. (2021)] was erroneously written as [Roop, R. M., Barton, I. S., Hopersberger, D., and Martin, D. (2021). Uncovering the hidden credentials of Brucella virulence. Microbiol. Mol. Biol. Rev. 85, 1-3. doi: 10.1128/mmbr.00021-19]. It should be [Halling, S. (1998). On the presence and organization of open reading frames of the nonmotile pathogen Brucella abortus similar to class II, III, and IV flagellar genes and to LcrD virulence superfamily. Microb. Comp. Genom. 3, 21-29. doi: 10.1089/omi.1. 1998.3.21]. The original version of this article has been updated.The reference for [Fretin et al., 2005] was erroneously written as [Fretin, D., Fauconnier, A., Köhler, S., Halling, S., Léonard, S., Nijskens, C., et al. (2005). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell. Microbiol. 7, 687-698. doi: 10.1111/j.1462-5822.2005. 00502.x]. It should be [Roop, R. M., Barton, I. S., Hopersberger, D., and Martin, D. (2021). Uncovering the hidden credentials of Brucella virulence. Microbiol. Mol. Biol. Rev. 85, 1-3. doi: 10.1128/mmbr.00021-19]. The original version of this article has been updated.The reference for [Terwagne et al., 2013] was erroneously written as [Terwagne, M., Ferooz, J., Rolán, H., Sun, Y., Atluri, V., Xavier, M., et al. (2013). Innate immune recognition of flagellin limits systemic persistence of Brucella. Cell. Microbiol. 15, 942-960. doi: 10.1111/cmi.12088]. It should be [Fretin, D., Fauconnier, A., Köhler, S., Halling, S., Léonard, S., Nijskens, C., et al. (2005). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell. Microbiol. 7, 687-698. doi: 10.1111/j.1462-5822.2005. 00502.]. The original version of this article has been updated.The reference for [Bhardwaj et al., 2021] was erroneously written as [Bhardwaj, A., Sita, K., Sehgal, A., Bhandari, K., Kumar, S., Prasad, P., et al. (2021). Heat priming of lentil (Lens culinaris Medik.) Seeds and foliar treatment with γ-aminobutyric acid (GABA), confers protection to reproductive function and yield traits under hightemperature stress environments. Int. J. Mol. Sci. 22:5825. doi: 10. 3390/ijms22115825]. It should be [Terwagne, M., Ferooz, J., Rolán, H., Sun, Y., Atluri, V., Xavier, M., et al. (2013). Innate immune recognition of flagellin limits systemic persistence of Brucella. Cell. Microbiol. 15, 942-960. doi: 10.1111/cmi.12088]. The original version of this article has been updated.The reference for [de Figueiredo et al., 2015;Spera et al., 2018] was erroneously written as [de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: Review of Brucellahost interactions. Am. J. Pathol. 185, 1505Pathol. 185, -1517Pathol. 185, . doi: 10.1016Pathol. 185, /j.ajpath.2015. 03.003;. 03.003;Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Zheng, M., Lin, R., Zhu, J., Dong, Q., Chen, J., Jiang, P., et al. (2024). Effector proteins of type IV secretion system: Weapons of Brucella used to fight against host immunity. Curr. Stem Cell. Res. Ther. 19, 145-153. doi: 10.2174/ 1574888X18666230222124529; Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637].The original version of this article has been updated.The reference for [Spera et al., 2018] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637]. The original version of this article has been updated.The reference for [de Figueiredo et al., 2015;Jansen et al., 2020;Spera et al., 2018;Bergé et al.,2017] was erroneously written as [de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: Review of Brucellahost interactions. Am. J. Pathol. 185, 1505Pathol. 185, -1517Pathol. 185, . doi: 10.1016Pathol. 185, /j.ajpath.2015. 03. 03.003; Jansen, W., Demars, A., Nicaise, C., Godfroid, J., de Bolle, X., Reboul, A., et al. (2020). Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep. 10:9421. doi: 10.1038/s41598-020-65760-0; Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413, 31-60. doi: 10.1007/ 978-3-319-75241-9_2]. It should be [Zheng, M., Lin, R., Zhu, J., Dong, Q., Chen, J., Jiang, P., et al. (2024). Effector proteins of type IV secretion system: Weapons of Brucella used to fight against host immunity. Curr. Stem Cell. Res. Ther. 19,[145][146][147][148][149][150][151][152][153]2174/ 1574888X18666230222124529; Myeni, S., Child, R., Ng, T., Kupko, J., Wehrly, T., Porcella, S., et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9:e1003556. doi: 10.1371/journal.ppat.1003556; Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637; Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. The original version of this article has been updated.The reference for [Jansen et al., 2020] was erroneously written as [Jansen, W., Demars, A., Nicaise, C., Godfroid, J., de Bolle, X., Reboul, A., et al. (2020). Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep. 10:9421. doi: 10.1038/s41598-020-65760-0]. It should be [Myeni, S., Child, R., Ng, T., Kupko, J., Wehrly, T., Porcella, S., et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9:e1003556. doi : 10.1371/journal.ppat.1003556]. The original version of this article has been updated.The reference for [Spera et al., 2018] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637]. The original version of this article has been updated.The reference for [Spera et al., 2018] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637]. The original version of this article has been updated.The reference for [Spera et al., 2018;Thanassi et al., 2012] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Thanassi, D., Bliska, J., and Christie, P. (2012). Surface organelles assembled by secretion systems of Gram-negative bacteria: Diversity in structure and function. FEMS Microbiol. Rev. 36, 1046-1082. doi: 10.1111/j.1574-6976.2012.00342.x]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637; Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413, 31-60. doi: 10.1007/ 978-3-319-75241-9_2]. The original version of this article has been updated.The reference for [Fronzes et al.,2009] was erroneously written as [Fronzes, R., Christie, P., and Waksman, G. (2009). The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 7, 703-714. doi: 10.1038/nrmicro 2218]. It should be [Thanassi, D., Bliska, J., and Christie, P. (2012). Surface organelles assembled by secretion systems of Gram-negative bacteria: Diversity in structure and function. FEMS Microbiol. Rev. 36, 1046-1082. doi: 10.1111/j.1574-6976.2012.00342.x]. The original version of this article has been updated.The reference for [Spera et al., 2018;Keriel et al.,2015] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Keriel, A., Botella, E., Estrach, S., Bragagnolo, G., Vergunst, A., Feral, C., et al. (2015). Brucella intracellular life relies on the transmembrane protein CD98 heavy chain. J. Infect. Dis. 211, 1769-1778. doi: 10.1093/infdis/jiu673]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637; Fronzes, R., Christie, P., and Waksman, G. (2009). The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 7, 703-714. doi: 10.1038/nrmicro 2218]. The original version of this article has been updated.The reference for [Thanassi et al., 2012] was erroneously written as [Thanassi, D., Bliska, J., and Christie, P. (2012). Surface organelles assembled by secretion systems of Gram-negative bacteria: Diversity in structure and function. FEMS Microbiol. Rev. 36, 1046-1082. doi: 10.1111/j.1574-6976.2012.00342.x]. It should be [Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413, 31-60. doi: 10.1007/ 978-3-319-75241-9_2]. The original version of this article has been updated.The reference for [Spera et al., 2018;Thanassi et al., 2012;Aly and Baron, 2007] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Thanassi, D., Bliska, J., and Christie, P. (2012). Surface organelles assembled by secretion systems of Gram-negative bacteria: Diversity in structure and function. FEMS Microbiol. Rev. 36, 1046-1082. doi: 10.1111/j.1574-6976.2012.00342.x;Aly, K., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology (Reading) G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413, 31-60. doi: 10.1007/ 978-3-319-75241-9_2;Keriel, A., Botella, E., Estrach, S., Bragagnolo, G., Vergunst, A., Feral, C., et al. (2015). Brucella intracellular life relies on the transmembrane protein CD98 heavy chain. J. Infect. Dis. 211, 1769-1778. doi: 10.1093/infdis/jiu673]. The original version of this article has been updated.The reference for [Spera et al., 2018;Deng H. et al., 2019;Ward et al., 2002] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks host-mediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18.doi: 10.1128/IAI.00402-18;Deng, H., Zhou, J., Gong, B., Xiao, M., Zhang, M., Pang, Q., et al. (2019). Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop. 197:105026. doi: 10.1016Trop. 197:105026. doi: 10. /j.actatropica.2019.05.017;.05.017;Ward, D., Draper, O., Zupan, J., and Zambryski, P. (2002). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc. Natl. Acad. Sci. U.S. A. 99, 11493-11500. doi: 10.1073/pnas. 172390299]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637;Aly, K., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology (Reading) 153, 3766-3775. doi: 10.1099/mic. 0.2007/010462-0;Deng, H., Zhou, J., Gong, B., Xiao, M., Zhang, M., Pang, Q., et al. (2019). Screening and identification of a human domain antibody against Brucella abortus VirB5. Acta Trop. 197:105026. doi: 10.1016Trop. 197:105026. doi: 10. /j.actatropica.2019.05.017].05.017]. The original version of this article has been updated.The reference for [Spera et al., 2018;Zupan et al., 2007] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Zupan, J., Hackworth, C., Aguilar, J., Ward, D., and Zambryski, P. (2007). VirB1 * promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J. Bacteriol. 189, 6551-6563. doi: 10.1128/JB.00480-07]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637;Ward, D., Draper, O., Zupan, J., and Zambryski, P. (2002). Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc. Natl. Acad. Sci. U.S. A. 99, 11493-11500. doi: 10.1073/pnas. 172390299]. The original version of this article has been updated.The reference for [Spera et al., 2018;Ellis and Machner, 2024] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. ( 2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Ellis, N., and Machner, M. (2024). Genetic approaches for identifying and characterizing effectors in bacterial pathogens. Annu. Rev. Genet. 58, 233-247. doi: 10.1146/annurev-genet-111523-102030]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637; Zupan, J., Hackworth, C., Aguilar, J., Ward, D., and Zambryski, P. (2007). VirB1 * promotes T-pilus formation in the vir-Type IV secretion system of Agrobacterium tumefaciens. J. Bacteriol. 189, 6551-6563. doi: 10.1128/JB.00480-07]. The original version of this article has been updated.The reference for [Thanassi et al., 2012;Figure 1] was erroneously written as [Thanassi, D., Bliska, J., and Christie, P. (2012). Surface organelles assembled by secretion systems of Gram-negative bacteria: Diversity in structure and function. FEMS Microbiol. Rev. 36, 1046-1082. doi: 10.1111/j.1574-6976.2012.00342.x]. It should be [Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413, 31-60. doi: 10.1007/ 978-3-319-75241-9_2]. The original version of this article has been updated.The reference for [Spera et al., 2018] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637]. The original version of this article has been updated.The reference for [Kaplan-Türköz et al., 2013] was erroneously written as [Kaplan-Türköz, B., Koelblen, T., Felix, C., Candusso, M., O'Callaghan, D., Vergunst, A., et al. (2013). Structure of the Toll/interleukin 1 receptor (TIR) domain of the immunosuppressive Brucella effector BtpA/Btp1/TcpB. FEBS Lett. 587, 3412-3416. doi: 10.1016Lett. 587, 3412-3416. doi: 10. /j.febslet.2013.09.007.09.007]. It should be [Ellis, N., and Machner, M. (2024). Genetic approaches for identifying and characterizing effectors in bacterial pathogens. Annu. Rev. Genet. 58, 233-247. doi: 10.1146/annurev-genet-111523-102030]. The original version of this article has been updated.The reference for [Fernandez-Prada et al., 2003;Spera et al., 2018;Smith et al., 2020] was erroneously written as [Fernandez-Prada, C., Zelazowska, E., Nikolich, M., Hadfield, T., Roop, R., Robertson, G., et al. (2003). Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110-2119. doi: 10.1128/IAI.71. 4.2110-2119.2003;Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Smith, E. P., Cotto-Rosario, A., Borghesan, E., Held, K., Miller, C., and Celli, J. (2020). Epistatic interplay between Type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. mBio 11:e003350-19. doi: 10.1128/ mBio.03350-19]. It should be [Smith, J., Khan, M., Magnani, D., Harms, J., Durward, M., Radhakrishnan, G., et al. (2013). Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog. 9:e1003785. doi: 10.1371/ journal.ppat.1003785; Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637; Kaplan-Türköz, B., Koelblen, T., Felix, C., Candusso, M., O'Callaghan, D., Vergunst, A., et al. (2013). Structure of the Toll/interleukin 1 receptor (TIR) domain of the immunosuppressive Brucella effector BtpA/Btp1/TcpB. FEBS Lett. 587, 3412-3416. doi: 10.1016Lett. 587, 3412-3416. doi: 10. /j.febslet.2013.09.007].09.007]. The original version of this article has been updated.The reference for [de Jong et al.,2013] was erroneously written as [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12]. It should be [Smith, E. P., Cotto-Rosario, A., Borghesan, E., Held, K., Miller, C., and Celli, J. (2020). Epistatic interplay between Type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. mBio 11:e003350-19. doi: 10.1128/ mBio.03350-19]. The original version of this article has been updated.The reference for [Keestra-Gounder et al., 2016;Zhi et al., 2019;Figure 2] was erroneously written as [Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631;Zhi, F., Zhou, D., Bai, F., Li, J., Xiang, C., Zhang, G., et al. (2019). VceC mediated IRE1 pathway and inhibited CHOP-induced apoptosis to support Brucella replication in goat trophoblast cells. Int. J. Mol. Sci. 20:4104. doi: 10.3390/ijms20174104]. It should be [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12; Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631]. The original version of this article has been updated.The reference for [Keestra-Gounder et al.,2016] was erroneously written as [Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631]. It should be [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12]. The original version of this article has been updated.The reference for [Keestra-Gounder et al.,2016] was erroneously written as [Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631]. It should be [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12]. The original version of this article has been updated.The reference for [Zhang et al., 2019] was erroneously written as [Zhang, J., Li, M., Li, Z., Shi, J., Zhang, Y., Deng, X., et al. (2019). Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucellainfected human trophoblast Cells. Curr. Microbiol. 76, 510-519. doi: 10.1007/ s00284-019-01651-6]. It should be [Zhi, F., Zhou, D., Bai, F., Li, J., Xiang, C., Zhang, G., et al. (2019). VceC mediated IRE1 pathway and inhibited CHOP-induced apoptosis to support Brucella replication in goat trophoblast cells. Int. J. Mol. Sci. 20:4104. doi: 10.3390/ijms20174104]. The original version of this article has been updated.The reference for [Gómez et al.,2020] was erroneously written as [Gómez, L., Alvarez, F., Molina, R., Soto-Shara, R., Daza-Castro, C., Flores, M., et al. (2020). A Zinc-Dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 11:1586. doi: 10.3389/fmicb. 2020.01586]. It should be [Zhang, J., Li, M., Li, Z., Shi, J., Zhang, Y., Deng, X., et al. (2019). Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucella-infected human trophoblast Cells. Curr. Microbiol. 76, 510-519. doi: 10.1007/ s00284-019-01651-6]. The original version of this article has been updated.The reference for [Spera et al., 2018] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637]. The original version of this article has been updated.The reference for [Atluri et al., 2011;de Figueiredo et al., 2015;Spera et al., 2018;Hu et al., 2023;Hashemifar et al., 2017;Sengupta et al., 2010;Dimitrakopoulos et al., 2013;Figure 2] was erroneously written as [Atluri, V., Xavier, M., de Jong, M., den Hartigh, A., and Tsolis, R. (2011). Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65, 523-541. doi: 10.1146/annurev-micro-090110-102905;de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: I., Yadegar, A., Jazi, F., and Amirmozafari, N. (2017). Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb. Pathog. 105, 334-339. doi: 10.1016/j.micpath.2017.03.007;Sengupta, D., Koblansky, A., Gaines, J., Brown, T., West, A., Zhang, D., et al. (2010). Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter. MAL J. Immunol. 184, 956-964. doi: 10.4049/jimmunol. 0902008]. The original version of this article has been updated.The reference for [Coronas-Serna et al. (2020)] was erroneously written as [Coronas-Serna, J., Louche, A., Rodríguez-Escudero, M., Roussin, M., Imbert, P., Rodríguez-Escudero, I., et al. (2020). The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog. 16:e1007979. doi: 10.1371/journal.ppat.1007979]. It should be [Dimitrakopoulos, O., Liopeta, K., Dimitracopoulos, G., and Paliogianni, F. (2013). Replication of Brucella melitensis inside primary human monocytes depends on mitogen activated protein kinase signaling. Microbes Infect. 15, 450-460. doi: 10.1016Infect. 15, 450-460. doi: 10. / j.micinf.2013.04.007].04.007]. The original version of this article has been updated.The reference for [Spera et al., 2018] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128 The reference for [Miller et al., 2017] was erroneously written as [Miller, C., Smith, E., Cundiff, J., Knodler, L., Bailey Blackburn, J., Lupashin, V., et al. (2017). A Brucella type IV effector targets the COG Tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22: 317-329.e7. doi: 10.1016/j.chom.2017.07.017]. It should be [Coronas-Serna, J., Louche, A., Rodríguez-Escudero, M., Roussin, M., Imbert, P., Rodríguez-Escudero, I., et al. (2020). The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog. 16:e1007979. doi: 10.1371/journal.ppat.1007979]. The original version of this article has been updated.The reference for [Jansen et al., 2020] was erroneously written as [Jansen, W., Demars, A., Nicaise, C., Godfroid, J., de Bolle, X., Reboul, A., et al. (2020). Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep. 10:9421. doi: 10.1038/s41598-020-65760-0]. It should be [Myeni, S., Child, R., Ng, T., Kupko, J., Wehrly, T., Porcella, S., et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9:e1003556. doi : 10.1371/journal.ppat.1003556]. The original version of this article has been updated.The reference for [Borghesan et al., 2021] was erroneously written as [Borghesan, E., Smith, E., Myeni, S., Binder, K., Knodler, L., and Celli, J. A. (2021). Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 40:e107664. doi: 10.15252/embj.2021107664]. It should be [Miller, C., Smith, E., Cundiff, J., Knodler, L., Bailey Blackburn, J., Lupashin, V., et al. (2017). A Brucella type IV effector targets the COG Tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22:317-329.e7. doi: 10.1016/j.chom.2017.07.017]. The original version of this article has been updated.The reference for [Lin et al., 2023] was erroneously written as [Lin, R., Li, A., Li, Y., Shen, R., Du, F., Zheng, M., et al. (2023). The Brucella effector protein BspF regulates apoptosis through the crotonylation of p53. Microorganisms 11:2322. doi: 10.3390/microorganisms11092322]. It should be [Borghesan, E., Smith, E., Myeni, S., Binder, K., Knodler, L., and Celli, J. A. (2021). Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 40:e107664. doi: 10.15252/embj.2021107664]. The original version of this article has been updated.The reference for [Marchesini et al., 2016] was erroneously written as [Marchesini, M. I., Morrone Seijo, S. M., Guaimas, F. F., and Comerci, D. (2016). A T4SS effector targets host cell alpha-enolase contributing to Brucella abortus intracellular lifestyle. Front. Cell. Infect. Microbiol. 6:153. doi: 10.3389/fcimb.2016. 00153]. It should be [Lin, R., Li, A., Li, Y., Shen, R., Du, F., Zheng, M., et al. (2023). The Brucella effector protein BspF regulates apoptosis through the crotonylation of p53. Microorganisms 11:2322. doi: 10.3390/microorganisms11092322]. The original version of this article has been updated.The reference for [Döhmer et al., 2014] was erroneously written as [Döhmer, P., Valguarnera, E., Czibener, C., and Ugalde, J. (2014). Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell. Microbiol. 16, 396-410. doi: 10.1111/cmi.12224]. It should be [Marchesini, M. I., Morrone Seijo, S. M., Guaimas, F. F., and Comerci, D. (2016). A T4SS effector targets host cell alpha-enolase contributing to Brucella abortus intracellular lifestyle. Front. Cell. Infect. Microbiol. 6:153. doi: 10.3389/fcimb.2016. 00153]. The original version of this article has been updated.The reference for [de Figueiredo et al., 2015;Luizet et al., 2021] was erroneously written as [de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: Review of Brucellahost interactions. Am. J. Pathol. 185, 1505Pathol. 185, -1517Pathol. 185, . doi: 10.1016Pathol. 185, /j.ajpath.2015. 03.003;. 03.003;Luizet, J. B., Raymond, J., Lacerda, T. L., Barbieux, E., Kambarev, S., Bonici, M., et al. (2021). The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc. Natl. Acad. Sci. U.S. A. 118:e2105324118. doi: 10.1073/pnas.2105324118]. It should be [Zheng, M., Lin, R., Zhu, J., Dong, Q., Chen, J., Jiang, P., et al. (2024). Effector proteins of type IV secretion system: Weapons of Brucella used to fight against host immunity. Curr. Stem Cell. Res. Ther. 19, 145-153. doi: 10.2174/ 1574888X18666230222124529;Döhmer, P., Valguarnera, E., Czibener, C., and Ugalde, J. (2014). Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell. Microbiol. 16, 396-410. doi: 10.1111/cmi.12224]. The original version of this article has been updated.The reference for [Louche et al., 2023] was erroneously written as [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023) The reference for [Li C. et al.,2022] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. (2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209, 488-497. doi: 10.4049/jimmunol.2200001]. It should be [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023). Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat. Commun. 14:102. doi: 10.1038/s41467-022-35763-8]. The original version of this article has been updated.The reference for [Sengupta et al.,2010] was erroneously written as [Sengupta, D., Koblansky, A., Gaines, J., Brown, T., West, A., Zhang, D., et al. (2010). Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter. MAL J. Immunol. 184, 956-964. doi: 10.4049/jimmunol. 0902008]. It should be [Hashemifar, I., Yadegar, A., Jazi, F., and Amirmozafari, N. (2017). Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb. Pathog. 105, 334-339. doi: 10.1016/j.micpath.2017.03.007]. The original version of this article has been updated.The reference for [Ma et al., 2020] was erroneously written as [Ma, Z., Li, R., Hu, R., Deng, X., Xu, Y., Zheng, W., et al. (2020). Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front. Microbiol. 11:599205. doi: 10.3389/fmicb.2020.599205]. It should be [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. (2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209, 488-497. doi: 10.4049/jimmunol.2200001]. The original version of this article has been updated.The reference for [Giménez et al.,2024] was erroneously written as [Giménez, A., Del Giudice, M., López, P., Guaimas, F., Sámano-Sánchez, H., Gibson, T., et al. (2024). Brucella NpeA is a secreted Type IV effector containing an N-WASPbinding short linear motif that promotes niche formation. mBio 15:e00726-24. doi: 10.1128/mbio.00726-24]. It should be [Ma, Z., Li, R., Hu, R., Deng, X., Xu, Y., Zheng, W., et al. (2020). Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front. Microbiol. 11:599205. doi: 10.3389/fmicb.2020.599205]. The original version of this article has been updated.The reference for [Yin et al., 2024] was erroneously written as [Yin, Y., Tian, M., Zhang, G., Hu, H., Ding, C., and Yu, S. (2024). Identification of Brucella RS15060 as a novel type IV secretion system effector associated with bacterial virulence. Vet. Res. 55:168. doi: 10.1186/s13567-024-01417-4]. It should be [Giménez, A., Del Giudice, M., López, P., Guaimas, F., Sámano-Sánchez, H., Gibson, T., et al. (2024). Brucella NpeA is a secreted Type IV effector containing an N-WASPbinding short linear motif that promotes niche formation. mBio 15:e00726-24. doi: 10.1128/mbio.00726-24]. The original version of this article has been updated.The reference for [Yin et al., 2025] was erroneously written as [Yin, Y., Tian, M., Zhang, G., Ding, C., and Yu, S. A. (2025). novel Brucella T4SS effector RS15060 acts on bacterial morphology, lipopolysaccharide core synthesis and host proinflammatory responses, which is beneficial for Brucella melitensis virulence. Microbiol. Res. 292:128015. doi: 10.1016/j.micres.2024.128015]. It should be [Yin, Y., Tian, M., Zhang, G., Hu, H., Ding, C., and Yu, S. (2024). Identification of Brucella RS15060 as a novel type IV secretion system effector associated with bacterial virulence. Vet. Res. 55:168. doi: 10.1186/s13567-024-01417-4]. The original version of this article has been updated.The reference for [He et al.,2025] was erroneously written as [He, J., Yin, S., Deng, X., Ma, Z., Zhang, H., Miao, Y., et al. (2025). The effector protein BspE affects Brucella survival by regulating the inflammatory response and apoptosis. Int. Immunopharmacol. 144:113576. doi: 10.1016/j.intimp.2024.113576]. It should be [Yin, Y., Tian, M., Zhang, G., Ding, C., and Yu, S. A. (2025). novel Brucella T4SS effector RS15060 acts on bacterial morphology, lipopolysaccharide core synthesis and host proinflammatory responses, which is beneficial for Brucella melitensis virulence. Microbiol. Res. 292:128015. doi: 10.1016/j.micres.2024.128015]. The original version of this article has been updated.The reference for [Arriola Benitez et al., 2016] was erroneously written as [Arriola Benitez, P., Rey Serantes, D., Herrmann, C., Pesce Viglietti, A., Vanzulli, S., Giambartolomei, G., et al. (2016). The effector protein bpe005 from Brucella abortus induces collagen deposition and matrix metalloproteinase 9 downmodulation via transforming growth factor β1 in hepatic stellate cells. Infect. Immun. 84, 598-606. doi: 10.1128/IAI.01227-15]. It should be [He, J., Yin, S., Deng, X., Ma, Z., Zhang, H., Miao, Y., et al. (2025). The effector protein BspE affects Brucella survival by regulating the inflammatory response and apoptosis. Int. Immunopharmacol. 144:113576. doi: 10.1016/j.intimp.2024.113576]. The original version of this article has been updated.The reference for [Spera et al., 2014] was erroneously written as [Spera, J., Comerci, D., and Ugalde, J. (2014). Brucella alters the immune response in a prpAdependent manner. Microb. Pathog. 67-68, 8-13. doi: 10.1016/j.micpath.2014. 01.003]. It should be [Arriola Benitez, P., Rey Serantes, D., Herrmann, C., Pesce Viglietti, A., Vanzulli, S., Giambartolomei, G., et al. (2016). The effector protein bpe005 from Brucella abortus induces collagen deposition and matrix metalloproteinase 9 downmodulation via transforming growth factor β1 in hepatic stellate cells. Infect. Immun. 84, 598-606. doi: 10.1128/IAI.01227-15]. The original version of this article has been updated.The reference for [Li C. et al., 2022] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. (2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209, 488-497. doi: 10.4049/jimmunol.2200001]. It should be [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023). Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat. Commun. 14:102. doi: 10.1038/s41467-022-35763-8]. The original version of this article has been updated.The reference for [Bergé et al., 2017] was erroneously written as [Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413, 31-60. doi: 10.1007/ 978-3-319-75241-9_2]. It should be [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. The original version of this article has been updated.The reference for [Bergé et al., 2017;Spera et al., 2006] was erroneously written as [Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413,.1007/ 978-3-319-75241-9_2; Spera, J., Ugalde, J., Mucci, J., Comerci, D., and Ugalde, R. A. (2006). A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc. Natl. Acad. Sci. U.S. A. 103, 16514-16519. doi: 10.1073/pnas.0603362103]. It should be [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. (2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Spera, J., Comerci, D., and Ugalde, J. (2014). Brucella alters the immune response in a prpA-dependent manner. Microb. Pathog. 67-68, 8-13. doi: 10.1016/j.micpath.2014. 01.003]. The original version of this article has been updated.The reference for [Spera et al., 2006;Liu et al., 2018] was erroneously written as [Spera, J., Ugalde, J., Mucci, J., Comerci, D., and Ugalde, R. A. (2006). A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc. Natl. Acad. Sci. U.S. A. 103, 16514-16519. doi: 10.1073/pnas.0603362103;Liu, X., Zhou, M., Yang, Y., Wu, J., and Peng, Q. (2018). Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via downregulation of Sar1 activity. Oncotarget 9, 9596-9607. doi: 10.18632/oncotarget.24073]. It should be [Spera, J., Comerci, D., and Ugalde, J. (2014). Brucella alters the immune response in a prpA-dependent manner. Microb. Pathog. 67-68, 8-13. doi: 10.1016/j.micpath.2014. 