Your new experience awaits. Try the new design now and help us make it even better

REVIEW article

Front. Neurosci., 20 October 2025

Sec. Neurodevelopment

Volume 19 - 2025 | https://doi.org/10.3389/fnins.2025.1626062

This article is part of the Research TopicAdvances in DYRK1A Syndrome: Underlying Mechanisms, Disease Models, and Novel Therapeutic ApproachesView all 5 articles

DYRK1A in the physiology and pathology of the neuron-astrocyte axis


Pablo Cisternas,*Pablo Cisternas1,2*Jiyoon KimJiyoon Kim3Brandon AshfeldBrandon Ashfeld3Jeremiah Zartman,*Jeremiah Zartman1,2*
  • 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
  • 2Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
  • 3Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dosage-sensitive kinase with critical roles in the neuron-astrocyte axis. During brain development, DYRK1A ensures the proper number of differentiated neurons and astrocytes. In neurons, this DYRK1A regulates neuronal morphogenesis and synaptic transmission. However, its functions in astrocytes are not yet well defined, with limited evidence indicating roles in astrocyte reactivity and excitotoxicity. Due to trisomy 21, DYRK1A is overexpressed in individuals with Down syndrome (DS). This imbalance directly contributes to neuronal death and likely astrocyte pathology, accelerating the onset of Alzheimer’s disease (AD) in this population. Notably, DYRK1A overexpression also correlates with neurodegeneration and AD progression in elderly euploid adults. This correlation positions DYRK1A as a potential bridge between DS and AD, mechanistically connecting gene overdosage and neuropathology in both conditions. However, research on DYRK1A pathophysiology has primarily centered on neurons, leaving astrocytes largely understudied. Considering the vital neuroprotective functions of astrocytes, broadening DYRK1A research to encompass these cells presents an opportunity to uncover novel mechanisms contributing to the neurodegenerative process in AD. In this review, we highlight the physiology and pathology of DYRK1A in the neuron–astrocyte axis, analyzing its roles in neurons and positing hypothetical functions in astrocytes, with particular emphasis on the contribution of DYRK1A’s cell-specific overexpression to neurodegeneration and AD progression.

1 Introduction

DYRK1A is a multifunctional regulatory kinase operating in the physiology and pathology of the neuron–astrocyte axis, the structural and functional unit assembled by continuously interacting neurons and astrocytes (Benarroch, 2005). A member of the DYRK subfamily of kinases (Figure 1A), DYRK1A comprises multiple structural regions, of which the kinase domain is the most conserved among DYRKs (Aranda et al., 2011; Figure 1B). To achieve full kinase activity, DYRK1A autophosphorylates at a conserved tyrosine residue within its activation loop (Himpel et al., 2001; Figure 1B, cyan hexagon) while transitioning through a short-lived intermediate state (Lochhead et al., 2005), yielding the mature form of DYRK1A with immediate capacity for phosphorylating its target proteins in serine or threonine residues (Becker and Sippl, 2011; Park et al., 2009). DYRK1A’s activity can be further modulated—enhanced through calpain-dependent proteolytic truncation (Jin et al., 2015) or inhibited by binding partners such as FAM53C (Miyata and Nishida, 2023) or the 14-3-3 protein (Kim et al., 2004).

FIGURE 1
“Diagram showing the homology and structure of DYRK family proteins. Panel A illustrates the lineage across species: amoeba, nematode, fly, and mammals, highlighting Dyrk1, MBK-1, Mnb, DYRK1A/B, DYRK2, DYRK3, and DYRK4. Panel B details protein domains, including DCAF7, NLS, DH, kinase domain, PEST, His, and S/T regions, along with specific tyrosine phosphorylation sites Y321, Y273, Y309, Y333, and Y264.”

Figure 1. The DYRK subfamily of kinases. (A) DYRK orthologs in other eukaryotes (left) and subfamily members in mammals (right). (B) Structural organization of mammalian DYRKs, highlighting domains and autophosphorylation residue (cyan-colored hexagon). DCAF7, DCAF7-binding domain; NLS, nuclear localization signal; DH, DYRK homology box; PEST, protein degradation domain; His, histidine repeat; S/T, serine/threonine-rich motif; NAPA, autophosphorylation accessory region. Figure synthesized from Adayev et al. (2007), Aranda et al. (2011), Ashford et al. (2015), Deboever et al. (2022), Li et al. (2002), Papadopoulos et al. (2011), Park et al. (2009), Suanes-Cobos et al. (2025), Tandon et al. (2021), and Walte et al. (2013).

Given that DYRK1A is constitutively active, its downstream effects are determined by tight dosage control. Accordingly, DYRK1A dosage imbalance is consistently detrimental and is linked to the appearance of a broad spectrum of neurological disorders (Ananthapadmanabhan et al., 2023; Deboever et al., 2022; Duchon and Herault, 2016; Tian et al., 2019; Figure 2). In humans, the DYRK1A gene lies within the DS critical region of chromosome 21, which is triplicated in individuals with DS due to trisomy 21. This genetic alteration leads to DYRK1A overexpression (Lowe et al., 2019; Wegiel et al., 2008), disrupting neurogenesis and gliogenesis during brain development, which contributes to the neurological impairments exhibited by DS individuals (Guedj et al., 2012; Stagni and Bartesaghi, 2022). Importantly, DYRK1A overdosage accelerates the onset of AD in DS adults (Liu et al., 2008; Lowe et al., 2019; Wegiel et al., 2008, 2011b), lowering the mean age of appearance to 50–54 years old (Larsen et al., 2024) and increasing its prevalence to 90–100% in this population (Fortea et al., 2021). The brains of these individuals show elevated levels of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), the pathological hallmarks of AD (Cipriani et al., 2018). Most significantly, DYRK1A overexpression is also observed in sporadic AD patients despite an euploid background, resulting in equivalent neuropathological manifestations as those seen in adult DS cases (Ferrer et al., 2005; Kimura et al., 2007), although the timing and localization of this imbalance can differ between these two conditions (Wegiel et al., 2008). Nevertheless, the same overabundance that drives the neuropathological process in DS also promotes it in AD, where DYRK1A provides a direct mechanistic link between gene overdosage and disease progression (Martínez-Cué and Rueda, 2020; Wegiel et al., 2011a).

FIGURE 2
Graph illustrating the relationship between DYRK1A dosage and phenotype. A bell curve shows the “Goldilocks zone” at the peak, indicating normal phenotype. Under-dosage on the left leads to conditions like DYRK1A-related intellectual disability syndrome and autism spectrum disorder. Over-dosage on the right is associated with Down syndrome, Alzheimer’s, Parkinson’s, Huntington’s disease, and frontotemporal dementia.

Figure 2. DYRK1A dosage imbalance is implicated in the onset of multiple neurological conditions. For appropriate downstream effects (blue), DYRK1A dosage (red) must be tightly regulated within an optimal ‘Goldilocks zone’ (green). DYRK1A gene mutation or haploinsufficiency reduces DYRK1A dosage and contributes to DYRK1A-related intellectual disability syndrome (MRD7) and autism spectrum disorder (ASD). Conversely, DYRK1A gene overexpression/overactivation increases DYRK1A dosage, driving the pathogenesis of Down syndrome (DS), Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and frontotemporal dementia (FTD). Figure inspired by Ananthapadmanabhan et al. (2023), Arbones et al. (2019), Deboever et al. (2022), and Duchon and Herault (2016).

Importantly, DYRK1A carries out multiple roles in the neuron–astrocyte axis (Figure 3A). In neurons, DYRK1A regulates neuronal morphogenesis (Dang et al., 2018; Manubens-Gil et al., 2023; Martinez de Lagran et al., 2012) and tunes synaptic transmission at both pre- and postsynaptic terminals of the tripartite synapse (Arbones et al., 2019; Grau et al., 2014; Souchet et al., 2014; Thomazeau et al., 2014; Wu et al., 2022). However, DYRK1A overdosage causes an aberrant interaction with its targets, activating several neurotoxic pathways involving Aβ (Fernandez Bessone et al., 2022; Ryoo et al., 2008; Wegiel et al., 2011a) and hyperphosphorylated tau (Gendron and Petrucelli, 2009; Kumar et al., 2015; Liu et al., 2008; Ryoo et al., 2007; Wegiel et al., 2008). In comparison, the function of DYRK1A in astrocytes remains poorly understood, with limited evidence suggesting an involvement in the regulation of the astrocyte’s neuroprotective capacity by modulating astrocyte reactivity (Ceyzériat et al., 2018; Gong et al., 2019; Kurabayashi et al., 2015; Lee et al., 2020; Melchior et al., 2019; Ryu et al., 2010; Souchet et al., 2019; Yamamoto et al., 2017) and glutamate excitotoxicity (Li et al., 2011). This is critical since astrocytes play a crucial role in maintaining neuronal homeostasis and survival (Kim et al., 2019; Sofroniew and Vinters, 2010). Without astrocytic support, neurons lose their ability to sustain synaptic activity and maintain long-term viability, promoting neurodegeneration (Ding et al., 2021; Verkhratsky et al., 2023). Considering the vital protective role of astrocytes, their contribution to neuronal death when pathologically impaired (Huang et al., 2025), and their sensitivity to the pathological events of AD (Arranz and De Strooper, 2019), expanding the study of DYRK1A’s pathophysiology to include astrocytes holds the potential to reveal novel mechanisms contributing to the neurodegenerative process in AD.

