ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Microbial Physiology and Metabolism
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1709019
Screening of microbial consortium with high efficiency of lignin-degrading and its synergistic metabolic mechanism
Provisionally accepted- 1Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
- 2University of the Chinese Academy of Sciences, Beijing, China
- 3Shenyang Pharmaceutical University, Shenyang, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Lignin is difficult to degrade, which makes its high-value utilization a challenge. So finding an efficient method to degrade lignin is very important. At present, microbial degradation is considered to be one of the most effective and environmentally friendly degradation methods that is widely accepted. This study enriched three lignin-degrading microbial consortia R0, R1 and R2 using alkali lignin as the sole carbon source under 15°C conditions. Using the methods of 16S rRNA sequencing, metagenomics, and metabolomics, the degradation mechanism of these three microbial consortia were systematically analyzed. The microbial consortium R0, which has the best degradation efficiency, can degrade more than 80% within 6 days, with dominant genera being Achromobacter and Pseudomonas. The dominant genera in other two microbial consortia R1 and R2 are Pseudomonas and Achromobacter in R1, Pseudomonas and Sphingobacterium in R2. Protocatechuic acid is a central intermediate in the degradation of lignin, its degradation pathway was fully annotated in microbial consortia R0 and R1. Microbial consortium R0 has the most abundant of AA (Auxiliary Activities) family genes annotated as carbohydrate annotation enzymes. The dominant genera in the microbial consortium R0 based on AA family gene abundance were Pseudomonas and Achromobacter. Our results indicated that Pseudomonas is the dominant genus in lignin degradation, the metabolic potential of other abundant genera suggests a possible complementary role in the lignin degradation process. In the lignin degradation system with Pseudomonas as the dominant genera, the degradation of protocatechuic acid is the core of the degradation process. This study could enrich the mechanism of efficient and stable lignin degradation by microbial consortium, and could provide theoretical guidance for the development of lignin biodegradation technology in industry.
Keywords: lignin degradation1, microbial consortia2, degradation pathway3, metagenomics4, Metabolomics5
Received: 19 Sep 2025; Accepted: 17 Oct 2025.
Copyright: © 2025 Ru, Jiang, Li, Li, Su, Li and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Mingkai Xu, mkxu@iae.ac.cn
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.