01.003; Spera, J., Ugalde, J., Mucci, J., Comerci, D., and Ugalde, R. A. ( 2006 The reference for [Tibor et al.,1999] was erroneously written as [Tibor, A., Decelle, B., and Letesson, J. J. (1999). Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun. 67, 4960-4962. doi: 10.1128/IAI.67.9.4960-4962.1999]. It should be [Liu, X., Zhou, M., Yang, Y., Wu, J., and Peng, Q. (2018). Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via downregulation of Sar1 activity. Oncotarget 9, 9596-9607. doi: 10.18632/oncotarget.24073]. The original version of this article has been updated.The reference for [de Jong et al.,2013] was erroneously written as [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12]. It should be [Smith, E. P., Cotto-Rosario, A., Borghesan, E., Held, K., Miller, C., and Celli, J. (2020). Epistatic interplay between Type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. mBio 11:e003350-19. doi: 10.1128/ mBio.03350-19]. The original version of this article has been updated.The reference for [Keestra-Gounder et al.,2016;Zhi et al., 2019;Zhang et al., 2019] was erroneously written as [Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631;Zhi, F., Zhou, D., Bai, F., Li, J., Xiang, C., Zhang, G., et al. (2019). VceC mediated IRE1 pathway and inhibited CHOP-induced apoptosis to support Brucella replication in goat trophoblast cells. Int. J. Mol. Sci. 20:4104. doi: 10.3390/ijms20174104;Zhang, J., Li, M., Li, Z., Shi, J., Zhang, Y., Deng, X., et al. (2019). Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucella-infected human trophoblast Cells. Curr. Microbiol. 76,[510][511][512][513][514][515][516][517][518][519] 1007/ s00284-019-01651-6]. It should be [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12;Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631; Zhi, F., Zhou, D., Bai, F., Li, J., Xiang, C., Zhang, G., et al. (2019). VceC mediated IRE1 pathway and inhibited CHOP-induced apoptosis to support Brucella replication in goat trophoblast cells. Int. J. Mol. Sci. 20:4104. doi: 10.3390/ijms20174104]. The original version of this article has been updated.The reference for [Gómez et al.,2020] was erroneously written as [Gómez, L., Alvarez, F., Molina, R., Soto-Shara, R., Daza-Castro, C., Flores, M., et al. (2020). A Zinc-Dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 11:1586Microbiol. 11: . doi: 10.3389/fmicb. 2020.01586.01586]. It should be [Zhang, J., Li, M., Li, Z., Shi, J., Zhang, Y., Deng, X., et al. (2019). Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucella-infected human trophoblast Cells. Curr. Microbiol. 76, 510-519. doi: 10.1007/ s00284-019-01651-6]. The original version of this article has been updated.The reference for [de Figueiredo et al., 2015;Dimitrakopoulos et al., 2013;Miller et al.,2017] was erroneously written as [de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: Review of Brucellahost interactions. Am. J. Pathol. 185, 1505Pathol. 185, -1517Pathol. 185, . doi: 10.1016Pathol. 185, /j.ajpath.2015. 03.003;. 03.003;Dimitrakopoulos, O., Liopeta, K., Dimitracopoulos, G., and Paliogianni, F. (2013). Replication of Brucella melitensis inside primary human monocytes depends on mitogen activated protein kinase signaling. Microbes Infect. 15, 450-460. doi: 10.1016Infect. 15, 450-460. doi: 10. / j.micinf.2013.04.007;.04.007;Miller, C., Smith, E., Cundiff, J., Knodler, L., Bailey Blackburn, J., Lupashin, V., et al. (2017). A Brucella type IV effector targets the COG Tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22:317-329.e7. doi: 10.1016/j.chom.2017.07.017]. It should be [Zheng, M., Lin, R., Zhu, J., Dong, Q., Chen, J., Jiang, P., et al. (2024). Effector proteins of type IV secretion system: Weapons of Brucella used to fight against host immunity. Curr. Stem Cell. Res. Ther. 19, 145-153. doi: 10.2174/ 1574888X18666230222124529;Sengupta, D., Koblansky, A., Gaines, J., Brown, T., West, A., Zhang, D., et al. (2010). Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter. MAL J. Immunol. 184,[956][957][958][959][960][961][962][963][964].4049/jimmunol. 0902008; Coronas-Serna, J., Louche, A., Rodríguez-Escudero, M., Roussin, M., Imbert, P., Rodríguez-Escudero, I., et al. (2020). The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog. 16:e1007979. doi: 10.1371/journal.ppat.1007979]. The original version of this article has been updated.The reference for [Spera et al.,2018;Miller et al., 2017] was erroneously written as [Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. ( 2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18;Miller, C., Smith, E., Cundiff, J., Knodler, L., Bailey Blackburn, J., Lupashin, V., et al. (2017). A Brucella type IV effector targets the COG Tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22:317-329.e7. doi: 10.1016/j.chom.2017.07.017]. It should be [Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637; Coronas-Serna, J., Louche, A., Rodríguez-Escudero, M., Roussin, M., Imbert, P., Rodríguez-Escudero, I., et al. (2020). The TIR-domain containing effectors BtpA and BtpB from Brucella abortus impact NAD metabolism. PLoS Pathog. 16:e1007979. doi: 10.1371/journal.ppat.1007979]. The original version of this article has been updated.The reference for [Jansen et al., 2020;de Jong et al., 2013;Borghesan et al., 2021] was erroneously written as [Jansen, W., Demars, A., Nicaise, C., Godfroid, J., de Bolle, X., Reboul, A., et al. (2020). Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep. 10:9421. doi: 10.1038/s41598-020-65760-0; de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12; Borghesan, E., Smith, E., Myeni, S., Binder, K., Knodler, L., and Celli, J. A. (2021). Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 40:e107664. doi: 10.15252/embj.2021107664]. It should be [Myeni, S., Child, R., Ng, T., Kupko, J., Wehrly, T., Porcella, S., et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9:e1003556. doi : 10.1371/journal.ppat.1003556;Smith, E. P., Cotto-Rosario, A., Borghesan, E., Held, K., Miller, C., and Celli, J. (2020). Epistatic interplay between Type IV secretion effectors engages the small GTPase Rab2 in the Brucella intracellular cycle. mBio 11:e003350-19. doi: 10.1128/ mBio. 03350-19;Miller, C., Smith, E., Cundiff, J., Knodler, L., Bailey Blackburn, J., Lupashin, V., et al. (2017). A Brucella type IV effector targets the COG Tethering complex to remodel host secretory traffic and promote intracellular replication. Cell Host Microbe 22: 317-329.e7. doi: 10.1016/j.chom.2017.07.017]. The original version of this article has been updated.The reference for [Arriola Benitez et al.,2016] was erroneously written as [Arriola Benitez, P., Rey Serantes, D., Herrmann, C., Pesce Viglietti, A., Vanzulli, S., Giambartolomei, G., et al. (2016). The effector protein bpe005 from Brucella abortus induces collagen deposition and matrix metalloproteinase 9 downmodulation via transforming growth factor β1 in hepatic stellate cells. Infect. Immun. 84, 598-606. doi: 10.1128/IAI.01227-15]. It should be [He, J., Yin, S., Deng, X., Ma, Z., Zhang, H., Miao, Y., et al. (2025). The effector protein BspE affects Brucella survival by regulating the inflammatory response and apoptosis. Int. Immunopharmacol. 144:113576. doi: 10.1016/j.intimp.2024.113576]. The original version of this article has been updated.The reference for [Jansen et al., 2020;Lin et al., 2023;Marchesini et al.,2016] was erroneously written as [Jansen, W., Demars, A., Nicaise, C., Godfroid, J., de Bolle, X., Reboul, A., et al. (2020). Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep. 10:9421. doi: 10.1038/s41598-020-65760-0; Lin, R., Li, A., Li, Y., Shen, R., Du, F., Zheng, M., et al. (2023). The Brucella effector protein BspF regulates apoptosis through the crotonylation of p53. Microorganisms 11:2322. doi: 10.3390/microorganisms11092322; Marchesini, M. I., Morrone Seijo, S. M., Guaimas, F. F., and Comerci, D. (2016). A T4SS effector targets host cell alphaenolase contributing to Brucella abortus intracellular lifestyle. Front. Cell. Infect. Microbiol. 6:153. doi: 10.3389/fcimb.2016. 00153]. It should be [Myeni, S., Child, R., Ng, T., Kupko, J., Wehrly, T., Porcella, S., et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9:e1003556. doi : 10.1371/journal.ppat.1003556;Borghesan, E., Smith, E., Myeni, S., Binder, K., Knodler, L., and Celli, J. A. (2021). Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 40:e107664. doi: 10.15252/embj.2021107664; Lin, R., Li, A., Li, Y., Shen, R., Du, F., Zheng, M., et al. (2023). The Brucella effector protein BspF regulates apoptosis through the crotonylation of p53. Microorganisms 11:2322. doi: 10.3390/microorganisms11092322]. The original version of this article has been updated.The reference for [Döhmer et al.,2014] was erroneously written as [Döhmer, P., Valguarnera, E., Czibener, C., and Ugalde, J. (2014). Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell. Microbiol. 16, 396-410. doi: 10.1111 A., Vanzulli, S., Giambartolomei, G., et al. (2016). The effector protein bpe005 from Brucella abortus induces collagen deposition and matrix metalloproteinase 9 downmodulation via transforming growth factor β1 in hepatic stellate cells. Infect. Immun. 84, 598-606. doi: 10.1128/IAI.01227-15]. The original version of this article has been updated.The reference for [Sengupta et al.,2010] was erroneously written as [Sengupta, D., Koblansky, A., Gaines, J., Brown, T., West, A., Zhang, D., et al. (2010). Subversion of innate immune responses by Brucella through the targeted degradation of the TLR signaling adapter. MAL J. Immunol. 184,[956][957][958][959][960][961][962][963][964] The reference for [Giménez et al.,2024] was erroneously written as [Giménez, A., Del Giudice, M., López, P., Guaimas, F., Sámano-Sánchez, H., Gibson, T., et al. (2024). Brucella NpeA is a secreted Type IV effector containing an N-WASPbinding short linear motif that promotes niche formation. mBio 15:e00726-24. doi: 10.1128/mbio.00726-24]. It should be [Ma, Z., Li, R., Hu, R., Deng, X., Xu, Y., Zheng, W., et al. (2020). Brucella abortus BspJ is a nucleomodulin that inhibits macrophage apoptosis and promotes intracellular survival of Brucella. Front. Microbiol. 11:599205. doi: 10.3389/fmicb.2020.599205].The original version of this article has been updated.The reference for [Li C. et al.,2022] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. ( 2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209,[488][489][490][491][492][493][494][495][496][497] The original version of this article has been updated.The reference for [He et al.,2025] was erroneously written as [He, J., Yin, S., Deng, X., Ma, Z., Zhang, H., Miao, Y., et al. (2025) The reference for [Li C. et al.,2022] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. ( 2022 The reference for [Bergé et al.,2017;Spera et al., 2006;Liu et al.,2018] was erroneously written as [Bergé, C., Waksman, G., and Terradot, L. (2017). Structural and molecular biology of type IV secretion systems. Curr. Top. Microbiol. Immunol. 413,.1007/ 978-3-319-75241-9_2; Spera, J., Ugalde, J., Mucci, J., Comerci, D., and Ugalde, R. A. (2006) The reference for [Cloeckaert et al., 1996a] was erroneously written as [Cloeckaert, A., Verger, J., Grayon, M., and Vizcaíno, N. (1996a). Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol. Lett. 145, 1-8. doi: 10.1111Lett. 145, 1-8. doi: 10. /j.1574Lett. 145, 1-8. doi: 10. -6968.1996.tb08547.x].tb08547.x]. It should be [Tibor, A., Decelle, B., and Letesson, J. J. (1999). Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun. 67, 4960-4962. doi: 10.1128/IAI.67.9.4960-4962.1999 ]. The original version of this article has been updated.The reference for [Fretin et al., 2005] The reference for [Cloeckaert et al., 1996a] was erroneously written as [Cloeckaert, A., Verger, J., Grayon, M., and Vizcaíno, N. (1996a). Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol. Lett. 145, 1-8. doi: 10.1111Lett. 145, 1-8. doi: 10. /j.1574Lett. 145, 1-8. doi: 10. -6968.1996.tb08547.x].tb08547.x]. It should be [Tibor, A., Decelle, B., and Letesson, J. J. (1999). Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun. 67, 4960-4962. doi: 10.1128/IAI.67.9.4960-4962.1999]. The original version of this article has been updated.The reference for [Cloeckaert et al., 1996b] was erroneously written as [Cloeckaert, A., Verger, J., Grayon, M., Zygmunt, M., and Grépinet, O. (1996b). Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: Evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene. Infect. Immun. 64, 2047-2055. doi: 10.1128/iai.64.6.2047-2055.1996]. It should be [Cloeckaert, A., Verger, J., Grayon, M., and Vizcaíno, N. (1996a). Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol. Lett. 145, 1-8. doi: 10.1111Lett. 145, 1-8. doi: 10. /j.1574Lett. 145, 1-8. doi: 10. -6968.1996.tb08547.x].tb08547.x]. The original version of this article has been updated.The reference for [Cloeckaert et al., 1996b;Guzman-Verri et al., 2002;Martín-Martín et al.,2009] was erroneously written as [Cloeckaert, A., Verger, J., Grayon, M., Zygmunt, M., and Grépinet, O. (1996b). Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: Evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene. Infect. Immun. 64, 2047-2055. doi: 10.1128/iai.64.6.2047-2055.1996;Guzman-Verri, C., Manterola, L., Sola-Landa, A., Parra, A., Cloeckaert, A., Garin, J., et al. (2002). The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc. Natl. Acad. Sci. U.S.A. 99, 12375-12380. doi: 10.1073/pnas.192439399; Martín-Martín, A., Caro-Hernández, P., Sancho, P., Tejedor, C., Cloeckaert, A., Fernández-Lago, L., et al. (2009). Analysis of the occurrence and distribution of the Omp25/Omp31 family of surface proteins in the six classical Brucella species. Vet. Microbiol. 137, 74-82. doi: 10.1016Microbiol. 137, 74-82. doi: 10. /j.vetmic.2008.12.003.12.003]. It should be [Cloeckaert, A., Verger, J., Grayon, M., and Vizcaíno, N. (1996a). Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol. Lett. 145, 1-8. doi: 10.1111Lett. 145, 1-8. doi: 10. /j.1574Lett. 145, 1-8. doi: 10. -6968.1996.tb08547.x;.tb08547.x;Cloeckaert, A., Verger, J., Grayon, M., Zygmunt, M., and Grépinet, O. (1996b). Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: Evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene. Infect. Immun. 64, 2047-2055. doi: 10.1128/iai.64.6.2047-2055.1996;Guzman-Verri, C., Manterola, L., Sola-Landa, A., Parra, A., Cloeckaert, A., Garin, J., et al. (2002). The two-component system BvrR/BvrS essential for Brucella abortus virulence regulates the expression of outer membrane proteins with counterparts in members of the Rhizobiaceae. Proc. Natl. Acad. Sci. U.S. A. 99, 12375-12380. doi: 10.1073/pnas.192439399]. The original version of this article has been updated.The reference for [Cloeckaert et al., 1996b] was erroneously written as [Cloeckaert, A., Verger, J., Grayon, M., Zygmunt, M., and Grépinet, O. (1996b). Nucleotide sequence and expression of the gene encoding the major 25-kilodalton outer membrane protein of Brucella ovis: Evidence for antigenic shift, compared with other Brucella species, due to a deletion in the gene. Infect. Immun. 