FIGURE 3
“Diagram illustrating the neuron-astrocyte axis and synaptic dynamics. It features diagrams labeled A to J, highlighting presynaptic and postsynaptic neurons, astrocyte interactions, and topics like cytoskeleton dynamics, presynaptic terminal, postsynaptic terminal, Aβ and Tau toxicity, astrocyte reactivity, and excitotoxicity. Processes involve proteins such as DYRK1A, PSD95, and GSK3β, emphasizing interactions between different synaptic and cellular components. The relationship between DYRK1A and neurological factors like Aβ toxicity, Tau toxicity, and neurofibrillary tangles is also shown.”

Figure 3. The diverse functions of DYRK1A at the neuron-astrocyte axis (A). In neurons, DYRK1A regulates cytoskeletal dynamics and morphogenesis (B). At the tripartite synapse, DYRK1A tunes synaptic transmission in both pre- (C) and post-synaptic terminals (D). On the other side, DYRK1A overexpression leads to Aβ pathology (E) and tau toxicity (F), which promote neuronal death. In astrocytes, DYRK1A modulates astrocyte reactivity (G) and potentially mediates glutamate excitotoxicity (H). However, astrocytic DYRK1A overdosage could trigger Aβ (I) and tau pathology (J) and compromise the astrocyte’s neuroprotective functions.

In this review, we examine the multifaceted roles of DYRK1A in the neuron–astrocyte axis. We first outline its functions in neurons, from its interactions with cytoskeletal regulators to control neuronal morphogenesis to the modulation of synaptic transmission and neuronal plasticity. Next, we discuss the pathological outcomes of DYRK1A overexpression in neurons. Then, we integrate the available scattered evidence to characterize the functions of DYRK1A in astrocytes, positing its interactions to modulate astrocyte reactivity and glutamate excitotoxicity. Accordingly, DYRK1A overexpression potentially impairs the neuroprotective role of astrocytes by disrupting these key processes or triggering novel Aβ/tau-dependent pathological mechanisms.

2 DYRK1A in the physiology and pathology of the neuron

During neurogenesis, DYRK1A is consistently expressed throughout the neuronal lineage. DYRK1A halts the proliferation and triggers the differentiation of neuronal progenitor cells (NPCs) (Hämmerle and Tejedor, 2002; Yabut et al., 2010). In mature neurons, DYRK1A is present in the nucleus, cytoplasm, and dendrites, with strong colocalization with synaptic clusters (Martí et al., 2003; Wegiel et al., 2004). In both DS (Altafaj et al., 2001; Nguyen et al., 2018) and AD (Ferrer et al., 2005; Kimura et al., 2007; Wegiel et al., 2011b), DYRK1A is overexpressed and accumulates across these cellular compartments. The zinc-finger transcriptional repressor REST (Lu et al., 2011), the myocyte-specific enhancer factor 2D (MEF2D) (Wang et al., 2017) or DCAF7/WDR68 (Yousefelahiyeh et al., 2018) regulate DYRK1A’s transcription; however, they operate primarily during neuronal differentiation, rather than after. DYRK1A’s widespread distribution across the neuron highlights how multiple neuronal processes can be affected by its dosage imbalance. Indeed, genes operating in vesicle exocytosis, neurotransmitter (NT) homeostasis, dendritic arborization and neuronal projections are all dysregulated by this imbalance (Brault et al., 2021). In the following sections, we summarize the functions and pathology of DYRK1A in neurons.

2.1 DYRK1A regulates neuronal morphogenesis and connectivity

DYRK1A mediates neuritogenesis, dendritogenesis and synaptogenesis, contributing to neuronal morphogenesis and connectivity (Manubens-Gil et al., 2023). Disruptions in these processes lead to the intellectual disabilities observed in DS individuals (Stagni and Bartesaghi, 2022). Neurons derived from DS mouse models show altered dendritic morphology, impaired axon elongation, and reduced synaptogenesis in vitro (Martinez de Lagran et al., 2012), mainly due to defects in chromatin-remodeling mechanisms (Lepagnol-Bestel et al., 2009). Interestingly, one study reported that DYRK1A overexpression enhanced synaptogenesis, a discrepancy likely arising from differences in the cortical regions and dendritic compartments analyzed in this study (Thomazeau et al., 2014). In vivo, however, DYRK1A overexpression disrupts the dendritic arborization in hippocampal neurons, reducing neuronal network activity and altering the excitation-inhibition balance in the brain (Manubens-Gil et al., 2023).

Reduced DYRK1A dosage also negatively impacts neuronal morphogenesis. Knockdown of DYRK1A in vitro produces neurons with shorter dendrites and fewer axons (Scales et al., 2009). In patients carrying loss-of-function DYRK1A mutations linked to autism spectrum disorder (ASD), dendritic length, branching, and synaptogenesis are all impaired (Dang et al., 2018). Similarly, in a DYRK1A haploinsufficient mouse model, cortical neurons display reduced dendritic complexity and fewer synaptic spines (Benavides-Piccione et al., 2005). Complete deletion of DYRK1A further decreases neuronal connectivity, reducing brain size and mass, defects associated with impaired growth factor signaling pathways (Levy et al., 2021).

Mechanistically, DYRK1A contributes to neuronal architecture through interactions with cytoskeletal elements (Figure 3B). In a Drosophila melanogaster model, DYRK1A phosphorylates β-tubulin to inhibit microtubule polymerization, a function conserved in mammals; flies carrying DYRK1A mutations exhibit defective dendritic morphology (Ori-McKenney et al., 2016). DYRK1A also phosphorylates the Neural Wiskott–Aldrich Syndrome Protein (N-WASP), suppressing Actin polymerization and filopodia formation in fibroblasts, while overexpression of a mutant, non-phosphorylatable form of N-WASP reduces synaptogenesis in neurons (Park J. et al., 2012). In addition, DYRK1A inhibits the Actin-binding LIM (ABLIM) proteins, thereby limiting cytoskeletal stabilization (Schneider et al., 2015). Through the “priming” of the GSK3β-phosphorylation target MAP1B, DYRK1A influences microtubule stability, growth cone navigation, and dendritic growth; its knockdown in cortical neurons alters neurite outgrowth in vitro (Scales et al., 2009). Finally, in postmortem AD and DS brain tissues, the association of DYRK1A with β-Tubulin and α-Actin is diminished, with the most potent effects observed in newborn and infant DS cases (Dowjat et al., 2012, 2019).

2.2 DYRK1A tunes synaptic transmission

DYRK1A orchestrates synaptic functioning by phosphorylating multiple synaptic proteins. In the presynaptic terminal (Figure 3C), DYRK1A modulates NT release by phosphorylating key proteins of the synaptic vesicle docking and fusion process, including VAMP2, SNAP25 (Guedj et al., 2012; Ouyang et al., 2023) and Munc18-1 (Park J. H. et al., 2012), although the phosphorylation of the latter does not appear to affect synaptic transmission (Classen et al., 2020). By phosphorylating MAP1A, MAP2, AP180, and α/β-adaptins, DYRK1A contributes to clathrin-mediated vesicle coating (Murakami et al., 2009) and uncoating (Murakami et al., 2012). It also targets Dynamin 1, Amphiphysin 1, Synaptojanin, and Endophilin 1, which are essential for vesicle recycling (Adayev et al., 2006; Chen C. K. et al., 2014; Chen-Hwang et al., 2002; Murakami et al., 2006; Murakami et al., 2006, 2009) and the maintenance of the synaptic vesicle pool (Geng et al., 2016). Consistently, DYRK1A overexpression disrupts vesicle recycling (Kim et al., 2010). In neurons differentiated from DS patient-derived iPSCs, normalizing DYRK1A levels restored the expression of several presynaptic proteins—including Synaptotagmin 1/3, Contactin-associated protein, Secretory Carrier Membrane 5, Endophilins (SH3GL2 & SH3GL3), Synaptic Vesicle Glycoprotein, and Intersectin 1—thereby improving vesicle dynamics and NT release (Wu et al., 2022). Interestingly, DYRK1A overdosage also impairs a presynaptic, non-NMDA type of synaptic plasticity, partly through chromatin remodeling dysregulation, leading to deficits in spatial learning and recognition memory (Lepagnol-Bestel et al., 2025).

