Your new experience awaits. Try the new design now and help us make it even better

ORIGINAL RESEARCH article

Front. Neurosci.

Sec. Neurodevelopment

Volume 19 - 2025 | doi: 10.3389/fnins.2025.1602116

The Organization of Serotonergic Fibers in the Pacific Angelshark Brain: Neuroanatomical and Supercomputing Analyses

Provisionally accepted
  • 1University of California, Santa Barbara, Santa Barbara, United States
  • 2University of Potsdam, Potsdam, Brandenburg, Germany
  • 3Missouri University of Science and Technology, Rolla, Missouri, United States

The final, formatted version of the article will be published soon.

Serotonergic axons (fibers) are a universal feature of all vertebrate brains. They form meshworks, typically quantified with regional density measurements, and appear to support neuroplasticity. The self-organization of this system remains poorly understood, partly because of the strong stochasticity of individual fiber trajectories. In an extension to our previous analyses of the mouse brain, serotonergic fibers were investigated in the brain of the Pacific angelshark (Squatina californica), a representative of a unique (ray-like) lineage of the squalomorph sharks. First, the fundamental cytoarchitecture of the angelshark brain was examined, including the expression of ionized calcium binding adaptor molecule 1 (Iba1, AIF-1) and the mesencephalic trigeminal nucleus. Second, serotonergic fibers were visualized with immunohistochemistry, which showed that fibers in the forebrain have the tendency to move toward the dorsal pallium and also accumulate at higher densities at pial borders. Third, a population of serotonergic fibers was modeled inside a digital model of the angelshark brain by using a supercomputing simulation. The simulated fibers were defined as sample paths of reflected fractional Brownian motion (FBM), a continuous-time stochastic process. The regional densities generated by these simulated fibers reproduced key features of the biological serotonergic fiber densities in the telencephalon, a brain division with a considerable physical uniformity and no major “obstacles” (dense axon tracts). These results demonstrate that the paths of serotonergic fibers may be inherently stochastic, and that a large population of such paths can give rise to a consistent, non-uniform, and biologically-realistic fiber density distribution. Local densities may be induced by the constraints of the three-dimensional geometry of the brain, with no axon guidance cues. However, they can be further refined by anisotropies that constrain fiber movement (e.g., major axon tracts, active self-avoidance, chemical gradients). In the angelshark forebrain, such constraints may be reduced to an attractive effect of the dorsal pallium, suggesting that anatomically complex distributions of fiber densities can emerge from the interplay of a small set of stochastic and deterministic processes.

Keywords: 5-hydroxytryptamine (5-HT), Serotonin, Axon, density, shark, stochastic process, Fractional Brownian motion, Supercomputing

Received: 28 Mar 2025; Accepted: 30 Jun 2025.

Copyright: © 2025 Janusonis, Metzler and Vojta. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Skirmantas Janusonis, University of California, Santa Barbara, Santa Barbara, United States

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.