64, 2047-2055. doi: 10.1128/iai.64.6.2047-2055.1996]. It should be [Cloeckaert, A., Verger, J., Grayon, M., and Vizcaíno, N. (1996a). Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol. Lett. 145, 1-8. doi: 10.1111Lett. 145, 1-8. doi: 10. /j.1574Lett. 145, 1-8. doi: 10. -6968.1996.tb08547.x].tb08547.x]. The original version of this article has been updated.The reference for [Dubray and Bézard,1980] was erroneously written as [Dubray, G., and Bézard, G. (1980). Isolation of three Brucella abortus cell-wall antigens protective in murine experimental brucellosis. Ann. Rech. Vet. 11, 367-373. doi: 10.1016/s0378-1135(02)00110-4]. It should be [Martín-Martín, A., Caro-Hernández, P., Sancho, P., Tejedor, C., Cloeckaert, A., Fernández-Lago, L., et al. (2009). Analysis of the occurrence and distribution of the Omp25/Omp31 family of surface proteins in the six classical Brucella species. Vet. Microbiol. 137, 74-82. doi: 10.1016Microbiol. 137, 74-82. doi: 10. /j.vetmic.2008.12.003].12.003]. The original version of this article has been updated.The reference for [Montaraz and Winter, 1986;Winter and Rowe, 1988;Edmonds et al., 2002;Zhu et al., 2018] was erroneously written as [Montaraz, J., and Winter, A. (1986). Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice. Infect. Immun. 53, 245-251. doi: 10.1128Immun. 53, 245-251. doi: 10. /iai.53. 2.245-251.1986;;Winter, A., and Rowe, G. (1988). Comparative immune responses to native cell envelope antigens and the hot sodium dodecyl sulfate insoluble fraction (PG) of Brucella abortus in cattle and mice. Vet. Immunol. Immunopathol. 18, 149-163. doi: 10.1016/0165-2427(88)90057-8; Edmonds, M., Cloeckaert, A., and Elzer, P. (2002). Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet. Microbiol. 88,[205][206][207][208][209][210][211][212][213][214][215][216][217][218][219][220][221]1016/s0378-1135(02) 00110-4; Zhu, H., Jiao, H., Nie, X., Li, B., Xu, K., Pang, F., et al. (2018). Alterations of microRNAs and their predicted targeting mRNAs expression in RAW264.7 macrophages infected with Omp25 mutant Brucella melitensis. Innate Immun. 24, 382-389. doi: 10.1177/1753425918792298]. It should be [Dubray, G., and Bézard, G. (1980). Isolation of three Brucella abortus cell-wall antigens protective in murine experimental brucellosis. Ann. Rech. Vet. 11, 367-373. doi: 10.1016Vet. 11, 367-373. doi: 10. /s0378-1135(02)(02) 00110-4;Montaraz, J., and Winter, A. (1986). Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice. Infect. Immun. 53, 245-251. doi: 10.1128Immun. 53, 245-251. doi: 10. /iai.53. 2.245-251.1986;;Winter, A., and Rowe, G. (1988). Comparative immune responses to native cell envelope antigens and the hot sodium dodecyl sulfate insoluble fraction (PG) of Brucella abortus in cattle and mice. Vet. Immunol. Immunopathol. 18, 149-163. doi: 10.1016/0165-2427(88)90057-8;Edmonds, M., Cloeckaert, A., and Elzer, P. (2002). Brucella species lacking the major outer membrane protein Omp25 are attenuated in mice and protect against Brucella melitensis and Brucella ovis. Vet. Microbiol. 88, 205-221. doi: 10.1016Microbiol. 88, 205-221. doi: 10. /s0378-1135(02) (02) The reference for [Verdiguel-Fernández et al. (2017)] was erroneously written as [Verdiguel-Fernández, L., Oropeza-Navarro, R., Basurto-Alcántara, F., Castañeda Ramírez, A., and Verdugo-Rodríguez, A. (2017). Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch. Microbiol. 199, 971-978. doi: 10.1007Microbiol. 199, 971-978. doi: 10. /s00203-017-1360-7-7]. It should be [Jubier-Maurin, V., Boigegrain, R., Cloeckaert, A., Gross, A., Alvarez-Martinez, M., Terraza, A., et al. (2001). Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor alpha production during infection of human macrophages. Infect. Immun. 69, 4823-4830. doi: 10.1128/IAI.69.8.4823-4830. 2001]. The original version of this article has been updated.The reference for [Verdiguel-Fernández et al. (2017)] was erroneously written as [Verdiguel-Fernández, L., Oropeza-Navarro, R., Basurto-Alcántara, F., Castañeda Ramírez, A., and Verdugo-Rodríguez, A. (2017). Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch. Microbiol. 199, 971-978. doi: 10.1007Microbiol. 199, 971-978. doi: 10. /s00203-017-1360-7-7]. It should be [Jubier-Maurin, V., Boigegrain, R., Cloeckaert, A., Gross, A., Alvarez-Martinez, M., Terraza, A., et al. (2001). Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor alpha production during infection of human macrophages. Infect. Immun. 69, 4823-4830. doi: 10.1128/IAI.69.8.4823-4830. 2001]. The original version of this article has been updated.The reference for [Verdiguel-Fernández et al. (2017)] was erroneously written as [Verdiguel-Fernández, L., Oropeza-Navarro, R., Basurto-Alcántara, F., Castañeda Ramírez, A., and Verdugo-Rodríguez, A. ( 2017). Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch. Microbiol. 199, 971-978. doi: 10.1007Microbiol. 199, 971-978. doi: 10. /s00203-017-1360-7-7]. It should be [Jubier-Maurin, V., Boigegrain, R., Cloeckaert, A., Gross, A., Alvarez-Martinez, M., Terraza, A., et al. (2001). Major outer membrane protein Omp25 of Brucella suis is involved in inhibition of tumor necrosis factor alpha production during infection of human macrophages. Infect. Immun. 69, 4823-4830. doi: 10.1128/IAI.69.8.4823-4830. 2001]. The original version of this article has been updated.The reference for [Delpino et al. (2006)] was erroneously written as [Delpino, M., Cassataro, J., Fossati, C., Goldbaum, F., and Baldi, P. (2006). Brucella outer membrane protein Omp31 is a haemin-binding protein. Microbes Infect. 8, 1203Infect. 8, -1208Infect. 8, . doi: 10.1016Infect. 8, /j.micinf.2005.11.11.008]. It should be [Verdiguel-Fernández, L., Oropeza-Navarro, R., Basurto-Alcántara, F., Castañeda Ramírez, A., and Verdugo-Rodríguez, A. (2017). Omp31 plays an important role on outer membrane properties and intracellular survival of Brucella melitensis in murine macrophages and HeLa cells. Arch. Microbiol. 199, 971-978. doi: 10.1007Microbiol. 199, 971-978. doi: 10. /s00203-017-1360-7]-7]. The original version of this article has been updated.The reference for [Zhang K. et al., 2016] was erroneously written as [Zhang, K., Wang, H., Guo, F., Yuan, L., Zhang, W., Wang, Y., et al. (2016). OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α. Exp Ther Med. 12, 2783-2789. doi: 10.3892/etm.2016.3655]. It should be [Delpino, M., Cassataro, J., Fossati, C., Goldbaum, F., and Baldi, P. (2006). Brucella outer membrane protein Omp31 is a haemin-binding protein. Microbes Infect. 8, 1203Infect. 8, -1208Infect. 8, . doi: 10.1016Infect. 8, /j.micinf.2005.11.008].11.008]. The original version of this article has been updated.The reference for [Wang et al., 2021a] was erroneously written as [Wang, Z., Wang, G., Wang, Y., Liu, Q., Li, H., Xie, P., et al. (2021). Omp31 of Brucella inhibits NF-κB p65 signaling pathway by inducing autophagy in BV-2 microglia. Neurochemical Research,46,[3264][3265][3266][3267][3268][3269][3270][3271][3272]. It should be [Zhang, K., Wang, H., Guo, F., Yuan, L., Zhang, W., Wang, Y., et al. (2016). OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF-α. Exp Ther Med. 12, 2783-2789. doi: 10.3892/etm.2016.3655]. The original version of this article has been updated.The reference for [Giambartolomei et al., 2004] was erroneously written as [Giambartolomei, G., Zwerdling, A., Cassataro, J., Bruno, L., Fossati, C., and Philipp, M. ( 2004). Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. J. Immunol. 173,[4635][4636][4637][4638][4639][4640][4641][4642]]. It should be [Wang, Z., Wang, G., Wang, Y., Liu, Q., Li, H., Xie, P., et al. (2021). Omp31 of Brucella inhibits NF-κB p65 signaling pathway by inducing autophagy in BV-2 microglia. Neurochemical Research,46,[3264][3265][3266][3267][3268][3269][3270][3271][3272]. The original version of this article has been updated.The reference for [Cloeckaert et al., 1996a] was erroneously written as [Cloeckaert, A., Verger, J., Grayon, M., and Vizcaíno, N. (1996a). Molecular and immunological characterization of the major outer membrane proteins of Brucella. FEMS Microbiol. Lett. 145, 1-8. doi: 10.1111Lett. 145, 1-8. doi: 10. /j.1574Lett. 145, 1-8. doi: 10. -6968.1996.tb08547.x].tb08547.x]. It should be [Tibor, A., Decelle, B., and Letesson, J. J. (1999). Outer membrane proteins Omp10, Omp16, and Omp19 of Brucella spp. are lipoproteins. Infect. Immun. 67, 4960-4962. doi: 10.1128/IAI.67.9.4960-4962.1999]. The original version of this article has been updated.The reference for [Barrionuevo et al., 2008;Velásquez et al., 2017] was erroneously written as [Barrionuevo, P., Cassataro, J., Delpino, M., Zwerdling, A., Pasquevich, K., García Samartino, C., et al. (2008). Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infect. Immun. 76, 250-262. doi: 10.1128/IAI.0 0949-07; Velásquez, L., Milillo, M., Delpino, M., Trotta, A., Fernández, P., Pozner, R., et al. (2017). Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). J. Leukoc. Biol. 101, 759-773. doi: 10.1189/jlb.4A04 16-196R]. It should be [Giambartolomei, G., Zwerdling, A., Cassataro, J., Bruno, L., Fossati, C., and Philipp, M. (2004). Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. J. Immunol. 173, 4635-4642. doi: 10.4049/jimmunol.173.7.4635;Barrionuevo, P., Cassataro, J., Delpino, M., Zwerdling, A., Pasquevich, K., García Samartino, C., et al. (2008). Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infect. Immun. 76, 250-262. doi: 10.1128/IAI.0 0949-07]. The original version of this article has been updated.The reference for [Velásquez et al., 2017;Barrionuevo et al., 2011] was erroneously written as [Velásquez, L., Milillo, M., Delpino, M., Trotta, A., Fernández, P., Pozner, R., et al. (2017). Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). J. Leukoc. Biol. 101, 759-773. doi: 10.1189/jlb.4A04 16-196R;Barrionuevo, P., Delpino, M., Velásquez, L., García Samartino, C., Coria, L., Ibañez, A., et al. (2011). Brucella abortus inhibits IFN-γ-induced FcγRI expression and Fcγ RIrestricted phagocytosis via toll-like receptor 2 on human monocytes/macrophages. Microbes Infect. 13, 239-250. doi: 10.1016Infect. 13, 239-250. doi: 10. /j.micinf.2010.10.020.10.020]. It should be [Barrionuevo, P., Cassataro, J., Delpino, M., Zwerdling, A., Pasquevich, K., García Samartino, C., et al. (2008). Brucella abortus inhibits major histocompatibility complex class II expression and antigen processing through interleukin-6 secretion via Toll-like receptor 2. Infect. Immun. 76, 250-262. doi: 10.1128/IAI.0 0949-07; Velásquez, L., Milillo, M., Delpino, M., Trotta, A., Fernández, P., Pozner, R., et al. (2017). Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1). J. Leukoc. Biol. 101, 759-773. doi: 10.1189/jlb.4A04 16-196R]. The original version of this article has been updated. The reference for [Delpino et al., 2007;Aktas et al., 2010] was erroneously written as [Delpino, M., Marchesini, M., Estein, S., Comerci, D., Cassataro, J., Fossati, C., et al. (2007). A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect. Immun. 75, 299-305. doi: 10.1128/IAI.00952-06; Aktas, M., Wessel, M., Hacker, S., Klüsener, S., Gleichenhagen, J., and Narberhaus, F. (2010). Phosphatidylcholine biosynthesis and its significance in bacteria interacting with eukaryotic cells. Eur. J. Cell. Biol. 89, 888-894. doi: 10.1016/j.ejcb.2010.06.013]. It should be [Sangari, F., Seoane, A., Rodríguez, M., Agüero, J., and García Lobo, J. (2007). Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect. Immun. 75, 774-780. doi: 10.1128/IAI.01244-06; Delpino, M., Marchesini, M., Estein, S., Comerci, D., Cassataro, J., Fossati, C., et al. (2007). A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect. Immun. 75, 299-305. doi: 10.1128 The reference for [Yang X. et al.,2020;Lee et al.,2013] was erroneously written as [Yang, X., Piao, D., Mao, L., Pang, B., Zhao, H., Tian, G., et al. (2020). Wholegenome sequencing of rough Brucella melitensis in China provides insights into its genetic features. Emerg. Microbes Infect. 9, 2147-2156. doi: 10.1080/22221751.2020.1824549; Lee, J., Kim, D., Kim, D., Simborio, H., Min, W., Lee, H., et al. (2013). Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells. J. Biol. Chem. 288, 28049-28057. doi: 10.1074/jbc.M113.491555]. It should be [Lee, J., Kim, J., Kim, D., Kim, D., Simborio, H., Min, W., et al. (2014). Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus. Vet. Microbiol. 168, 131-140. doi: 10.1016Microbiol. 168, 131-140. doi: 10. /j.vetmic.2013.10.10. 007; Velasco-García, R., Villalobos, M., Ramírez-Romero, M., Mújica-Jiménez, C., Iturriaga, G., and Muñoz-Clares, R. (2006). Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: Cloning, over-expression in Escherichia coli, and regulation by choline and salt. Arch. Microbiol. 185, 14-22. doi: 10.1007/s00203-005-0054-8]. The original version of this article has been updated.The reference for [Yang H. et al., 2020] was erroneously written as [Yang, X., Piao, D., Mao, L., Pang, B., Zhao, H., Tian, G., et al. (2020). Whole-genome sequencing of rough Brucella melitensis in China provides insights into its genetic features. Emerg. Microbes Infect. 9, 2147-2156. doi: 10.1080/22221751.2020.1824549]. It should be [Lee, J., Kim, J., Kim, D., Kim, D., Simborio, H., Min, W., et al. (2014). Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus. Vet. Microbiol. 168, 131-140. doi: 10.1016Microbiol. 168, 131-140. doi: 10. /j.vetmic.2013.10. 007].10. 007]. The original version of this article has been updated.The reference for [Bialer et al., 2020;Spera et al., 2018] was erroneously written as [Bialer, M. G., Sycz, G., Muñoz González, F., Ferrero, M., and Baldi, P. (2020). Adhesins of Brucella: Their roles in the interaction with the host. Pathogens 9:942. doi: 10.3390/pathogens9110942; Spera, J. M., Guaimas, F., Corvi, M. M., and Ugalde, J. ( 2018). Brucella hijacks hostmediated palmitoylation to stabilize and localize PrpA to the plasma membrane. Infect. Immun. 86:e00402-18. doi: 10.1128/IAI.00402-18]. It should be [Bialer, M. G., Sycz, G., Muñoz González, F., Ferrero, M., and Baldi, P. (2020). Adhesins of Brucella: Their roles in the interaction with the host. Pathogens 9:942. doi: 10.3390/pathogens9110942; Xiong X, Li B, Zhou Z, Gu G, Li M, Liu J, Jiao H (2021) The VirB System Plays a Crucial Role in Brucella Intracellular Infection . Int J Mol Sci, 22:24 doi: 10.3390/ijms222413637]. The original version of this article has been updated.The reference for [Atluri et al., 2011;Jimenez de Bagues et al., 2005;Guzmán-Verri et al., 2001;Oliveira et al., 2008;Kim et al., 2004;Chaves-Olarte et al., 2002] was erroneously written as [Atluri, V., Xavier, M., de Jong, M., den Hartigh, A., and Tsolis, R. ( 2011). Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65, 523-541. doi: 10.1146/annurev-micro-090110-102905; Jimenez de Bagues, M. P., Dudal, S., Dornand, J., and Gross, A. (2005). Cellular bioterrorism: How Brucella corrupts macrophage physiology to promote invasion and proliferation. Clin. Immunol. 114, 227-238. doi: 10.1016Immunol. 114, 227-238. doi: 10. /j.clim.2004.07.07.010; Guzmán-Verri, C., Chaves-Olarte, E., von Eichel-Streiber, C., López-Goñi, I., Thelestam, M., Arvidson, S., et al. (2001). GTPases of the Rho subfamily are required for Brucella abortus internalization in nonprofessional phagocytes: Direct activation of Cdc42. J. Biol. Chem. 276, 44435-44443. doi: 10.1074/jbc.M105606200; Oliveira, S., de Oliveira, F., Macedo, G., de Almeida, L., and Carvalho, N. ( 2008). The role of innate immune receptors in the control of Brucella abortus infection: Tolllike receptors and beyond. Microbes Infect. 10, 1005-1009. doi: 10.1016/j.micinf.2008. 07.005; Kim, S., Watarai, M., Suzuki, H., Makino, S., Kodama, T., and Shirahata, T. ( 2004). Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb. Pathog. 37, 11-19. doi: 10.1016/j.micpath.2004.04.002; Chaves-Olarte, E., Guzmán-Verri, C., Méresse, S., Desjardins, M., Pizarro-Cerdá, J., Badilla, J., et al. (2002). Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell. Microbiol. 4, 663-676. doi: 10.1046Microbiol. 4, 663-676. doi: 10. /j.1462Microbiol. 4, 663-676. doi: 10. -5822.2002.00221.x].00221.x]. It should be [Atluri, V., Xavier, M., de Jong, M., den Hartigh, A., and Tsolis, R. ( 2011). Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65, 523-541. doi: 10.1146/annurev-micro-090110-102905; Lee, J., Kim, D., Kim, D., Simborio, H., Min, W., Lee, H., et al. (2013). Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells. J. Biol. Chem. 288, 28049-28057. doi: 10.1074/jbc.M113.491555; Jimenez de Bagues, M. P., Dudal, S., Dornand, J., and Gross, A. (2005). Cellular bioterrorism: How Brucella corrupts macrophage physiology to promote invasion and proliferation. Clin. Immunol. 114, 227-238. doi: 10.1016Immunol. 114, 227-238. doi: 10. /j.clim.2004.07.07.010; Guzmán-Verri, C., Chaves-Olarte, E., von Eichel-Streiber, C., López-Goñi, I., Thelestam, M., Arvidson, S., et al. (2001). GTPases of the Rho subfamily are required for Brucella abortus internalization in nonprofessional phagocytes: Direct activation of Cdc42. J. Biol. Chem. 276, 44435-44443. doi: 10.1074/jbc.M105606200; Oliveira, S., de Oliveira, F., Macedo, G., de Almeida, L., and Carvalho, N. ( 2008). The role of innate immune receptors in the control of Brucella abortus infection: Tolllike receptors and beyond. Microbes Infect. 10, 1005-1009. doi: 10.1016/j.micinf.2008. 07.005; Kim, S., Watarai, M., Suzuki, H., Makino, S., Kodama, T., and Shirahata, T. ( 2004). Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb. Pathog. 37, 11-19. doi: 10.1016Pathog. 37, 11-19. doi: 10. /j.micpath.2004.04.002].04.002]. The original version of this article has been updated.The reference for [Gross et al.,1998] was erroneously written as [Gross, A., Spiesser, S., Terraza, A., Rouot, B., Caron, E., and Dornand, J. (1998). Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect. Immun. 66, 1309-1316. doi: 10.1128/IAI.66.4.1309-1316. 1998]. It should be [Chaves-Olarte, E., Guzmán-Verri, C., Méresse, S., Desjardins, M., Pizarro-Cerdá, J., Badilla, J., et al. (2002). Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell. Microbiol. 4, 663-676. doi: 10.1046Microbiol. 4, 663-676. doi: 10. /j.1462Microbiol. 4, 663-676. doi: 10. -5822.2002.00221.x].00221.x]. The original version of this article has been updated.The reference for [Comerci et al., 2001] was erroneously written as [Comerci, D., Martínez-Lorenzo, M., Sieira, R., Gorvel, J., and Ugalde, R. (2001). Essential role of the VirB machinery in the maturation of the Brucella abortuscontaining vacuole. Cell. Microbiol. 3, 159-168. doi: 10.1046/j.1462-5822.2001.00102. x]. It should be [Gross, A., Spiesser, S., Terraza, A., Rouot, B., Caron, E., and Dornand, J. (1998). Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect. Immun. 66, 1309-1316. doi: 10.1128/IAI.66.4.1309-1316. 1998]. The original version of this article has been updated.The reference for [Celli, 2019;Mora-Cartín et al., 2019;Gross et al., 1998;Pizarro-Cerdá et al., 1998a] was erroneously written as [Celli, J. (2019). The intracellular life cycle of Brucella spp. Microbiol. Spectr. 7:6. doi: 10.1128/microbiolspec.bai-0006-2019;Mora-Cartín, R., Gutiérrez-Jiménez, C., Alfaro-Alarcón, A., Chaves-Olarte, E., Chacón-Díaz, C., Barquero-Calvo, E., et al. (2019). Neutrophils dampen adaptive immunity in Brucellosis. Infect. Immun. 87:e00118-19. doi: 10.1128/IAI.00118-19;Gross, A., Spiesser, S., Terraza, A., Rouot, B., Caron, E., and Dornand, J. (1998). Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect. Immun. 66, 1309-1316. doi: 10.1128/IAI.66.4.1309-1316. 1998;Pizarro-Cerdá, J., Méresse, S., Parton, R., van der Goot, G., Sola-Landa, A., LopezGoñi, I., et al. (1998a). Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711-5724. doi: 10.1128/IAI.66.12.5711-5724.1998]. It should be [Celli, J. (2019). The intracellular life cycle of Brucella spp. Microbiol. Spectr. 7:6. doi: 10.1128/microbiolspec.bai-0006-2019;Celli, J., de Chastellier, C., Franchini, D., Pizarro-Cerda, J., Moreno, E., and Gorvel, J. (2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 198, 545-556. doi: 10.1084/jem.20030088;Chaves-Olarte, E., Guzmán-Verri, C., Méresse, S., Desjardins, M., Pizarro-Cerdá, J., Badilla, J., et al. (2002). Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell. Microbiol. 4, 663-676. doi: 10.1046Microbiol. 4, 663-676. doi: 10. /j.1462Microbiol. 4, 663-676. doi: 10. -5822.2002.00221.x;.00221.x;Comerci, D., Martínez-Lorenzo, M., Sieira, R., Gorvel, J., and Ugalde, R. (2001). Essential role of the VirB machinery in the maturation of the Brucella abortuscontaining vacuole. Cell. Microbiol. 3, 159-168. doi: 10.1046/j.1462-5822.2001.00102. x]. The original version of this article has been updated.The reference for [Gross et al., 1998;Pizarro-Cerdá et al., 1998a;Pizarro-Cerdá et al., 1998b;Starr et al., 2008] was erroneously written as [Gross, A., Spiesser, S., Terraza, A., Rouot, B., Caron, E., and Dornand, J. (1998). Expression and bactericidal activity of nitric oxide synthase in Brucella suis-infected murine macrophages. Infect. Immun. 66, 1309-1316. doi: 10.1128/IAI.66.4.1309-1316. 1998;Pizarro-Cerdá, J., Méresse, S., Parton, R., van der Goot, G., Sola-Landa, A., LopezGoñi, I., et al. (1998a). Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711-5724. doi: 10.1128/IAI.66.12.5711-5724.1998;Pizarro-Cerdá, J., Moreno, E., Sanguedolce, V., Mege, J., and Gorvel, J. (1998b). Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun. 66, 2387-2392. doi: 10.1128/IAI. 66.5.2387-2392.1998;Starr, T., Ng, T., Wehrly, T., Knodler, L., and Celli, J. (2008). Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9, 678-694. doi: 10.1111Traffic 9, 678-694. doi: 10. /j.1600Traffic 9, 678-694. doi: 10. -0854.2008.00718.x].00718.x]. It should be [Chaves-Olarte, E., Guzmán-Verri, C., Méresse, S., Desjardins, M., Pizarro-Cerdá, J., Badilla, J., et al. (2002). Activation of Rho and Rab GTPases dissociates Brucella abortus internalization from intracellular trafficking. Cell. Microbiol. 4, 663-676. doi: 10.1046Microbiol. 4, 663-676. doi: 10. /j.1462Microbiol. 4, 663-676. doi: 10. -5822.2002.00221.x;.00221.x;Comerci, D., Martínez-Lorenzo, M., Sieira, R., Gorvel, J., and Ugalde, R. (2001). Essential role of the VirB machinery in the maturation of the Brucella abortuscontaining vacuole. Cell. Microbiol. 3, 159-168. doi: 10.1046/j.1462-5822.2001.00102. x;Pizarro-Cerdá, J., Méresse, S., Parton, R., van der Goot, G., Sola-Landa, A., LopezGoñi, I., et al. (1998a). Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66, 5711-5724. doi: 10.1128/IAI.66.12.5711-5724.1998;Pizarro-Cerdá, J., Moreno, E., Sanguedolce, V., Mege, J., and Gorvel, J. (1998b). Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun. 66, 2387-2392. doi: 10.1128/IAI. 66.5.2387-2392.1998].The original version of this article has been updated.The reference for [Mora-Cartín et al., 2019;Hu et al., 2023;Ke et al., 2015] was erroneously written as [Mora-Cartín, R., Gutiérrez-Jiménez, C., Alfaro-Alarcón, A., Chaves-Olarte, E., Chacón-Díaz, C., Barquero-Calvo, E., et al. (2019). Neutrophils dampen adaptive immunity in Brucellosis. Infect. Immun. 87:e00118-19. doi: 10.1128/IAI.00118-19;Hu, H., Zhang, G., Tian, M., Guan, X., Yin, Y., Ding, C., et al. (2023). Brucella abortus Rough-Type mutant induces ferroptosis and more oxidative stress in infected macrophages. Pathogens 12:1189. doi: 10.3390/pathogens12101189; Ke, Y., Wang, Y., Li, W., and Chen, Z. (2015). Type IV secretion system of Brucella spp. and its effectors. Front. Cell. Infect. Microbiol. 5:72. doi: 10.3389/fcimb.2015.00072]. It should be [Celli, J., de Chastellier, C., Franchini, D., Pizarro-Cerda, J., Moreno, E., and Gorvel, J. (2003). Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 198, 545-556. doi: 10.1084/jem.20030088;Gómez, L., Alvarez, F., Molina, R., Soto-Shara, R., Daza-Castro, C., Flores, M., et al. (2020). A Zinc-Dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 11:1586. doi: 10.3389/fmicb. 2020.01586;Starr, T., Ng, T., Wehrly, T., Knodler, L., and Celli, J. (2008). Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9, 678-694. doi: 10.1111Traffic 9, 678-694. doi: 10. /j.1600Traffic 9, 678-694. doi: 10. -0854.2008.00718.x].00718.x]. The original version of this article has been updated.The reference for [Guo et al., 2023] was erroneously written as [Guo, X., Zeng, H., Li, M., Xiao, Y., Gu, G., Song, Z., et al. (2023). The mechanism of chronic intracellular infection with Brucella spp. Front. Cell. Infect. Microbiol. 13:1129172. doi: 10.3389/fcimb.2023.1129172]. It should be [Ke, Y., Wang, Y., Li, W., and Chen, Z. (2015). Type IV secretion system of Brucella spp. and its effectors. Front. Cell. Infect. Microbiol. 5:72. doi: 10.3389/fcimb.2015.00072]. The original version of this article has been updated.The reference for [de Figueiredo et al., 2015;Keestra-Gounder et al., 2016;Hu et al.,2023] was erroneously written as [de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: Review of Brucellahost interactions. Am. J. Pathol. 185, 1505Pathol. 185, -1517Pathol. 185, . doi: 10.1016Pathol. 185, /j.ajpath.2015. 03.003;. 03.003;Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631; Hu, H., Zhang, G., Tian, M., Guan, X., Yin, Y., Ding, C., et al. (2023). Brucella abortus Rough-Type mutant induces ferroptosis and more oxidative stress in infected macrophages. Pathogens 12:1189. doi: 10.3390/pathogens12101189]. It should be [Zheng, M., Lin, R., Zhu, J., Dong, Q., Chen, J., Jiang, P., et al. (2024). Effector proteins of type IV secretion system: Weapons of Brucella used to fight against host immunity. Curr. Stem Cell. Res. Ther. 19, 145-153. doi: 10.2174/ 1574888X18666230222124529;de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12; Gómez, L., Alvarez, F., Molina, R., Soto-Shara, R., Daza-Castro, C., Flores, M., et al. (2020). A Zinc-Dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 11:1586. doi: 10.3389/fmicb. 2020.01586]. The original version of this article has been updated.The reference for [Yang et al., 2024;Mora-Cartín et al., 2019] was erroneously written as [Yang, J., Wang, Y., Hou, Y., Sun, M., Xia, T., and Wu, X. (2024). Evasion of host defense by Brucella. Cell Insight. 3:100143. doi: 10.1016/j.cellin.2023.100143;Mora-Cartín, R., Gutiérrez-Jiménez, C., Alfaro-Alarcón, A., Chaves-Olarte, E., Chacón-Díaz, C., Barquero-Calvo, E., et al. (2019). Neutrophils dampen adaptive immunity in Brucellosis. Infect. Immun. 87:e00118-19. doi: 10.1128/IAI.00118-19]. It should be [Wells, K. M., He, K., Pandey, A., Cabello, A., Zhang, D., Yang, J., et al. (2022). Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense. Elife 11:e73625. doi: 10.7554/eLife.73625; Celli, J., de Chastellier, C., Franchini, D., Pizarro-Cerda, J., Moreno, E., and Gorvel, J. (2003). Brucella evades macrophage killing via VirBdependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 198, 545-556. doi: 10.1084/jem.20030088]. The original version of this article has been updated.The reference for [Starr et al., 2012)] was erroneously written as [Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002.12.002]. It should be [Guo, X., Zeng, H., Li, M., Xiao, Y., Gu, G., Song, Z., et al. (2023). The mechanism of chronic intracellular infection with Brucella spp. Front. Cell. Infect. Microbiol. 13:1129172. doi: 10.3389/fcimb.2023.1129172]. The original version of this article has been updated.The reference for [Celli, 2019;Jansen et al., 2020;Aly and Baron, 2007;Starr et al., 2012;Fugier et al., 2009] was erroneously written as [Celli, J. (2019). The intracellular life cycle of Brucella spp. Microbiol. Spectr. 7:6. doi: 10.1128/microbiolspec.bai-0006-2019;Jansen, W., Demars, A., Nicaise, C., Godfroid, J., de Bolle, X., Reboul, A., et al. (2020). Shedding of Brucella melitensis happens through milk macrophages in the murine model of infection. Sci. Rep. 10:9421. doi: 10.1038/s41598-020-65760-0; Aly, K., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology (Reading) 153, 3766-3775. doi: 10.1099/mic. 0.2007/010462-0; Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002;.12.002;Fugier, E., Salcedo, S., de Chastellier, C., Pophillat, M., Muller, A., Arce-Gorvel, V., et al. (2009). The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog. 5:e1000487. doi: 10.1371/ journal.ppat.1000487]. It should be [Celli, J. (2019). The intracellular life cycle of Brucella spp. Microbiol. Spectr. 7:6. doi: 10.1128/microbiolspec.bai-0006-2019;Myeni, S., Child, R., Ng, T., Kupko, J., Wehrly, T., Porcella, S., et al. (2013). Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 9:e1003556. doi : 10.1371/journal.ppat.1003556;Keriel, A., Botella, E., Estrach, S., Bragagnolo, G., Vergunst, A., Feral, C., et al. (2015). Brucella intracellular life relies on the transmembrane protein CD98 heavy chain. J. Infect. Dis. 211, 1769-1778. doi: 10.1093/infdis/jiu673;Guo, X., Zeng, H., Li, M., Xiao, Y., Gu, G., Song, Z., et al. (2023). The mechanism of chronic intracellular infection with Brucella spp. Front. Cell. Infect. Microbiol. 13:1129172. doi: 10.3389/fcimb.2023.1129172;Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002].12.002]. The original version of this article has been updated.The reference for [Taguchi et al., 2015] was erroneously written as [Taguchi, Y., Imaoka, K., Kataoka, M., Uda, A., Nakatsu, D., Horii-Okazaki, S., et al. (2015). Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog. 11:e1004747. doi: 10.1371/journal.ppat.1004747]. It should be [Fugier, E., Salcedo, S., de Chastellier, C., Pophillat, M., Muller, A., Arce-Gorvel, V., et al. (2009). The glyceraldehyde-3phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog. 5:e1000487. doi: 10.1371/ journal.ppat.1000487]. The original version of this article has been updated.The reference for [Celli, 2019;Aly and Baron, 2007;Starr et al., 2012;Fugier et al., 2009] was erroneously written as [Celli, J. (2019). The intracellular life cycle of Brucella spp. Microbiol. Spectr. 