In the postsynaptic terminal (Figure 3D), DYRK1A modulates neuronal electrophysiology and long-term potentiation (LTP), the long-lasting strengthening of synapses following strong or repeated activation (Bin Ibrahim et al., 2022). DYRK1A interacts with the subunits of the N-methyl-D-aspartate receptor (NMDAR), impacting its electrophysiological properties. DYRK1A overexpression blocks the internalization of GluN1 and GluN2A subunits, increasing the receptor’s gating and current density (Grau et al., 2014). DYRK1A is also found in protein complexes containing the subunit GluN2B and PSD95, a scaffolding protein crucial for the membrane anchorage and functioning of the NMDAR (Brault et al., 2021). These interactions suggest that DYRK1A influences ion homeostasis, and indeed, its dosage imbalance alters the neuron’s electrophysiological activity (Ori-McKenney et al., 2016). Additionally, DYRK1A regulates LTP and synaptic plasticity by modulating CaMKII phosphorylation (Brault et al., 2021; Lisman et al., 2012; Wang, 2008; Yasuda et al., 2022) at both pre- and postsynaptic terminals (Nguyen et al., 2018; Souchet et al., 2014; Thomazeau et al., 2014). Interestingly, DYRK1A overexpression reduces CaMKII phosphorylation, impairing synaptic transmission and LTP (Souchet et al., 2014; Thomazeau et al., 2014). Further LTP modulation occurs when DYRK1A phosphorylates GSK3β (Kelly and Rahmani, 2005) or interacts with proteins of the MAPK/ERK pathway (Impey et al., 1999; Kelly and Rahmani, 2005).

DYRK1A regulates NT availability by controlling its packaging into synaptic vesicles. In excitatory neurons, DYRK1A modulates the expression of the vesicular glutamate transporter (VGLUT) (Montana et al., 2004; Figure 3C, top). In overexpression models, genetic normalization of DYRK1A restored VGLUT levels (García-Cerro et al., 2018) and improved working and reference memory performance (García-Cerro et al., 2014). Interestingly, DYRK1A has a similar function in inhibitory neurons. In DS mice, DYRK1A overdosage reduced neuronal firing rates and gamma oscillations in the prefrontal cortex, associated with lower vesicular γ-aminobutyric acid (GABA) transporter (VGAT) expression and impaired GABA loading into inhibitory synaptic vesicles (Ruiz-Mejias et al., 2016; Saito et al., 2010; Shih et al., 2023; Figure 3D, bottom). Reduced inhibitory tone leads to hyperactivity and memory deficits (Cisternas et al., 2020; Jiménez-Balado and Eich, 2021). Interestingly, increased DYRK1A dosage also promotes GABAergic pathways by elevating glutamate decarboxylase 67 (GAD67) expression, although this is driven by a shift during neuronal differentiation toward a GABAergic lineage (Souchet et al., 2014).

2.3 DYRK1A-induced Aβ and tau neurotoxicity

When overexpressed, DYRK1A aberrantly phosphorylates amyloid precursor protein (APP) and tau, activating neurotoxic pathways. The amyloid cascade hypothesis posits that Aβ deposition arises from the sequential cleavage of APP by the β- and γ-secretase complexes (Uddin et al., 2020). DYRK1A promotes APP phosphorylation, driving its secretase-dependent cleavage and inducing Aβ production (Ryoo et al., 2008; Sun et al., 2015). Additionally, in neuronal cultures and brain organoids, DYRK1A inhibition reduced the expression of several proteins essential for the axonal transport of APP-containing vesicles. DYRK1A overexpression enhanced vesicle mobilization and density (Fernandez Bessone et al., 2022). This aberrant vesicle trafficking potentially increases APP availability, which, coupled with elevated APP phosphorylation, has the capacity to promote Aβ production and plaque formation (Figure 3E).

DYRK1A mediates tau hyperphosphorylation (Azorsa et al., 2010) at multiple residues, promoting its aggregation into toxic NFTs (Gendron and Petrucelli, 2009; Kumar et al., 2015; Figure 3F). Consistently, in DYRK1A overexpression mouse models, tau is hyperphosphorylated (Ryoo et al., 2007). In neuroblastoma cells, Aβ treatment induces DYRK1A expression, which in turn enables tau phosphorylation (Kimura et al., 2007). Beyond phosphorylation, DYRK1A overexpression also increases tau expression (Qian et al., 2013; Wegiel et al., 2011b; Yin et al., 2017) and shifts tau splicing toward the 3R isoform by phosphorylating the Alternative Splicing Factor (ASF). The resulting 3R/4R tau imbalance promotes neuronal death (Shi et al., 2008; Wegiel et al., 2011b). Conversely, inhibiting DYRK1A suppresses 3R-tau expression in human neural progenitor cells and neonatal rat brains, rescuing anxiety-related behavior and memory deficits later in life (Yin et al., 2017). DYRK1A-driven tau pathology contributes to neurodegeneration not only in AD (Ryoo et al., 2007; Shukla et al., 2023; Zhu et al., 2022) but also in other tauopathies, including Pick’s disease (PiD) (Ferrer et al., 2005), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) (Shi et al., 2008), and frontotemporal dementia (FTD) (Deboever et al., 2022; Yin et al., 2017).

Dysregulation of DYRK1A is also implicated in Parkinson’s disease (PD). DYRK1A phosphorylates α-synuclein (α-syn), which facilitates its aggregation (Kim et al., 2006) and drives dopaminergic neuron loss (Stefanis, 2012; Yong et al., 2023). Furthermore, genetic studies identified the rs8126696 DYRK1A polymorphism as a risk factor for α-syn–associated dementia (Jones et al., 2012), with positive correlations to the earlier onset of sporadic PD (Cen et al., 2016; Fan et al., 2016). In vitro, DYRK1A overexpression causes the death of differentiated dopaminergic SH-SY5Y-derived neurons (Chiu et al., 2019). Similarly, in SH-SY5Y cells, DYRK1A phosphorylates parkin—an E3 ligase critical for the clearance of misfolded proteins and damaged mitochondria in dopaminergic neurons (Seirafi et al., 2015)—thereby suppressing its neuroprotective activity under toxic stress (Im and Chung, 2015). Paradoxically, DYRK1A haploinsufficient mice also display a reduced number of dopaminergic neurons in the substantia nigra (Martinez de Lagran et al., 2007), suggesting that both over- and under-expression of DYRK1A compromise dopaminergic neuron survival. Indeed, DYRK1A protects dopaminergic neurons during development by inhibiting caspase-9 and limiting apoptosis (Barallobre et al., 2014), although this effect occurs according to the brain’s developmental stage and the cellular context. Furthermore, DYRK1A also phosphorylates septin 4, a cytoskeletal scaffolding protein aberrantly aggregated in tau and α-syn inclusions in AD and PD, respectively. Inhibiting DYRK1A reduces septin 4 phosphorylation and aggregation, alleviating its neurotoxic effects (Mostowy and Cossart, 2012; Sitz et al., 2008).

In Huntington’s disease (HD), DYRK1A also participates in neurotoxic pathways. A non-individualized DYRK1 (DYRK1A and DYRK1B share 85% of amino acid conservation (Aranda et al., 2011)) phosphorylates the huntingtin-interacting protein Hip-1, inducing apoptosis in H19-7 cells (Kang et al., 2005), and in transgenic mice, DYRK1A overexpression disrupts the interaction between Hap-1 and DCAF7, thereby impairing hypothalamic development (Xiang et al., 2017).

