ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Antimicrobials, Resistance and Chemotherapy
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1683394
Variation and spread of resistomes in swine manure, manure slurries, and long-term manure-fertilized soils
Provisionally accepted- 1College of Resources, Sichuan Agricultural University, Chengdu, China
- 2Sichuan Agricultural University, Ya'an, China
- 3Sichuan Animal Science Academy, Chengdu, China
- 4Sichuan Province Center for Animal Disease Prevention and Control, Chengdu, China
- 5Ya'an Quality Inspection of Agricultural Products Monitoring Center, Ya'an, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Application of swine manure to soils exacerbates environmental antimicrobial resistance (AMR). However, a comprehensive evaluation of anaerobic digestion's (AD) mitigation potential against AMR and its influencing factors in swine manure-to-soil systems remains lacking. Here, we employed mass spectrometry, metagenomics, and whole-genome sequencing (WGS) to investigate the fate of antibiotics, metals, and antibiotic resistance genes (ARGs) across manures, slurries, and soils from eight pig farms. Anaerobic digestion reduced antibiotic and metal (except ciprofloxacin) content and risks in manure, but had limited effects on total ARG abundance, while increasing ARG network modularity. High-risk ARG abundance significantly increased from 404.7 in manure to 843.2 in slurries, with health-risk scores rising 1.88-fold during anaerobic digestion. Metagenomic analysis showed metal resistance gene (MRG) diversity and abundance decreased during anaerobic digestion, along with reduced ARG-MRG co-occurrence frequency, whereas mobile genetic element (MGE) diversity and ARG-MGE co-occurrence frequency increased. Escherichia coli was identified as the dominant ARG host. WGS of E. coli strains confirmed horizontal gene transfer (HGT) of nine ARGs (e.g., sul3 and blaTEM-1), and metagenomics suggested HGT of four ARGs (e.g., tet(M)) across different pathogens. Chromium concentrations, bacterial communities and MGEs were significantly associated with ARG profiles. Long-term slurry application resulted in elevated antibiotic, metal, and ARG concentrations in soils, with concomitant increases in high-risk ARGs and health risks. This study demonstrates AD's limited effect on mitigating overall ARG abundance and highlights MGEs as critical drivers of ARG maintenance and dissemination from manure to soil process, guiding manure treatment optimization to reduce agricultural AMR risks.
Keywords: swine manure, anaerobic digestion, ARGS, health risks, horizontal gene transfer
Received: 11 Aug 2025; Accepted: 24 Sep 2025.
Copyright: © 2025 Jin, Chen, Kang, Li, Yang, Yang, Zhao and Zou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Likou Zou, zoulikou@sicau.edu.cn
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.