7:6. doi: 10.1128/microbiolspec.bai-0006-2019; Aly, K., and Baron, C. (2007). The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology (Reading) 153, 3766-3775. doi: 10.1099/mic. 0.2007/010462-0; Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002;.12.002;Fugier, E., Salcedo, S., de Chastellier, C., Pophillat, M., Muller, A., Arce-Gorvel, V., et al. (2009). The glyceraldehyde-3phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog. 5:e1000487. doi: 10.1371/ journal.ppat.1000487]. It should be [Celli, J. (2019). The intracellular life cycle of Brucella spp. Microbiol. Spectr. 7:6. doi: 10.1128/microbiolspec.bai-0006-2019; Keriel, A., Botella, E., Estrach, S., Bragagnolo, G., Vergunst, A., Feral, C., et al. (2015). Brucella intracellular life relies on the transmembrane protein CD98 heavy chain. J. Infect. Dis. 211, 1769-1778. doi: 10.1093/infdis/jiu673; Guo, X., Zeng, H., Li, M., Xiao, Y., Gu, G., Song, Z., et al. (2023). The mechanism of chronic intracellular infection with Brucella spp. Front. Cell. Infect. Microbiol. 13:1129172. doi: 10.3389/fcimb.2023.1129172;Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002].12.002]. The original version of this article has been updated.The reference for [Spera et al., 2023] was erroneously written as [Spera, J., Guaimas, F., Czibener, C., and Ugalde, J. (2023). Brucella egresses from host cells exploiting multivesicular bodies. mBio 14:e03338-22. doi: 10.1128/mbio. . It should be [Taguchi, Y., Imaoka, K., Kataoka, M., Uda, A., Nakatsu, D., Horii-Okazaki, S., et al. (2015). Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog. 11:e1004747. doi: 10.1371/journal.ppat.1004747]. The original version of this article has been updated.The reference for [Fugier et al., 2009] was erroneously written as [Fugier, E., Salcedo, S., de Chastellier, C., Pophillat, M., Muller, A., Arce-Gorvel, V., et al. (2009). The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLoS Pathog. 5:e1000487. doi: 10.1371/ journal.ppat.1000487]. It should be [Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002].12.002]. The original version of this article has been updated.The reference for [Smith et al., 2016] was erroneously written as [Smith, E. P., Miller, C. N., Child, R., Cundiff, J., and Celli, J. ( 2016). Postreplication roles of the Brucella VirB Type IV secretion system uncovered via conditional expression of the VirB11 ATPase. mBio 7:e001730-16. doi: 10.1128/mBio.01730-16]. It should be [Spera, J., Guaimas, F., Czibener, C., and Ugalde, J. ( 2023). Brucella egresses from host cells exploiting multivesicular bodies. mBio 14:e03338-22. doi: 10.1128/mbio. . The original version of this article has been updated.The reference for [Kumar et al. (2011)] was erroneously written as [Kumar, H., Kawai, T., and Akira, S. (2011). Pathogen recognition by the innate immune system. Int. Rev. Immunol. 30, 16-34. doi: 10.3109/08830185.2010.529976]. It should be [Smith, E. P., Miller, C. N., Child, R., Cundiff, J., and Celli, J. (2016). Postreplication roles of the Brucella VirB Type IV secretion system uncovered via conditional expression of the VirB11 ATPase. mBio 7:e001730-16. doi: 10.1128/mBio. . The original version of this article has been updated.The reference for [Louche et al.,2023] was erroneously written as [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023). Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat. Commun. 14:102. doi: 10.1038/s41467-022-35763-8]. It should be [Luizet, J. B., Raymond, J., Lacerda, T. L., Barbieux, E., Kambarev, S., Bonici, M., et al. (2021). The Brucella effector BspL targets the ERassociated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc. Natl. Acad. Sci. U.S. A. 118:e2105324118. doi: 10.1073/pnas.2105324118]. The original version of this article has been updated.The reference for [Gomes et al., 2012;;Figure 2] was erroneously written as [Gomes, M. T., Campos, P. C., de Almeida, L. A., Oliveira, F., Costa, M., Marim, F., et al. (2012). The role of innate immune signals in immunity to Brucella abortus. Front. Cell. Infect. Microbiol. 2:130. doi: 10.3389/fcimb.2012.00130]. It should be [Tupik, J. D., Coutermarsh-Ott, S. L., Benton, A. H., King, K., Kiryluk, H., Caswell, C., et al. (2020). ASC-mediated inflammation and pyroptosis attenuates Brucella abortus pathogenesis following the recognition of gDNA. Pathogens 9:1008. doi: 10.3390/ pathogens9121008]. The original version of this article has been updated.The reference for [Dong et al.,2023] was erroneously written as [Dong, B., Li, F., Wang, J., Lv, S., Miao, L., Guo, G., et al. (2023). Effect of ubiquitinproteasome system and autophagy-lysosome pathway on intracellular replication of Brucella suis. Vet. Microbiol. 280, 109699. doi: 10.1016Microbiol. 280, 109699. doi: 10. /j.vetmic.2023.109699.109699]. It should be [Li, J., Qi, L., Diao, Z., Zhang, M., Li, B., Zhai, Y., et al. (2022). Brucella BtpB manipulates apoptosis and autophagic flux in RAW264.7 cells. Int. J. Mol. Sci. 23:14439. doi: 10.3390/ijms232214439]. The original version of this article has been updated.The reference for [Li C. et al., 2022;Liu et al., 2020] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. ( 2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209, 488-497. doi: 10.4049/jimmunol.2200001;Liu, K., Guo, C., Lao, Y., Yang, J., Chen, F., Zhao, Y., et al. (2020). A fine-tuning mechanism underlying self-control for autophagy: DeSUMOylation of BECN1 by SENP3. Autophagy 16, 975-990. doi: 10.1080Autophagy 16, 975-990. doi: 10. /15548627.2019.1647944.1647944]. It should be [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023). Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat. Commun. 14:102. doi: 10.1038/s41467-022-35763-8; Dong, B., Li, F., Wang, J., Lv, S., Miao, L., Guo, G., et al. (2023). Effect of ubiquitinproteasome system and autophagy-lysosome pathway on intracellular replication of Brucella suis. Vet. Microbiol. 280, 109699. doi: 10.1016Microbiol. 280, 109699. doi: 10. /j.vetmic.2023.109699].109699]. The original version of this article has been updated.The reference for [Ogata et al., 2006] was erroneously written as [Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220-9231. doi: 10.1128/MCB.01453-06]. It should be [Liu, K., Guo, C., Lao, Y., Yang, J., Chen, F., Zhao, Y., et al. (2020). A fine-tuning mechanism underlying selfcontrol for autophagy: DeSUMOylation of BECN1 by SENP3. Autophagy 16, 975-990. doi: 10.1080Autophagy 16, 975-990. doi: 10. /15548627.2019.1647944].1647944]. The original version of this article has been updated.The reference for [Li C. et al., 2022;Ogata et al., 2006] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. (2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209, 488-497. doi: 10.4049/jimmunol.2200001;Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220-9231. doi: 10.1128/MCB.01453-06]. It should be [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023). Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat. Commun. 14:102. doi: 10.1038/s41467-022-35763-8;Liu, K., Guo, C., Lao, Y., Yang, J., Chen, F., Zhao, Y., et al. (2020). A fine-tuning mechanism underlying self-control for autophagy: DeSUMOylation of BECN1 by SENP3. Autophagy 16, 975-990. doi: 10.1080Autophagy 16, 975-990. doi: 10. /15548627.2019.1647944].1647944]. The original version of this article has been updated.The reference for [Liu et al.,2020] was erroneously written as [Liu, K., Guo, C., Lao, Y., Yang, J., Chen, F., Zhao, Y., et al. (2020). A fine-tuning mechanism underlying self-control for autophagy: DeSUMOylation of BECN1 by SENP3. Autophagy 16, 975-990. doi: 10.1080Autophagy 16, 975-990. doi: 10. /15548627.2019.1647944.1647944]. It should be [Dong, B., Li, F., Wang, J., Lv, S., Miao, L., Guo, G., et al. (2023). Effect of ubiquitinproteasome system and autophagy-lysosome pathway on intracellular replication of Brucella suis. Vet. Microbiol. 280, 109699. doi: 10.1016/j.vetmic.2023.109699 Dubray, G., and Bézard, G. (1980). Isolation of three Brucella abortus cel]. The reference for [Dong et al., 2023] was erroneously written as [Dong, B., Li, F., Wang, J., Lv, S., Miao, L., Guo, G., et al. (2023). Effect of ubiquitinproteasome system and autophagy-lysosome pathway on intracellular replication of Brucella suis. Vet. Microbiol. 280, 109699. doi: 10.1016/j.vetmic.2023.109699 Dubray, G., and Bézard, G. (1980). Isolation of three Brucella abortus cel]. It should be [Li, J., Qi, L., Diao, Z., Zhang, M., Li, B., Zhai, Y., et al. (2022). Brucella BtpB manipulates apoptosis and autophagic flux in RAW264.7 cells. Int. J. Mol. Sci. 23:14439. doi: 10.3390/ijms232214439]. The reference for [Fernandez-Prada et al., 2003;Pandey et al., 2018] was erroneously written as [Fernandez-Prada, C., Zelazowska, E., Nikolich, M., Hadfield, T., Roop, R., Robertson, G., et al. (2003). Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110-2119. doi: 10.1128/IAI.71. 4.2110-2119.2003;Pandey, A., Lin, F., Cabello, A. L., Feng, X., Feng, H., Zhang, M., et al. (2018). Activation of host IRE1α-dependent signaling axis contributes the intracellular parasitism of Brucella melitensis. Front. Cell. Infect. Microbiol. 8:103. doi: 10.3389/ fcimb.2018.00103]. It should be [Smith, J., Khan, M., Magnani, D., Harms, J., Durward, M., Radhakrishnan, G., et al. (2013). Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog. 9:e1003785. doi: 10.1371/ journal.ppat.1003785; Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220-9231. doi: 10.1128/MCB.01453-06]. The reference for [Gómez et al.,2020] was erroneously written as [Gómez, L., Alvarez, F., Molina, R., Soto-Shara, R., Daza-Castro, C., Flores, M., et al. (2020). A Zinc-Dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 11:1586. doi: 10.3389/fmicb. 2020.01586]. It should be [Zhang, J., Li, M., Li, Z., Shi, J., Zhang, Y., Deng, X., et al. (2019). Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucella-infected human trophoblast Cells. Curr. Microbiol. 76, 510-519. doi: 10.1007/ s00284-019-01651-6]. The original version of this article has been updatedThe reference for [Giambartolomei et al., 2004] was erroneously written as [Giambartolomei, G., Zwerdling, A., Cassataro, J., Bruno, L., Fossati, C., and Philipp, M. (2004). Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. J. Immunol. 173,[4635][4636][4637][4638][4639][4640][4641][4642]]. It should be [Wang, Z., Wang, G., Wang, Y., Liu, Q., Li, H., Xie, P., et al. (2021a). Omp31 of Brucella inhibits NF-κB p65 signaling pathway by inducing autophagy in BV-2 microglia. Neurochem. Res. 46, 3264-3272. doi: 10.1007/s11064-021-03429-4]. The reference for [Keestra-Gounder et al., 2016] was erroneously written as [Keestra-Gounder, A., Byndloss, M., Seyffert, N., Young, B., Chávez-Arroyo, A., Tsai, A., et al. (2016). NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397. doi: 10.1038/nature17631]. It should be [de Jong, M. F., Starr, T., Winter, M. G., den Hartigh, A., Child, R., Knodler, L., et al. (2013). Sensing of bacterial type IV secretion via the unfolded protein response. mBio 4:e00418-12. doi: 10.1128/mBio.00418-12]. The reference for [Louche et al.,2023] was erroneously written as [Louche, A., Blanco, A., Lacerda, T., Cancade-Veyre, L., Lionnet, C., Bergé, C., et al. (2023). Brucella effectors NyxA and NyxB target SENP3 to modulate the subcellular localisation of nucleolar proteins. Nat. Commun. 14:102. doi: 10.1038/s41467-022-35763-8]. It should be [Luizet, J. B., Raymond, J., Lacerda, T. L., Barbieux, E., Kambarev, S., Bonici, M., et al. (2021). The Brucella effector BspL targets the ERassociated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc. Natl. Acad. Sci. U.S. A. 118:e2105324118. doi: 10.1073/pnas.2105324118]. The reference for [Spera et al., 2023] was erroneously written as [Spera, J., Guaimas, F., Czibener, C., and Ugalde, J. (2023). Brucella egresses from host cells exploiting multivesicular bodies. mBio 14:e03338-22. doi: 10.1128/mbio.03338-22]. It should be [Taguchi, Y., Imaoka, K., Kataoka, M., Uda, A., Nakatsu, D., Horii-Okazaki, S., et al. (2015). Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog. 11:e1004747. doi: 10.1371/journal.ppat.1004747]. The reference for [Fernandez-Prada et al., 2003] was erroneously written as [Fernandez-Prada, C., Zelazowska, E., Nikolich, M., Hadfield, T., Roop, R., Robertson, G., et al. (2003). Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110-2119. doi: 10.1128/IAI.71. 4.2110-2119.2003]. It should be [Smith, J., Khan, M., Magnani, D., Harms, J., Durward, M., Radhakrishnan, G., et al. (2013). Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog. 9:e1003785. doi : 10.1371/ journal.ppat.1003785]. The original version of this article has been updatedThe reference for [Spera et al., 2023] was erroneously written as [Spera, J., Guaimas, F., Czibener, C., and Ugalde, J. ( 2023). Brucella egresses from host cells exploiting multivesicular bodies. mBio 14:e03338-22. doi: 10.1128/mbio. . It should be [Taguchi, Y., Imaoka, K., Kataoka, M., Uda, A., Nakatsu, D., Horii-Okazaki, S., et al. (2015). Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog. 11:e1004747. doi: 10.1371/journal.ppat.1004747]. The reference for [Fernandez-Prada et al., 2003] was erroneously written as [Fernandez-Prada, C., Zelazowska, E., Nikolich, M., Hadfield, T., Roop, R., Robertson, G., et al. (2003). Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110-2119. doi: 10.1128/IAI.71. 4.2110-2119.2003]. It should be [Smith, J., Khan, M., Magnani, D., Harms, J., Durward, M., Radhakrishnan, G., et al. (2013). Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages. PLoS Pathog. 9:e1003785. doi: 10.1371/ journal.ppat.1003785]. The reference for [de Figueiredo et al., 2015] was erroneously written as [de Figueiredo, P., Ficht, T., Rice-Ficht, A., Rossetti, C., and Adams, L. (2015). Pathogenesis and immunobiology of brucellosis: Review of Brucellahost interactions. Am. J. Pathol. 185, 1505Pathol. 185, -1517Pathol. 185, . doi: 10.1016Pathol. 185, /j.ajpath.2015. 03.003. 03.003]. It should be [Zheng, M., Lin, R., Zhu, J., Dong, Q., Chen, J., Jiang, P., et al. (2024). Effector proteins of type IV secretion system: Weapons of Brucella used to fight against host immunity. Curr. Stem Cell. Res. Ther. 19,[145][146][147][148][149][150][151][152][153] The reference for [Spera et al., 2023] was erroneously written as [Spera, J., Guaimas, F., Czibener, C., and Ugalde, J. (2023). Brucella egresses from host cells exploiting multivesicular bodies. mBio 14:e03338-22. doi: 10.1128/mbio.03338-22]. It should be [Taguchi, Y., Imaoka, K., Kataoka, M., Uda, A., Nakatsu, D., Horii-Okazaki, S., et al. (2015). Yip1A, a novel host factor for the activation of the IRE1 pathway of the unfolded protein response during Brucella infection. PLoS Pathog. 