3 DYRK1A in the physiology and pathology of the astrocyte

The expression of DYRK1A in astrocytes is also consistent. During gliogenesis, DYRK1A is expressed in glial progenitor cells (GPCs) (Osorio et al., 2023), promoting their differentiation into astrocytes (Kurabayashi et al., 2015). In mature astrocytes, DYRK1A localizes to both the cytoplasm and nucleus, often clustering in brain regions undergoing extensive astrocytic degeneration (Kida et al., 2011; Wegiel et al., 2008, 2011a). Astrocytic DYRK1A expression is elevated in DS (Altafaj et al., 2001) and abnormally increased in AD, where it’s associated with Aβ plaques (Ferrer et al., 2005). Notably, astrocytic DYRK1A expression pattern differs: in DS brains, DYRK1A appears as granular deposits dispersed throughout the cytoplasm, whereas in AD brains, it shows a more diffuse distribution (Wegiel et al., 2008). Given its widespread localization in astrocytes, DYRK1A is likely relevant to astrocyte physiology; therefore, its overexpression could potentially impair the neuroprotective capacity of these cells. While the pathological impact of DYRK1A imbalance in neurons has been well characterized, its effects in astrocytes remain far less understood. In the following sections, we integrate the available scattered evidence to hypothesize the roles of DYRK1A in astrocytes.

3.1 DYRK1A drives astrocyte reactivity

Astrocyte reactivity refers to the adaptive physiological changes astrocytes undergo in response to pathological stimuli (Kumar et al., 2023; Liddelow and Barres, 2017; Qian et al., 2023). While its initial onset serves a neuroprotective role (Escartin et al., 2021; Kumar et al., 2023), prolonged reactivity promotes neuroinflammation, disrupts brain homeostasis, and contributes to neuronal death and cognitive decline (Bohmbach and Henneberger, 2024; Lawrence et al., 2023). In AD, astrocyte reactivity is a consistent feature (Chun et al., 2020; Kumar et al., 2023; Price et al., 2021), often triggered by increased Aβ levels (Craft et al., 2004; Osborn et al., 2016; Pike et al., 1994), though it can also occur independently of this (Carter et al., 2012, 2019; Marutle et al., 2013; Rodriguez-Vieitez et al., 2015, 2016; Schöll et al., 2015). A key driver of this process is the phosphorylation and activation of STAT (Ben Haim et al., 2015; Ceyzériat et al., 2016; Doherty et al., 2014; Herrmann et al., 2008; Wu et al., 2020), a known substrate of DYRK1A (Kurabayashi et al., 2015; Wiechmann et al., 2003). Under physiological conditions, DYRK1A–STAT interactions regulate astrocyte differentiation during gliogenesis (Kurabayashi et al., 2015); however, when DYRK1A is overexpressed, this interaction has the potential to occur abnormally and promote excessive STAT activation in astrocytes. Accordingly, DYRK1A inhibition suppresses astrocyte reactivity and rescues cognitive deficits in AD mouse models (Ceyzériat et al., 2018; Gong et al., 2019; Lee et al., 2020; Melchior et al., 2019; Souchet et al., 2019). STAT inhibition yields similar results (Reichenbach et al., 2019), suggesting that both proteins act along a common pathway.

Intracellular Ca2+ dynamics are linked to DYRK1A activity. In AD brains, astrocytes exhibit increased Ca2+ dynamics (Delekate et al., 2014; Haughey and Mattson, 2003; Kuchibhotla et al., 2009; Sompol et al., 2017; Takano et al., 2007), which positively correlates with the upregulated expression of reactivity markers (Alberdi et al., 2013). Reducing Ca2+ influx attenuates this reactive response (Paumier et al., 2022; Reichenbach et al., 2018). Importantly, Ca2+ activates calpains (Vanderklish and Bahr, 2000), which are overexpressed in AD (Feng et al., 2011; Shields et al., 1998; Shields et al., 2000). DYRK1A is overactivated by calpain-driven proteolysis (Jin et al., 2015). Elevated calpain expression, combined with increased Ca2+ levels, likely amplifies calpain activity, potentially promoting DYRK1A overactivation to increase STAT phosphorylation. This mechanism was partially validated in an AD mouse model, where a proteolytically overactivated form of DYRK1A, which becomes truncated in a Ca2+-dependent manner and exhibits high affinity for STAT, accumulates in astrocytes. Blocking this truncation prevents astrocytic proinflammatory signaling and restores neuronal and cognitive function (Souchet et al., 2019). Consistently, both plasma and cerebrospinal fluid (CSF) from patients with AD and DS exhibit decreased full-length and increased truncated DYRK1A levels (Moreau et al., 2022). These observations suggest that DYRK1A undergoes proteolytic overactivation when overexpressed.

Furthermore, DYRK1A potentially plays a role in Ca2+ regulation. In zebrafish, DYRK1A regulates vascular integrity through Ca2+-dependent mechanisms, possibly by directly modulating Ca2+ flux or Ca2+-related proteins (Cho et al., 2019). In endothelial cells, DYRK1A deletion reduces VEGF-induced Ca2+ influx, acting upstream of its release from the endoplasmic reticulum (ER) (Rozen et al., 2018). Likewise, astrocytes differentiated from iPSCs derived from ASD patients with reduced DYRK1A dosage exhibit impaired Ca2+ mobilization, leading to diminished neuronal network activity (Allen et al., 2022). If DYRK1A regulates Ca2+, its overexpression could contribute to the Ca2+ surge observed in AD astrocytes (Delekate et al., 2014; Haughey and Mattson, 2003; Kuchibhotla et al., 2009; Sompol et al., 2017; Takano et al., 2007), establishing a positive feedback loop to prolong astrocyte reactivity over time, where elevated Ca2+ and sustained calpain-dependent DYRK1A overactivation continuously upregulate STAT phosphorylation while also promoting Ca2+ mobilization, reinforcing this loop (Figure 3G). Altogether, these observations suggest a Ca2+/DYRK1A-driven mechanism underlying astrocyte reactivity; however, additional experimental studies are needed to fully elucidate this mechanism and validate this hypothesis.

Finally, further investigations are necessary to identify transcription factors that differentially regulate DYRK1A expression in astrocytes and contribute to the reactive process. One candidate is E2F1, which increases DYRK1A mRNA during cell proliferation (Maenz et al., 2008)—a process that occurs during astrocyte reactivity, although in a limited manner (Sofroniew, 2020).

3.2 DYRK1A’s role in excitotoxicity management

Excitotoxicity is a neurotoxic process in which glutamate released from the presynaptic terminal accumulates in the synaptic cleft due to impaired astrocytic uptake, overstimulating neuronal NMDARs and inducing neuronal death (Hynd et al., 2004; Saliñska et al., 2005). In AD, reactive astrocytes exhibit a reduced capacity to uptake synaptic glutamate (Escartin et al., 2021; Ezerskiy et al., 2022; Patani et al., 2023). Although this failure has been linked with Aβ (Li et al., 1997; Pekny and Pekna, 2014) and/or tau accumulation (Kilian et al., 2017), it can also occur independently of this (Araujo et al., 2018; Chen C. et al., 2014; Garcia et al., 2010; Heneka et al., 2005; Kawatani et al., 2021; Mizuno et al., 2018; Ponroy Bally et al., 2020; Torres et al., 2018).

DYRK1A modulates the functioning of key glutamate uptake-related proteins. Synaptic glutamate clearance is primarily mediated by the Excitatory Amino Acid Transporters (EAATs) located at the astrocytic plasma membrane (Malik and Willnow, 2019). Their distribution and activity depend on intracellular Ca2+ levels (Canul-Tec et al., 2022; Stenovec et al., 2008) and on activation by CaMKII (Ashpole et al., 2013; Chawla et al., 2017; Underhill et al., 2015). Since CaMKII is phosphorylated and activated by DYRK1A in neurons (Atas-Ozcan et al., 2021; Souchet et al., 2014), a similar mechanism hypothetically can occur in astrocytes, promoting EAATs activation (Figure 3H, bottom). However, DYRK1A overexpression in neurons reduces CaMKII phosphorylation (Souchet et al., 2014; Thomazeau et al., 2014). If this mechanism extends to astrocytes, this reduction can decrease the activation of EAATs and impair glutamate clearance from the synapse. Supporting these observations, DYRK1A inhibition upregulates EAAT2, enhancing astrocytic glutamate uptake both in vitro and in vivo (Li et al., 2011). Although these observations hypothetically explain the astrocytic failure to uptake glutamate observed in AD, further experimental studies are required to validate these pathways.