11:e1004747. doi: 10.1371/journal.ppat.1004747]. The reference for [Martinon et al., 2002] was erroneously written as [Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 10, 417-426. doi: 10.1016/s1097-2765(02) 00599-3]. It should be [Pandey, A., Lin, F., Cabello, A. L., Feng, X., Feng, H., Zhang, M., et al. (2018). Activation of host IRE1α-dependent signaling axis contributes the intracellular parasitism of Brucella melitensis. Front. Cell. Infect. Microbiol. 8:103. doi: 10.3389/ fcimb.2018.00103]. The reference for [Fu and Wu, 2023] was erroneously written as [Fu, J., and Wu, H. (2023). Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41, 301-316. doi: 10.1146/annurevimmunol-081022-021207]. It should be [Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 10, 417-426. doi: 10.1016/s1097-2765(02)00599-3]. The reference for [Rathinam and Fitzgerald, 2016;Rathinam et al., 2012] was erroneously written as [Rathinam, V., and Fitzgerald, K. (2016). Inflammasome complexes: Emerging mechanisms and effector functions. Cell 165, 792-800. doi: 10.1016Cell 165, 792-800. doi: 10. /j.cell.2016.03.046;.03.046;Rathinam, V., Vanaja, S., and Fitzgerald, K. (2012). Regulation of inflammasome signaling. Nat. Immunol. 13, 333-342. doi: 10.1038Immunol. 13, 333-342. doi: 10. /ni.2237]. It should be [Fu, J., and Wu, H. (2023). Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41, 301-316. doi: 10.1146/annurevimmunol-081022-021207;Rathinam, V., and Fitzgerald, K. (2016). Inflammasome complexes: Emerging mechanisms and effector functions. Cell 165, 792-800. doi: 10.1016Cell 165, 792-800. doi: 10. /j.cell.2016.03.046].03.046]. The reference for [Rathinam and Fitzgerald, 2016] was erroneously written as [Rathinam, V., and Fitzgerald, K. (2016). Inflammasome complexes: Emerging mechanisms and effector functions. Cell 165, 792-800. doi: 10.1016Cell 165, 792-800. doi: 10. /j.cell.2016.03.046.03.046]. It should be [Fu, J., and Wu, H. (2023). Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu. Rev. Immunol. 41, 301-316. doi: 10.1146/annurevimmunol-081022-021207]. The reference for [Gomes et al.,2012;Xu et al., 2020;Campos et al., 2019] was erroneously written as [Gomes, M. T., Campos, P. C., de Almeida, L. A., Oliveira, F., Costa, M., Marim, F., et al. (2012). The role of innate immune signals in immunity to Brucella abortus. Front. Cell. Infect. Microbiol. 2:130. doi: 10.3389/fcimb.2012.00130;Xu, Z., Chen, Z., Wu, X., Zhang, L., Cao, Y., and Zhou, P. (2020). Distinct molecular mechanisms underlying potassium efflux for NLRP3 inflammasome activation. ]. It should be [Cerqueira, D., Gomes, M., Silva, A., Rungue, M., Assis, N., Guimarães, E., et al. (2018). Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog. 14:e1007519. doi: 10.1371/ journal.ppat.1007519]. The reference for [Gomes et al., 2012] was erroneously written as [Gomes, M. T., Campos, P. C., de Almeida, L. A., Oliveira, F., Costa, M., Marim, F., et al. (2012). The role of innate immune signals in immunity to Brucella abortus. Front. Cell. Infect. Microbiol. 2:130. doi: 10.3389/fcimb.2012.00130]. It should be [Tupik, J. D., Coutermarsh-Ott, S. L., Benton, A. H., King, K., Kiryluk, H., Caswell, C., et al. (2020). ASC-mediated inflammation and pyroptosis attenuates Brucella abortus pathogenesis following the recognition of gDNA. Pathogens 9:1008. doi: 10.3390/ pathogens9121008]. The reference for [Cerqueira et al., 2018] was erroneously written as [Cerqueira, D., Gomes, M., Silva, A., Rungue, M., Assis, N., Guimarães, E., et al. (2018). Guanylate-binding protein 5 licenses caspase-11 for Gasdermin-D mediated host resistance to Brucella abortus infection. PLoS Pathog. 14:e1007519. doi: 10.1371/ journal.ppat.1007519]. It should be [Campos, P., Gomes, M., Marinho, F., Guimarães, E., de Moura Lodi Cruz, M. G. F., and Oliveira, S. C. (2019). Brucella abortus nitric oxide metabolite regulates inflammasome activation and IL-1β secretion in murine macrophages. Eur]. The reference for [Starr et al., 2012] was erroneously written as [Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002.12.002]. It should be [Guo, X., Zeng, H., Li, M., Xiao, Y., Gu, G., Song, Z., et al. (2023). The mechanism of chronic intracellular infection with Brucella spp. Front. Cell. Infect. Microbiol. 13:1129172. doi: 10.3389/fcimb.2023.1129172]. The reference for [Harhaj and Dixit, 2012;Priem et al., 2020] was erroneously written as [Harhaj, E., and Dixit, V. (2012). Regulation of NF-κB by deubiquitinases. Immunol. Rev. 246, 107-124. doi: 10.1111/j.1600-065X.2012.01100.x;Priem, D., van Loo, G., and Bertrand, M. (2020). A20 and cell death-driven inflammation. Trends Immunol. 41, 421-435. doi: 10.1016Immunol. 41, 421-435. doi: 10. /j.it.2020.03.001.03.001]. It should be [Zhang, M., Peng, L., Wang, Y., Wang, J., Liu, J., Liu, M., et al. (2016). Roles of A20 in autoimmune diseases. Immunol. Res. 64, 337-344. doi: 10.1007/s12026-015-8677-6;Harhaj, E., and Dixit, V. (2012). Regulation of NF-κB by deubiquitinases. Immunol. Rev. 246, 107-124. doi: 10.1111/j.1600-065X.2012.01100.x]. The reference for [Starr et al., 2012;Cao and Kaufman, 2012] was erroneously written as [Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., Microbiol. 174, 195-205. doi: 10.1016/j.vetmic.2014.08.033]. It should be [Banerjee, C., Goswami, R., Datta, S., Rajagopal, R., and Mazumder, S. (2011). Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus. Toxicol. Appl. Pharmacol. 256, 44-51. doi: 10.1016/j.taap.2011. 07.007]. The original version of this article has been updatedThe reference for [Rodríguez-González and Gutiérrez-Kobeh, 2023] was erroneously written as [Rodríguez-González, J., and Gutiérrez-Kobeh, L. (2023). Apoptosis and its pathways as targets for intracellular pathogens to persist in cells. Parasitol. Res. 123:60. doi: 10.1007/s00436-023-08031-x]. It should be [Cui, G., Wei, P., Zhao, Y., Guan, Z., Yang, L., Sun, W., et al. (2014). Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2. Vet. Microbiol. 174, 195-205. doi: 10.1016Microbiol. 174, 195-205. doi: 10. /j.vetmic.2014.08.033].08.033]. The reference for [Martín-Martín et al., 2008] was erroneously written as [Martín-Martín, A. I., Caro-Hernández, P., Orduña, A., Vizcaíno, N., and Fernández-Lago, L. (2008). Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. Microbes Infect. 10, 706-710. doi: 10.1016/j.micinf.2008. 02.013]. It should be [Fernandez-Prada, C., Zelazowska, E., Nikolich, M., Hadfield, T., Roop, R., Robertson, G., et al. (2003). Interactions between Brucella melitensis and human phagocytes: Bacterial surface O-Polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect. Immun. 71, 2110-2119. doi: 10.1128/IAI.71. 4.2110-2119.2003]. The original version of this article has been updated.The reference for [Campos et al., 2004] was erroneously written as [Campos, M., Rosinha, G., Almeida, I., Salgueiro, X., Jarvis, B., Splitter, G., et al. (2004). Role of Toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect. Immun. 72, 176-186. doi: 10.1128/IAI.72.1.176-186.2004]. It should be [Gomes, M. T., Campos, P. C., de Almeida, L. A., Oliveira, F., Costa, M., Marim, F., et al. (2012) The reference for [Dong et al., 2023] was erroneously written as [Dong, B., Li, F., Wang, J., Lv, S., Miao, L., Guo, G., et al. (2023). Effect of ubiquitinproteasome system and autophagy-lysosome pathway on intracellular replication of Brucella suis. Vet. Microbiol. 280, 109699. doi: 10.1016/j.vetmic.2023.109699]. It should be [Li, J., Qi, L., Diao, Z., Zhang, M., Li, B., Zhai, Y., et al. (2022). Brucella BtpB manipulates apoptosis and autophagic flux in RAW264.7 cells. Int. J. Mol. Sci. 23:14439. doi: 10.3390/ijms232214439]. The reference for [Gómez et al.(2020)] was erroneously written as [Gómez, L., Alvarez, F., Molina, R., Soto-Shara, R., Daza-Castro, C., Flores, M., et al. (2020). A Zinc-Dependent metalloproteinase of Brucella abortus is required in the intracellular adaptation of macrophages. Front. Microbiol. 11:1586. doi: 10.3389/fmicb. 2020.01586]. It should be [Zhang, J., Li, M., Li, Z., Shi, J., Zhang, Y., Deng, X., et al. (2019). Deletion of the type IV secretion system effector VceA promotes autophagy and inhibits apoptosis in Brucella-infected human trophoblast Cells. Curr. Microbiol. 76, 510-519. doi: 10.1007/ s00284-019-01651-6]. The original version of this article has been updatedThe reference for [Wang et al. (2021a)] was erroneously written as [Wang, Z., Wang, G., Wang, Y., Liu, Q., Li, H., Xie, P., et al. (2021a). Omp31 of Brucella inhibits NF-κB p65 signaling pathway by inducing autophagy in BV-2 microglia. Neurochem. Res. 46, 3264-3272. doi: 10.1007/s11064-021-03429-4]. It should be [Zhang, K., Wang, H., Guo, F., Yuan, L., Zhang, W., Wang, Y., et al. (2016). OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNFα. Exp Ther Med. 12, 2783-2789. doi: 10.3892/etm.2016.3655]. The reference for [Dixon and Olzmann, 2024] The reference for [Parrow et al., 2019] was erroneously written as [Parrow, N., Li, Y., Feola, M., Guerra, A., Casu, C., Prasad, P., et al. (2019). Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 134, 1373Blood 134, -1384Blood 134, . doi: 10.1182/blood.2018893099/blood.2018893099]. It should be [Dixon, S., and Olzmann, J. (2024). The cell biology of ferroptosis. Nat. Rev. Mol. Cell. Biol. 25, 424-442. doi: 10.1038/s41580-024-00703-5]. The reference for [Koskenkorva-Frank et al., 2013] was erroneously written as [Koskenkorva-Frank, T., Weiss, G., Koppenol, W., and Burckhardt, S. ( 2013). The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 65, 1174-1194. doi: 10.1016/j.freeradbiomed. 2013.09.001]. It should be [Parrow, N., Li, Y., Feola, M., Guerra, A., Casu, C., Prasad, P., et al. (2019). Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 134, 1373Blood 134, -1384Blood 134, . doi: 10.1182/blood.2018893099]/blood.2018893099]. The reference for [Jiang et al., 2021] was erroneously written as [Jiang, X., Stockwell, B., and Conrad, M. (2021). Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell. Biol. 22, 266-282. doi: 10.1038/s41580-020-00324-8]. It should be [Koskenkorva-Frank, T., Weiss, G., Koppenol, W., and Burckhardt, S. (2013). The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: Insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 65, 1174-1194. doi: 10.1016/j.freeradbiomed. 2013.09.001]. The original version of this article has been updatedThe reference for [Parrow et al., 2019] was erroneously written as [Parrow, N., Li, Y., Feola, M., Guerra, A., Casu, C., Prasad, P., et al. (2019) The reference for [Parrow et al., 2019;Zhang et al., 2024] was erroneously written as [Parrow, N., Li, Y., Feola, M., Guerra, A., Casu, C., Prasad, P., et al. (2019). Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 134, 1373Blood 134, -1384Blood 134, . doi: 10.1182/blood.2018893099;/blood.2018893099;Zhang, G., Hu, H., Yin, Y., Tian, M., Bu, Z., Ding, C., et al. (2024). Brucella manipulates host cell ferroptosis to facilitate its intracellular replication and egress in RAW264.7 macrophages. Antioxidants (Basel) 13:577. doi: 10.3390/antiox13050577]. It should be [Dixon, S., and Olzmann, J. (2024). The cell biology of ferroptosis. Nat. Rev. Mol. Cell. Biol. 25, 424-442. doi: 10.1038/s41580-024-00703-5;Jiang, X., Stockwell, B., and Conrad, M. (2021). Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell. Biol. 22, 266-282. doi: 10.1038/s41580-020-00324-8]. The reference for [Parrow et al., 2019] was erroneously written as [Parrow, N., Li, Y., Feola, M., Guerra, A., Casu, C., Prasad, P., et al. (2019). Lobe specificity of iron binding to transferrin modulates murine erythropoiesis and iron homeostasis. Blood 134, 1373Blood 134, -1384Blood 134, . doi: 10.1182/blood.2018893099/blood.2018893099]. It should be [Dixon, S., and Olzmann, J. (2024). The cell biology of ferroptosis. Nat. Rev. Mol. Cell. Biol. 25, 424-442. doi: 10.1038/s41580-024-00703-5]. The reference for [Li C. et al., 2022] was erroneously written as [Li, X., Zhu, Y., Zhang, X., An, X., Weng, M., Shi, J., et al. (2022). An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP. J. Clin. Invest. 132:e144339. doi: 10.1172/JCI144339]. It should be [Zhang, G., Hu, H., Yin, Y., Tian, M., Bu, Z., Ding, C., et al. (2024). Brucella manipulates host cell ferroptosis to facilitate its intracellular replication and egress in RAW264.7 macrophages. Antioxidants (Basel) 13:577. doi: 10.3390/antiox13050577]. The reference for [Hashemifar et al.(2017)] was erroneously written as [Hashemifar, I., Yadegar, A., Jazi, F., and Amirmozafari, N. (2017). Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb. Pathog. 105, 334-339. doi: 10.1016/j.micpath.2017.03.007]. It should be [Hu, H., Zhang, G., Tian, M., Guan, X., Yin, Y., Ding, C., et al. (2023). Brucella abortus Rough-Type mutant induces ferroptosis and more oxidative stress in infected macrophages. Pathogens 12:1189. doi: 10.3390/pathogens12101189]. The original version of this article has been updatedThe reference for [Li C. et al., 2022] was erroneously written as [Li, X., Zhu, Y., Zhang, X., An, X., Weng, M., Shi, J., et al. (2022). An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP. J. Clin. Invest. 132:e144339. doi: 10.1172/JCI144339]. It should be [Zhang, G., Hu, H., Yin, Y., Tian, M., Bu, Z., Ding, C., et al. (2024). Brucella manipulates host cell ferroptosis to facilitate its intracellular replication and egress in RAW264.7 macrophages. Antioxidants (Basel) 13:577. doi: 10.3390/antiox13050577]. The reference for [Li C. et al., 2022] was erroneously written as [Li, X., Zhu, Y., Zhang, X., An, X., Weng, M., Shi, J., et al. (2022). An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP. J. Clin. Invest. 132:e144339. doi: 10.1172/JCI144339]. It should be [Zhang, G., Hu, H., Yin, Y., Tian, M., Bu, Z., Ding, C., et al. (2024). Brucella manipulates host cell ferroptosis to facilitate its intracellular replication and egress in RAW264.7 macrophages. Antioxidants (Basel) 13:577. doi: 10.3390/antiox13050577]. The reference for [Kim et al., 2004;Burdette et al., 2011] was erroneously written as [Kim, S., Watarai, M., Suzuki, H., Makino, S., Kodama, T., and Shirahata, T. (2004). Lipid raft microdomains mediate class A scavenger receptor-dependent infection of Brucella abortus. Microb. Pathog. 37, 11-19. doi:10.1016/j.micpath.2004.04.002;Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429]. It should be [Oliveira, S., de Oliveira, F., Macedo, G., de Almeida, L., and Carvalho, N. (2008). The role of innate immune receptors in the control of Brucella abortus infection: Tolllike receptors and beyond. Microbes Infect. 10, 1005-1009. doi: 10.1016/j.micinf.2008. 