Importantly, DYRK1A potentially promotes astrocytic glutamate exocytosis. An additional contributor to excitotoxicity is the excessive release of glutamate from astrocytes (Ding et al., 2007; Mahmoud et al., 2019; Pham et al., 2021; Rakers and Petzold, 2017). Under physiological conditions, astrocytes release glutamate as a gliotransmitter [a signaling molecule that modulates neuronal activity (Halassa et al., 2007)] via the Ca2+-dependent exocytosis (Malarkey and Parpura, 2008; Mielnicka and Michaluk, 2021; Parpura and Haydon, 2000; Vardjan and Zorec, 2015) of synaptic-like microvesicles (SLMVs) (Calì, 2024; Marchaland et al., 2008). Pathological stimuli, including Aβ exposure, enhance astrocytic glutamate exocytosis (Konradsson-Geuken et al., 2009; Pham et al., 2021; Pirttimaki et al., 2013; Sharma and Vijayaraghavan, 2001; Talantova et al., 2013); however, the precise mechanism regulating this process remains unclear. DYRK1A is a strong candidate to contribute to this regulation as several of its known presynaptic vesicle-phosphorylation targets—including VGLUTs, VAMP2, and SNAP23/25—are also expressed in astrocytes (Bezzi et al., 2004; Hepp et al., 1999; Maienschein et al., 1999; Montana et al., 2004). This suggests the existence of an overlapping glutamate exocytosis mechanism between neurons and astrocytes (de Ceglia et al., 2023; Goenaga et al., 2023; Figure 3H, top). Consequently, DYRK1A overexpression in astrocytes could potentially enhance astrocytic SLMVs dynamics, while decreasing the function of EAATs, leading to synaptic glutamate accumulation and excitotoxicity. Although these observations suggest an interesting hypothesis of potential therapeutic significance, it requires further experimental validation.

3.3 DYRK1A in the astrocytic balance of Aβ

Astrocytes manage neuronal homeostasis by uptaking and degrading Aβ (Koistinaho et al., 2004; Wyss-Coray et al., 2003), limiting plaque formation (Davis et al., 2021; Wojtas et al., 2020). However, several components of the Aβ synthesis cascade are upregulated in reactive astrocytes (Frost and Li, 2017). DYRK1A promotes APP processing by regulating its alternative splicing, which increases the production of amyloidogenic isoforms of APP (Chu et al., 2024) and enhances APP phosphorylation, which drives its secretase-dependent cleavage to produce Aβ (Ryoo et al., 2008; Sun et al., 2015).

DYRK1A further modulates Aβ synthesis by activating presenilin, the catalytic subunit of the γ-secretase complex (Ryu et al., 2010). Interestingly, astrocytic DYRK1A inhibition decreases presenilin levels while simultaneously increasing the expression and activity of neprilysin, an endopeptidase that degrades Aβ (Lee and Hoe, 2023; Yamamoto et al., 2017). Consistently, DYRK1A overexpression suppresses, whereas its inhibition upregulates neprilysin in fibroblasts (Kawakubo et al., 2017). In AD, astrocytic DYRK1A overdosage (Altafaj et al., 2001; Ferrer et al., 2005) could potentially dysregulate the Aβ production/degradation balance in astrocytes by promoting Aβ synthesis as well as reducing its degradation (Figure 3I). This imbalance could enable Aβ production and plaque deposition while increasing the intracellular accumulation of Aβ, which induces astrocyte pathology (Söllvander et al., 2018) and degeneration (Ferrer et al., 2005; Kida et al., 2011; Wegiel et al., 2008, 2011a).

Although these findings suggest that DYRK1A dosage could regulate Aβ balance in astrocytes, further experimental studies are needed to validate this hypothesis.

3.4 DYRK1A and astrocytic tau pathology

Tau hyperphosphorylation in neurons promotes its toxic aggregation in NFTs (Gendron and Petrucelli, 2009; Kumar et al., 2015). In contrast, the pathological effects of astrocytic tau aggregation and toxicity remain largely overlooked. Although expressed at relatively low levels (Fleeman and Proctor, 2021; Jackson et al., 2024; Kovacs, 2020; Whitney et al., 2023), tau has been consistently detected in astrocytes (Cisternas et al., 2022; Ezerskiy et al., 2022; Fiock et al., 2023; Forrest et al., 2023; Jackson et al., 2024; Kovacs et al., 2018a; Richetin et al., 2020; Shin et al., 1991; Whitney et al., 2023), where it contributes to the formation of cytoplasmic droplets that degrade toxic peroxidized lipids (Goodman et al., 2024). Importantly, astrocytic tau aggregation has been observed in several neurological conditions, such as AD (Dabir et al., 2004; Ferrer et al., 2014; Iwatsubo et al., 1994; Nakano et al., 1992; Nolan et al., 2019), in tauopathies like CBD, PiD, PSP, FTD and argyrophilic grain disease (AGD) (Botez et al., 1999; Briel et al., 2021; Dabir et al., 2004; Feany and Dickson, 1995; Ferrer et al., 2014, 2015; Forman et al., 2005; Iwatsubo et al., 1994; Jackson et al., 2024; Komori, 1999; Kovacs, 2017; Nakano et al., 1992; Nolan et al., 2019; Sakai et al., 2006), and in aged primates (Rodríguez-Callejas et al., 2023). In these contexts, astrocytes undergo pronounced morphological alterations (Dabir et al., 2004; Komori, 1999; Kovacs et al., 2016; Nolan et al., 2019; Rodríguez-Callejas et al., 2023) reflecting a disease-specific cytoskeletal reorganization (Feany and Dickson, 1995; Ferrer et al., 2014). Importantly, tau aggregation is detrimental to astrocytic function, as it diminishes their ability to buffer reactive oxygen species (ROS)-mediated damage (Goodman et al., 2024; Hallmann et al., 2017), disrupts the expression of key homeostatic proteins, including EAAT2, aquaporin-4, and connexin 43 (Kovacs et al., 2018b; Ortiz et al., 2024), and undermines the astrocyte’s synaptoprotective capacity (Briel et al., 2021; Tanaka et al., 2024).

It has been proposed that tau aggregation in astrocytes originate from phosphorylated tau uptaken from diseased neighboring neurons (Giusti et al., 2024; Kovacs, 2020; Reid et al., 2020). However, astrocytes produce phosphorylated tau when exposed to Aβ in vitro (Chiarini et al., 2017), and tau aggregation in astrocytes occurs independently of neuronal tau pathology (Bachstetter et al., 2021; Ferrer et al., 2018; Kovacs et al., 2018a; Tanaka et al., 2024). Notably, several in vivo studies have validated the independent aggregation of astrocytic tau. In a Drosophila melanogaster model, astrocyte-specific tau overexpression results in its phosphorylation and accumulation in astrocytic fibrillary tangles (AFTs), which are homologous to NFTs (Colodner and Feany, 2010). Similar findings have been reported in mice, where astrocytic tau overexpression leads to its aggregation, resulting in reduced glutamate uptake. However, endogenous tau was not detected in these analyses (Dabir et al., 2006; Forman et al., 2005), likely due to its low or restricted expression. In an AD mouse model, astrocytic tau overexpression induces its aggregation, reducing the number of inhibitory synapses and parvalbumin-positive neurons, and impairing spatial memory (Richetin et al., 2020). Likewise, overexpression of 4R-tau exclusively in astrocytes promoted its aggregation and the transcription of astrocyte reactivity-associated genes, driving astrocytes toward a neurotoxic phenotype (Ezerskiy et al., 2022). Conversely, ablating tau in astrocytes prevented their Aβ-induced toxic turnover, shifting them toward a neuroprotective phenotype characterized by the secretion of synaptoprotective factors and the preservation of synapses (Cisternas et al., 2022).

Together, these findings suggest that astrocytic tau acquires pathological properties independently of neuronal tau pathology, thereby affecting astrocyte physiology. Nonetheless, the mechanism driving astrocytic tau pathology remains to be elucidated. Given the ability of overexpressed DYRK1A to pathologically phosphorylate tau in neurons, its overdosage in astrocytes could represent an overlooked contributor to astrocytic dysfunction through a similar aberrant tau hyperphosphorylation and aggregation process (Figure 3J). The experimental exploration of this hypothesis opens the opportunity to reveal novel mechanisms that could explain the loss of astrocyte-mediated neuroprotection in the AD brain.

4 Conclusion

DYRK1A is a dosage-sensitive pleiotropic kinase operating in the neuron–astrocyte axis, controlling neuronal morphogenesis and synaptic transmission in neurons, and potentially modulating astrocyte reactivity and excitotoxicity in astrocytes. On the other side, DYRK1A overexpression is detrimental and drives tau and Aβ pathology in neurons and possibly in astrocytes, accelerating neuronal loss and AD progression in both DS and euploid adults. However, the timing and localization of this dosage imbalance can differ between these two conditions. In DS, trisomy 21 produces lifelong DYRK1A overexpression, evident from early development and sustained across neuronal and astrocytic populations, which disrupts neurodevelopment and predisposes to premature neurodegeneration (Duchon and Herault, 2016; Soppa et al., 2014; Yin et al., 2017). In sporadic AD, by contrast, DYRK1A upregulation arises later, is localized to neurons neighboring Aβ plaques and reactive astrocytes, and could represent a secondary response rather than a constitutive imbalance (Souchet et al., 2019). Thus, DYRK1A overexpression in DS involves an early, systemic burden, whereas in AD reflects a later, region-specific, pathology-driven increase. These differences appear to account for the distinct onset, progression, and therapeutic responses observed in patients with this disease.

Nevertheless, the strong association between DYRK1A overdosage and neurodegeneration has driven efforts to develop pharmacological inhibitors of this kinase as a therapeutic strategy to mitigate AD progression. Encouragingly, in AD and DS animal models, DYRK1A inhibition in neurons reduces Aβ load and prevents tau hyperphosphorylation, while in astrocytes, it decreases astrocyte reactivity, which in turn reduces cognitive damage (Araldi and Hwang, 2023; Ballesteros-Álvarez et al., 2023; Gong et al., 2019; Lee et al., 2009, 2020; Liu et al., 2023; Melchior et al., 2019; Saleh et al., 2021; Souchet et al., 2019, 2022). Notably, neuroprotective effects have also been reported using DYRK1A inhibitors to treat neurological impairments in DS individuals (De la Torre et al., 2014; de la Torre et al., 2016). These findings support the notion that the selective, cell-specific inhibition of DYRK1A could be a promising therapy for AD; however, substantial pharmacological barriers persist in the process for identifying DYRK1A inhibitors, including biochemical properties like limited solubility, subpar blood-brain barrier (BBB) permeability, poor specificity and selectivity, and compliance with long-term safety (Bei et al., 2022; Jarhad et al., 2018; Meine et al., 2018; Powell et al., 2022). Addressing these obstacles is crucial for advancing DYRK1A inhibitors as neuroprotective agents.

Importantly, when using a pan-inhibitor, the systemic suppression of DYRK1A entails significant risks. Reduced DYRK1A dosage/activity causes neurodevelopmental syndromes (Duchon and Herault, 2016), which emphasizes potential central nervous system (CNS) liabilities associated with this approach. Additionally, systemic DYRK1A inhibition inevitably produces off-target interruptions of DYRK1A-dependent pathways outside the CNS, such as NFAT-dependent immune and cardiac signaling (Grebe et al., 2011), vascular homeostasis and angiogenesis (Takano et al., 2007), alteration of β-cell proliferation and metabolism (Shen et al., 2015), and disruption of the cell cycle, increasing cancer risk (Soppa et al., 2014). These hazards underscore the need for the identification of highly selective and CNS-targeted inhibitory compounds.

Finally, although the pathophysiology of DYRK1A has been extensively characterized in neurons, it remains largely understudied in astrocytes. This gap is critical, as astrocytes are indispensable for neuronal homeostasis and viability. When pathologically impaired, astrocytes lose their neuroprotective functions, leaving neurons vulnerable, which compromises their survival. Thus, examining the pathological consequences of DYRK1A overexpression in astrocytes could reveal novel mechanisms underlying the neurodegenerative cascade in AD. To advance this area of research, genetic models such as Drosophila melanogaster provide a tractable, cost-effective, quantifiable, and rapid in vivo system for evaluating disease phenotypes and pharmacological treatments, thereby reducing the need for costly early-stage model systems. Using the GAL4 expression system (Duffy, 2002), researchers can direct the overexpression of DYRK1A in any cell type, evaluating outcomes in a whole-organism context, in developmental and/or adult stages (Holsopple et al., 2023; Rand et al., 2023). Alternatively, in vitro systems resembling the neuron-astrocyte axis, like the sandwich-type neuron-astrocyte co-cultures (Kaech and Banker, 2006) offer a powerful tool to analyze the influence of astrocytic DYRK1A-overexpression on neuronal morphogenesis, and synaptic organization and function (Cisternas et al., 2016). Similarly, cerebral organoids (CO) generated from iPSCs with an abnormal number of DYRK1A gene copies provide a way of modeling neurodevelopmental defects. Although limitations exist in the current CO technology, optimized COs can facilitate the evaluation of the effects of DYRK1A-overexpressing astrocytes on neurons in a whole-brain-type context (Çağlayan, 2016). Overall, the insights gained from investigations using these and additional approaches can be leveraged to advance the rational design of next-generation DYRK1A inhibitors with enhanced potency, precision, and efficacy, specifically tailored to target DYRK1A pathological interactions within both neurons and astrocytes.

Author contributions

PC: Investigation, Writing – review & editing, Writing – original draft, Conceptualization. JK: Writing – original draft, Writing – review & editing. BA: Writing – original draft, Writing – review & editing. JZ: Writing – review & editing, Supervision, Writing – original draft, Funding acquisition, Conceptualization, Project administration.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This effort was partly supported by the Harper Cancer Research Institute CCV award, a Notre Dame BIPH Discovery award, and the NIH Grant R35GM156615.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Adayev, T., Chen-Hwang, M. C., Murakami, N., Lee, E., Bolton, D. C., and Hwang, Y. W. (2007). Dual-specificity tyrosine phosphorylation-regulated kinase 1A does not require tyrosine phosphorylation for activity in vitro. Biochemistry 46, 7614–7624.

Google Scholar

Adayev, T., Chen-Hwang, M. C., Murakami, N., Wang, R., and Hwang, Y. W. (2006). MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem. Biophys. Res. Commun. 351, 1060–1065. doi: 10.1016/j.bbrc.2006.10.169

PubMed Abstract | Crossref Full Text | Google Scholar

Alberdi, E., Wyssenbach, A., Alberdi, M., Sánchez-Gómez, M. V., Cavaliere, F., Rodríguez, J. J., et al. (2013). Ca(2+) -dependent endoplasmic reticulum stress correlates with astrogliosis in oligomeric amyloid β-treated astrocytes and in a model of Alzheimer’s disease. Aging Cell 12, 292–302. doi: 10.1111/acel.12054

PubMed Abstract | Crossref Full Text | Google Scholar

Allen, M., Huang, B. S., Notaras, M. J., Lodhi, A., Barrio-Alonso, E., Lituma, P. J., et al. (2022). Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca2+ signaling. Mol. Psychiatry 27, 2470–2484. doi: 10.1038/s41380-022-01486-x

PubMed Abstract | Crossref Full Text | Google Scholar

Altafaj, X., Dierssen, M., Baamonde, C., Martí, E., Visa, J., Guimerà, J., et al. (2001). Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum. Mol. Genet. 10, 1915–1923. doi: 10.1093/hmg/10.18.1915

PubMed Abstract | Crossref Full Text | Google Scholar

Ananthapadmanabhan, V., Shows, K. H., Dickinson, A. J., and Litovchick, L. (2023). Insights from the protein interaction Universe of the multifunctional “Goldilocks” kinase DYRK1A. Front. Cell Dev. Biol. 11:1277537. doi: 10.3389/fcell.2023.1277537

PubMed Abstract | Crossref Full Text | Google Scholar

Araldi, G. L., and Hwang, Y. W. (2023). Development of novel fluorinated polyphenols as selective inhibitors of DYRK1A/B kinase for treatment of neuroinflammatory diseases including Parkinson’s disease. Pharmaceuticals 16:443. doi: 10.3390/ph16030443

PubMed Abstract | Crossref Full Text | Google Scholar

Aranda, S., Laguna, A., and de la Luna, S. (2011). DYRK family of protein kinases: Evolutionary relationships, biochemical properties, and functional roles. FASEB J. 25, 449–462. doi: 10.1096/fj.10-165837

PubMed Abstract | Crossref Full Text | Google Scholar

Araujo, B. H. S., Kaid, C., De Souza, J. S., Gomes da Silva, S., Goulart, E., Caires, L. C. J., et al. (2018). Down syndrome iPSC-Derived astrocytes impair neuronal synaptogenesis and the mTOR pathway in vitro. Mol. Neurobiol. 55, 5962–5975. doi: 10.1007/s12035-017-0818-6

PubMed Abstract | Crossref Full Text | Google Scholar

Arbones, M. L., Thomazeau, A., Nakano-Kobayashi, A., Hagiwara, M., and Delabar, J. M. (2019). DYRK1A and cognition: A lifelong relationship. Pharmacol. Ther. 194, 199–221. doi: 10.1016/j.pharmthera.2018.09.010

PubMed Abstract | Crossref Full Text | Google Scholar

Arranz, A. M., and De Strooper, B. (2019). The role of astroglia in Alzheimer’s disease: Pathophysiology and clinical implications. Lancet Neurol. 18, 406–414. doi: 10.1016/S1474-4422(18)30490-3