07.005;Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGASindependent STING pathway to induce host protection that involves guanylatebinding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725]. The reference for [Burdette et al., 2011;Freitas et al., 2021] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429;Freitas, R., Crum, T., and Parvatiyar, K. (2021). SARS-CoV-2 spike antagonizes innate antiviral immunity by targeting interferon regulatory factor 3. Front. Cell. Infect. Microbiol. 11:789462. doi: 10.3389/fcimb.2021.789462]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725;Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429]. The reference for [Burdette et al., 2011;Tong et al., 2024;Ishikawa et al., 2009] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429; Tong, J., Song, J., Zhang, W., Zhai, J., Guan, Q., Wang, H., et al. (2024). When DNA-damage responses meet innate and adaptive immunity. Cell. Mol. Life Sci. 81:185. doi: 10.1007/s00018-024-05214-2; Ishikawa, H., Ma, Z., and Barber, G. N. ( 2009). STING regulates intracellular DNAmediated, type I interferon-dependent innate immunity. Nature 461, 788-792. doi: 10.1038/nature08476]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725;Li, X., Zhu, Y., Zhang, X., An, X., Weng, M., Shi, J., et al. (2022). An alternatively spliced STING isoform localizes in the cytoplasmic membrane and directly senses extracellular cGAMP. J. Clin. Invest. 132:e144339. doi: 10.1172/JCI144339; Tong, J., Song, J., Zhang, W., Zhai, J., Guan, Q., Wang, H., et al. (2024). When DNAdamage responses meet innate and adaptive immunity. Cell. Mol. Life Sci. 81:185. doi: 10.1007/s00018-024-05214-2]. The reference for [Burdette et al., 2011;Ishikawa et al., 2009;Chen et al., 2016;Meunier et al., 2015] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429;Ishikawa, H., Ma, Z., and Barber, G. N. (2009). STING regulates intracellular DNAmediated, type I interferon-dependent innate immunity. Nature 461, 788-792. doi: 10.1038/nature08476; Chen, Q., Sun, L., and Chen, Z. (2016). Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142-1149. doi: 10.1038/ni.3558;Meunier, E., Wallet, P., Dreier, R., Costanzo, S., Anton, L., Rühl, S., et al. (2015). Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476-484. doi: 10.1038/ni.3119]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725;Tong, J., Song, J., Zhang, W., Zhai, J., Guan, Q., Wang, H., et al. (2024). When DNA-damage responses meet innate and adaptive immunity. Cell. Mol. Life Sci. 81:185. doi: 10.1007/s00018-024-05214-2; Ishikawa, H., Ma, Z., and Barber, G. N. (2009). STING regulates intracellular DNAmediated, type I interferon-dependent innate immunity. Nature 461, 788-792. doi: 10.1038/nature08476; Chen, Q., Sun, L., and Chen, Z. ( 2016). Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142-1149. doi: 10.1038/ni.3558]. The reference for [Burdette et al., 2011;Chen et al., 2016;Meunier et al., 2015] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429; Chen, Q., Sun, L., and Chen, Z. ( 2016). Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142-1149. doi: 10.1038/ni.3558;Meunier, E., Wallet, P., Dreier, R., Costanzo, S., Anton, L., Rühl, S., et al. (2015). Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476-484. doi: 10.1038/ni.3119]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGASindependent STING pathway to induce host protection that involves guanylatebinding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725;Ishikawa, H., Ma, Z., and Barber, G. N. (2009). STING regulates intracellular DNAmediated, type I interferon-dependent innate immunity. Nature 461, 788-792. doi: 10.1038/nature08476; Chen, Q., Sun, L., and Chen, Z. (2016). Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142-1149. doi: 10.1038/ni.3558]. The reference for [Burdette et al., 2011;Figure 2] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725]. The reference for [Burdette et al., 2011;Gomes et al., 2021] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429;Gomes, M., Guimarães, E., Marinho, F., Macedo, I., Aguiar, E., Barber, G., et al. (2021). STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathog. 17:e1009597. doi: 10.1371/journal.ppat.1009597]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725;Meunier, E., Wallet, P., Dreier, R., Costanzo, S., Anton, L., Rühl, S., et al. (2015). Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476-484. doi: 10.1038/ni.3119]. The original version of this article has been updatedThe reference for [Burdette et al., 2011] was erroneously written as [Burdette, D., Monroe, K., Sotelo-Troha, K., Iwig, J., Eckert, B., Hyodo, M., et al. (2011). STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515-518. doi: 10.1038/nature10429]. It should be [Costa Franco, M., Marim, F., Guimarães, E., Assis, N., Cerqueira, D., Alves-Silva, J., et al. (2018). Brucella abortus triggers a cGAS-independent STING pathway to induce host protection that involves guanylate-binding proteins and inflammasome activation. J. Immunol. 200, 607-622. doi: 10.4049/jimmunol.1700725]. The reference for [Meunier et al., 2015;Figure 2] was erroneously written as [Meunier, E., Wallet, P., Dreier, R., Costanzo, S., Anton, L., Rühl, S., et al. (2015). Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat. Immunol. 16, 476-484. doi: 10.1038/ni.3119]. It should be [Chen, Q., Sun, L., and Chen, Z. (2016). Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142Immunol. 17, -1149Immunol. 17, . doi: 10.1038/ni.3558]/ni.3558]. The reference for [Li et al., 2021] was erroneously written as [Li, R., Liu, W., Yin, X., Zheng, F., Wang, Z., Wu, X., et al. (2021). Brucella spp. Omp25 promotes proteasome-mediated cGAS degradation to attenuate IFN-β production. Front. Microbiol. 12:702881. doi: 10.3389/fmicb.2021.702881]. It should be [Gomes, M., Guimarães, E., Marinho, F., Macedo, I., Aguiar, E., Barber, G., et al. (2021). STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathog. 17:e1009597. doi: 10.1371/journal.ppat.1009597]. The reference for [Khan et al., 2020] was erroneously written as [Khan, M., Harms, J., Liu, Y., Eickhoff, J., Tan, J., Hu, T., et al. (2020). Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog. 16:e1009020. doi: 10.1371/journal.ppat.1009020]. It should be [Li, R., Liu, W., Yin, X., Zheng, F., Wang, Z., Wu, X., et al. (2021). Brucella spp. Omp25 promotes proteasomemediated cGAS degradation to attenuate IFN-β production. Front. Microbiol. 12:702881. doi: 10.3389/fmicb.2021.702881]. The reference for [Grilló et al., 2012] was erroneously written as [Grilló, M., Blasco, J., Gorvel, J., Moriyón, I., and Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Vet. Res. 43:29. doi: 10.1186Res. 43:29. doi: 10. /1297-9716-43-29]-9716-43-29]. It should be [Khan, M., Harms, J., Liu, Y., Eickhoff, J., Tan, J., Hu, T., et al. (2020). Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog. 16:e1009020. doi: 10.1371/journal.ppat.1009020]. The original version of this article has been updatedThe reference for [Wang et al., 2021b] was erroneously written as [Wang, Z., Wang, Y., Yang, H., Guo, J., and Wang, Z. (2021b). Doxycycline induces apoptosis of Brucella suis S2 strain-infected HMC3 microglial cells by activating calreticulindependent JNK/p53 signaling pathway. Front. Cell. Infect. Microbiol. 11:640847. doi: 10.3389/fcimb.2021.640847]. It should be [Grilló, M., Blasco, J., Gorvel, J., Moriyón, I., and Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Vet. Res. 43:29. doi: 10.1186Res. 43:29. doi: 10. /1297-9716-43-29]-9716-43-29]. The original version of this article has been updatedThe reference for [Lee et al., 2014;Wang et al., 2021b] was erroneously written as [Lee, J., Kim, J., Kim, D., Kim, D., Simborio, H., Min, W., et al. (2014). Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus. Vet. Microbiol. 168, 131-140. doi: 10.1016Microbiol. 168, 131-140. doi: 10. /j.vetmic.2013.10. 007;.10. 007;Wang, Z., Wang, Y., Yang, H., Guo, J., and Wang, Z. (2021b). Doxycycline induces apoptosis of Brucella suis S2 strain-infected HMC3 microglial cells by activating calreticulin-dependent JNK/p53 signaling pathway. Front. Cell. Infect. Microbiol. 11:640847. doi: 10.3389/fcimb.2021.640847]. It should be [ Barquero-Calvo, E., Chaves-Olarte, E., Weiss, D., Guzmán-Verri, C., Chacón-Díaz, C., Rucavado, A., et al. (2007). Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2:e631. doi: 10.1371/journal.pone.0000631; Grilló, M., Blasco, J., Gorvel, J., Moriyón, I., and Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Vet. Res. 43:29. doi: 10.1186Res. 43:29. doi: 10. /1297-9716-43-29]-9716-43-29]. The reference for [Lee et al., 2014] was erroneously written as [Lee, J., Kim, J., Kim, D., Kim, D., Simborio, H., Min, W., et al. (2014). Characterization of betaine aldehyde dehydrogenase (BetB) as an essential virulence factor of Brucella abortus. Vet. Microbiol. 168, 131-140. doi: 10.1016Microbiol. 168, 131-140. doi: 10. /j.vetmic.2013.10. 007.10. 007]. It should be [ Barquero-Calvo, E., Chaves-Olarte, E., Weiss, D., Guzmán-Verri, C., Chacón-Díaz, C., Rucavado, A., et al. (2007). Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One 2:e631. doi: 10.1371/journal.pone.0000631]. The reference for [Wang et al., 2021b] was erroneously written as [Wang, Z., Wang, Y., Yang, H., Guo, J., and Wang, Z. (2021b). Doxycycline induces apoptosis of Brucella suis S2 strain-infected HMC3 microglial cells by activating calreticulindependent JNK/p53 signaling pathway. Front. Cell. Infect. Microbiol. 11:640847. doi: 10.3389/fcimb.2021.640847]. It should be [Grilló, M., Blasco, J., Gorvel, J., Moriyón, I., and Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Vet. Res. 43:29. doi: 10.1186Res. 43:29. doi: 10. /1297-9716-43-29]-9716-43-29]. The reference for [Wang et al., 2021b] was erroneously written as [Wang, Z., Wang, Y., Yang, H., Guo, J., and Wang, Z. (2021b). Doxycycline induces apoptosis of Brucella suis S2 strain-infected HMC3 microglial cells by activating calreticulindependent JNK/p53 signaling pathway. Front. Cell. Infect. Microbiol. 11:640847. doi: 10.3389/fcimb.2021.640847]. It should be [Grilló, M., Blasco, J., Gorvel, J., Moriyón, I., and Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Vet. Res. 43:29. doi: 10.1186Res. 43:29. doi: 10. /1297-9716-43-29]-9716-43-29]. The original version of this article has been updatedThe reference for [Wang et al., 2021b] was erroneously written as [Wang, Z., Wang, Y., Yang, H., Guo, J., and Wang, Z. (2021b). Doxycycline induces apoptosis of Brucella suis S2 strain-infected HMC3 microglial cells by activating calreticulindependent JNK/p53 signaling pathway. Front. Cell. Infect. Microbiol. 11:640847. doi: 10.3389/fcimb.2021.640847]. It should be [Grilló, M., Blasco, J., Gorvel, J., Moriyón, I., and Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Vet. Res. 43:29. doi: 10.1186Res. 43:29. doi: 10. /1297-9716-43-29]-9716-43-29]. The reference for [Starr et al., 2012] was erroneously written as [Starr, T., Child, R., Wehrly, T., Hansen, B., Hwang, S., López-Otin, C., et al. (2012). Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11, 33-45. doi: 10.1016Microbe 11, 33-45. doi: 10. /j.chom.2011.12.002.12.002]. It should be [Guo, X., Zeng, H., Li, M., Xiao, Y., Gu, G., Song, Z., et al. (2023). The mechanism of chronic intracellular infection with Brucella spp. Front. Cell. Infect. Microbiol. 13:1129172. doi: 10.3389/fcimb.2023.1129172]. The reference for [Li C. et al., 2022] was erroneously written as [Li, C., Wang, J., Sun, W., Liu, X., Wang, J., and Peng, Q. (2022). The Brucella effector BspI suppresses inflammation via inhibition of IRE1 kinase activity during Brucella infection. J. Immunol. 209, 488-497. doi: 10.4049/jimmunol.2200001]. It should be [Zhang, G., Hu, H., Yin, Y., Tian, M., Bu, Z., Ding, C., et al. (2024). Brucella manipulates host cell ferroptosis to facilitate its intracellular replication and egress in RAW264.7 macrophages. Antioxidants (Basel) 13:577. doi: 10.3390/antiox13050577]. Missing in-text citation [Wang, Z., Wang, Y., Yang, H., Guo, J., and Wang, Z. (2021b). Doxycycline induces apoptosis of Brucella suis S2 strain-infected HMC3 microglial cells by activating calreticulin-dependent JNK/p53 signaling pathway. Front. Cell. Infect. Microbiol. 11:640847. doi: 10.3389/fcimb.2021.640847] was not cited in the article. The citation has now been inserted in the section [8 Summary and outlook, Paragraph 1] and should read: "[Brucella has co-evolved with its hosts over millions of years, developing a range of virulence strategies that facilitate its survival and ultimately lead to disease onset through the manipulation of host systems. Brucella employs several primary strategies to evade the host immune system, enabling its proliferation and sustained intracellular survival, which leads to chronic infection. These include the following: inhibition of complement and TLR pathways; blockage of maturation and disruption of antigen presentation by DCs; formation of intracellular replication vesicles; and manipulation of autophagy, ER stress, inflammasome activation, pyroptosis, apoptosis, ferroptosis, and the cGAS-STING pathway, among others. Brucella produces virulence factors and effector proteins that manipulate host cell signaling pathways, disrupting normal cellular processes to its advantage. However, the mechanisms by which some effector proteins regulate cellular processes during infection are poorly understood. Autophagy and programed cell death pathways (e.g., pyroptosis, apoptosis, and ferroptosis) serve as host defense strategies, containing infections by eliminating intracellular pathogens from infected cells (Li C. et al., 2022). However, Brucella can exploit programed cell death pathways to evade killing, employing specific molecular mechanisms to enhance its replication, survival, and dissemination within host cells. Therefore, researchers can disrupt the specific molecular mechanisms by which Brucella manipulates autophagy, pyroptosis, apoptosis, and ferroptosis, enabling the corresponding cell death program to proceed as normal and thereby eradicating the bacteria. Doxycycline (Dox) can inhibit CALR protein expression, activate the JNK/p53 signaling pathway, and induce apoptosis in HMC3 cells, thereby achieving the therapeutic goal of treating brucellosis (Wang et al.,2021b). The interaction between Brucella and programed cell death remains unclear. Thus, elucidation of the mechanisms governing these interactions is essential for identifying potential drug targets that could induce programed cell death and eradicate the pathogen.]" The original version of this article has been updated. here, please contact the journal's editorial office.

Keywords: Brucella, Virulence Factors, immune escape, innate immunity, Inflammasomes, ferroptosis

Received: 20 Jul 2025; Accepted: 18 Aug 2025.

Copyright: © 2025 Wei, Zhang, Wang, Bai, Wang, Yang and Zhai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Jingbo Zhai, School of Basic Medical Sciences, Inner Mongolia Minzu University, tongliao, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.