PubMed Abstract | Crossref Full Text | Google Scholar

Ashford, A. L., Dunkley, T. P., Cockerill, M., Rowlinson, R. A., Baak, L. M., Gallo, R., et al. (2015). Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol. Life Sci. 73, 883–900. doi: 10.1007/s00018-015-2032-x

PubMed Abstract | Crossref Full Text | Google Scholar

Ashpole, N. M., Chawla, A. R., Martin, M. P., Brustovetsky, T., Brustovetsky, N., and Hudmon, A. (2013). Loss of calcium/calmodulin-dependent protein kinase II activity in cortical astrocytes decreases glutamate uptake and induces neurotoxic release of ATP. J. Biol. Chem. 288, 14599–14611. doi: 10.1074/jbc.M113.466235

PubMed Abstract | Crossref Full Text | Google Scholar

Atas-Ozcan, H., Brault, V., Duchon, A., and Herault, Y. (2021). Dyrk1a from gene function in development and physiology to dosage correction across life span in down syndrome. Genes 12:1833. doi: 10.3390/genes12111833

PubMed Abstract | Crossref Full Text | Google Scholar

Azorsa, D. O., Robeson, R. H., Frost, D., Meec hoovet, B., Brautigam, G. R., Dickey, C., et al. (2010). High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genom. 11:25. doi: 10.1186/1471-2164-11-25

PubMed Abstract | Crossref Full Text | Google Scholar

Bachstetter, A. D., Garrett, F. G., Jicha, G. A., and Nelson, P. T. (2021). Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: A report of two cases and a literature review. Acta Neuropathol. Commun. 9:49. doi: 10.1186/s40478-021-01152-3

PubMed Abstract | Crossref Full Text | Google Scholar

Ballesteros-Álvarez, J., Nguyen, W., Sivapatham, R., Rane, A., and Andersen, J. K. (2023). Urolithin A reduces amyloid-beta load and improves cognitive deficits uncorrelated with plaque burden in a mouse model of Alzheimer’s disease. Geroscience 45, 1095–1113. doi: 10.1007/s11357-022-00708-y

PubMed Abstract | Crossref Full Text | Google Scholar

Barallobre, M. J., Perier, C., Bové, J., Laguna, A., Delabar, J. M., Vila, M., et al. (2014). DYRK1A promotes dopaminergic neuron survival in the developing brain and in a mouse model of Parkinson’s disease. Cell Death Dis. 5:e1289. doi: 10.1038/cddis.2014.253

PubMed Abstract | Crossref Full Text | Google Scholar

Becker, W., and Sippl, W. (2011). Activation, regulation, and inhibition of DYRK1A. FEBS J. 278, 246–256. doi: 10.1111/j.1742-4658.2010.07956.x

PubMed Abstract | Crossref Full Text | Google Scholar

Bei, Y., Wang, H., and Xiao, J. (2022). DYRK1A: A promising protein kinase target for cardiomyocyte cycling and cardiac repair through epigenetic modifications. EBioMedicine 82:104168. doi: 10.1016/j.ebiom.2022.104168

PubMed Abstract | Crossref Full Text | Google Scholar

Ben Haim, L., Ceyzériat, K., Carrillo-de Sauvage, M. A., Aubry, F., Auregan, G., Guillermier, M., et al. (2015). The JAK/STAT3 pathway is a common inducer of astrocyte reactivity in Alzheimer’s and Huntington’s diseases. J. Neurosci. 35, 2817–2829. doi: 10.1523/JNEUROSCI.3516-14.2015

PubMed Abstract | Crossref Full Text | Google Scholar

Benarroch, E. E. (2005). Neuron-astrocyte interactions: Partnership for normal function and disease in the central nervous system. Mayo Clin. Proc. 80, 1326–1338. doi: 10.4065/80.10.1326

PubMed Abstract | Crossref Full Text | Google Scholar

Benavides-Piccione, R., Dierssen, M., Ballesteros-Yáñez, I., Martínez de Lagrán, M., Arbonés, M. L., Fotaki, V., et al. (2005). Alterations in the phenotype of neocortical pyramidal cells in the Dyrk1A+/- mouse. Neurobiol. Dis. 20, 115–122. doi: 10.1016/j.nbd.2005.02.004

PubMed Abstract | Crossref Full Text | Google Scholar

Bezzi, P., Gundersen, V., Galbete, J. L., Seifert, G., Steinhäuser, C., Pilati, E., et al. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620. doi: 10.1038/nn1246

PubMed Abstract | Crossref Full Text | Google Scholar

Bin Ibrahim, M. Z., Benoy, A., and Sajikumar, S. (2022). Long-term plasticity in the hippocampus: Maintaining within and ‘tagging’ between synapses. FEBS J. 289, 2176–2201. doi: 10.1111/febs.16065

PubMed Abstract | Crossref Full Text | Google Scholar

Bohmbach, K., and Henneberger, C. (2024). Activity-induced reactivity of astrocytes impairs cognition. PLoS Biol. 22:e3002712. doi: 10.1371/journal.pbio.3002712

PubMed Abstract | Crossref Full Text | Google Scholar

Botez, G., Probst, A., Ipsen, S., and Tolnay, M. (1999). Astrocytes expressing hyperphosphorylated tau protein without glial fibrillary tangles in argyrophilic grain disease. Acta Neuropathol. 98, 251–256. doi: 10.1007/s004010051077

PubMed Abstract | Crossref Full Text | Google Scholar

Brault, V., Nguyen, T. L., Flores-Gutiérrez, J., Iacono, G., Birling, M. C., Lalanne, V., et al. (2021). Dyrk1a gene dosage in glutamatergic neurons has key effects in cognitive deficits observed in mouse models of MRD7 and Down syndrome. PLoS Genet. 17:e1009777. doi: 10.1371/journal.pgen.1009777

PubMed Abstract | Crossref Full Text | Google Scholar

Briel, N., Pratsch, K., Roeber, S., Arzberger, T., and Herms, J. (2021). Contribution of the astrocytic tau pathology to synapse loss in progressive supranuclear palsy and corticobasal degeneration. Brain Pathol. 31:e12914. doi: 10.1111/bpa.12914

PubMed Abstract | Crossref Full Text | Google Scholar

Çağlayan, E. S. (2016). Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: Hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biol. Int. 40, 1256–1270. doi: 10.1002/cbin.10694

PubMed Abstract | Crossref Full Text | Google Scholar

Calì, C. (2024). Regulated exocytosis from astrocytes: A matter of vesicles? Front. Neurosci. 18:1393165. doi: 10.3389/fnins.2024.1393165

PubMed Abstract | Crossref Full Text | Google Scholar

Canul-Tec, J. C., Kumar, A., Dhenin, J., Assal, R., Legrand, P., Rey, M., et al. (2022). The ion-coupling mechanism of human excitatory amino acid transporters. EMBO J. 41:e108341. doi: 10.15252/embj.2021108341

PubMed Abstract | Crossref Full Text | Google Scholar

Carter, S. F., Chiotis, K., Nordberg, A., and Rodriguez-Vieitez, E. (2019). Longitudinal association between astrocyte function and glucose metabolism in autosomal dominant Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imag. 46, 348–356. doi: 10.1007/s00259-018-4217-7

PubMed Abstract | Crossref Full Text | Google Scholar

Carter, S. F., Schöll, M., Almkvist, O., Wall, A., Engler, H., Långström, B., et al. (2012). Evidence for astrocytosis in prodromal Alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. J. Nucl. Med. 53, 37–46. doi: 10.2967/jnumed.110.087031

PubMed Abstract | Crossref Full Text | Google Scholar

Cen, L., Xiao, Y., Wei, L., Mo, M., Chen, X., Li, S., et al. (2016). Association of DYRK1A polymorphisms with sporadic Parkinson’s disease in Chinese Han population. Neurosci. Lett. 632, 39–43. doi: 10.1016/j.neulet.2016.08.022

PubMed Abstract | Crossref Full Text | Google Scholar

Ceyzériat, K., Abjean, L., Carrillo-de Sauvage, M. A., Ben Haim, L., and Escartin, C. (2016). The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? Neuroscience 330, 205–218. doi: 10.1016/j.neuroscience.2016.05.043

PubMed Abstract | Crossref Full Text | Google Scholar

Ceyzériat, K., Ben Haim, L., Denizot, A., Pommier, D., Matos, M., Guillemaud, O., et al. (2018). Modulation of astrocyte reactivity improves functional deficits in mouse models of Alzheimer’s disease. Acta Neuropathol. Commun. 6, 104–104. doi: 10.1186/s40478-018-0606-1

PubMed Abstract | Crossref Full Text | Google Scholar

Chawla, A. R., Johnson, D. E., Zybura, A. S., Leeds, B. P., Nelson, R. M., and Hudmon, A. (2017). Constitutive regulation of the glutamate/aspartate transporter EAAT1 by calcium-calmodulin-dependent protein kinase II. J. Neurochem. 140, 421–434. doi: 10.1111/jnc.13913

PubMed Abstract | Crossref Full Text | Google Scholar

Chen, C. K., Bregere, C., Paluch, J., Lu, J. F., Dickman, D. K., and Chang, K. T. (2014). Activity-dependent facilitation of Synaptojanin and synaptic vesicle recycling by the Minibrain kinase. Nat. Commun. 5, 4246–4246. doi: 10.1038/ncomms5246

PubMed Abstract | Crossref Full Text | Google Scholar

Chen, C., Jiang, P., Xue, H., Peterson, S. E., Tran, H. T., McCann, A. E., et al. (2014). Role of astroglia in Down’s syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat. Commun. 5:4430. doi: 10.1038/ncomms5430

PubMed Abstract | Crossref Full Text | Google Scholar

Chen-Hwang, M. C., Chen, H. R., Elzinga, M., and Hwang, Y. W. (2002). Dynamin is a minibrain kinase/dual specificity Yak1-related kinase 1A substrate. J. Biol. Chem. 277, 17597–17604. doi: 10.1074/jbc.M111101200

PubMed Abstract | Crossref Full Text | Google Scholar

Chiarini, A., Armato, U., Gardenal, E., Gui, L., and Dal Prà, I. (2017). Amyloid β-Exposed human astrocytes overproduce phospho-tau and overrelease it within exosomes, effects suppressed by calcilytic NPS 2143-further implications for Alzheimer’s therapy. Front. Neurosci. 11:217. doi: 10.3389/fnins.2017.00217

PubMed Abstract | Crossref Full Text | Google Scholar

Chiu, C. C., Yeh, T. H., Chen, R. S., Chen, H. C., Huang, Y. Z., Weng, Y. H., et al. (2019). Upregulated expression of MicroRNA-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-Mediated apoptotic signaling cascade. Front. Cell Neurosci. 13:399. doi: 10.3389/fncel.2019.00399

PubMed Abstract | Crossref Full Text | Google Scholar

Cho, H. J., Lee, J. G., Kim, J. H., Kim, S. Y., Huh, Y. H., Kim, H. J., et al. (2019). Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish. Dis. Model. Mech. 12:dmm037044. doi: 10.1242/dmm.037044

PubMed Abstract | Crossref Full Text | Google Scholar

Chu, D., Lei, L., Gu, S., Liu, F., and Wu, F. (2024). Dual-specificity tyrosine phosphorylation-regulated kinase 1A promotes the inclusion of amyloid precursor protein exon 7. Biochem. Pharmacol. 224:116233. doi: 10.1016/j.bcp.2024.116233

PubMed Abstract | Crossref Full Text | Google Scholar

Chun, H., Im, H., Kang, Y. J., Kim, Y., Shin, J. H., Won, W., et al. (2020). Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2- production. Nat. Neurosci. 23, 1555–1566. doi: 10.1038/s41593-020-00735-y

PubMed Abstract | Crossref Full Text | Google Scholar

Cipriani, G., Danti, S., Carlesi, C., and Di Fiorino, M. (2018). Aging with down syndrome: The dual diagnosis: Alzheimer’s disease and down syndrome. Am. J. Alzheimers Dis. Other Demen. 33, 253–262. doi: 10.1177/1533317518761093

PubMed Abstract | Crossref Full Text | Google Scholar

Cisternas, P., Louveau, A., Bueno, S. M., Kalergis, A. M., Boudin, H., and Riedel, C. A. (2016). Gestational hypothyroxinemia affects glutamatergic synaptic protein distribution and neuronal plasticity through neuron-astrocyte interplay. Mol. Neurobiol. 53, 7158–7169. doi: 10.1007/s12035-015-9609-0

PubMed Abstract | Crossref Full Text | Google Scholar

Cisternas, P., Taylor, X., Martinez, P., Maldonado, O., Jury, N., and Lasagna-Reeves, C. A. (2022). The reduction of astrocytic tau prevents amyloid-β-induced synaptotoxicity. Brain Commun. 4:fcac235. doi: 10.1093/braincomms/fcac235

PubMed Abstract | Crossref Full Text | Google Scholar

Cisternas, P., Taylor, X., Perkins, A., Maldonado, O., Allman, E., Cordova, R., et al. (2020). Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell. 19:e13233. doi: 10.1111/acel.13233

PubMed Abstract | Crossref Full Text | Google Scholar

Classen, J., Saarloos, I., Meijer, M., Sullivan, P. F., and Verhage, M. (2020). A Munc18-1 mutant mimicking phosphorylation by Down Syndrome-related kinase Dyrk1a supports normal synaptic transmission and promotes recovery after intense activity. Sci. Rep. 10:3181. doi: 10.1038/s41598-020-59757-y

PubMed Abstract | Crossref Full Text | Google Scholar

Colodner, K. J., and Feany, M. B. (2010). Glial fibrillary tangles and JAK/STAT-mediated glial and neuronal cell death in a Drosophila model of glial tauopathy. J. Neurosci. 30, 16102–16113. doi: 10.1523/JNEUROSCI.2491-10.2010

PubMed Abstract | Crossref Full Text | Google Scholar

Craft, J. M., Watterson, D. M., Frautschy, S. A., and Van Eldik, L. J. (2004). Aminopyridazines inhibit beta-amyloid-induced glial activation and neuronal damage in vivo. Neurobiol. Aging 25, 1283–1292. doi: 10.1016/j.neurobiolaging.2004.01.006

PubMed Abstract | Crossref Full Text | Google Scholar

Dabir, D. V., Robinson, M. B., Swanson, E., Zhang, B., Trojanowski, J. Q., Lee, V. M., et al. (2006). Impaired glutamate transport in a mouse model of tau pathology in astrocytes. J. Neurosci. 26, 644–654. doi: 10.1523/JNEUROSCI.3861-05.2006

PubMed Abstract | Crossref Full Text | Google Scholar

Dabir, D. V., Trojanowski, J. Q., Richter-Landsberg, C., Lee, V. M., and Forman, M. S. (2004). Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. Am. J. Pathol. 164, 155–166. doi: 10.1016/s0002-9440(10)63106-9

PubMed Abstract | Crossref Full Text | Google Scholar

Dang, T., Duan, W. Y., Yu, B., Tong, D. L., Cheng, C., Zhang, Y. F., et al. (2018). Autism-associated Dyrk1a truncation mutants impair neuronal dendritic and spine growth and interfere with postnatal cortical development. Mol. Psychiatry 23, 747–758. doi: 10.1038/mp.2016.253

PubMed Abstract | Crossref Full Text | Google Scholar

Davis, N., Mota, B. C., Stead, L., Palmer, E. O. C., Lombardero, L., Rodríguez-Puertas, R., et al. (2021). Pharmacological ablation of astrocytes reduces Aβ degradation and synaptic connectivity in an ex vivo model of Alzheimer’s disease. J. Neuroinflamm. 18:73. doi: 10.1186/s12974-021-02117-y

PubMed Abstract | Crossref Full Text | Google Scholar

de Ceglia, R., Ledonne, A., Litvin, D. G., Lind, B. L., Carriero, G., Latagliata, E. C., et al. (2023). Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 622, 120–129. doi: 10.1038/s41586-023-06502-w

PubMed Abstract | Crossref Full Text | Google Scholar

De la Torre, R., De Sola , S., Pons, M., Duchon, A., de Lagran, M. M., Farré, M., et al. (2014). Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol. Nutr. Food Res. 58, 278–288. doi: 10.1002/mnfr.201300325

PubMed Abstract | Crossref Full Text | Google Scholar

de la Torre, R., de Sola, S., Hernandez, G., Farré, M., Pujol, J., Rodriguez, J., et al. (2016). Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down’s syndrome (TESDAD): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 801–810. doi: 10.1016/S1474-4422(16)30034-5

PubMed Abstract | Crossref Full Text | Google Scholar

Deboever, E., Fistrovich, A., Hulme, C., and Dunckley, T. (2022). The omnipresence of DYRK1A in human diseases. Int. J. Mol. Sci. 23:9355. doi: 10.3390/ijms23169355

PubMed Abstract | Crossref Full Text | Google Scholar

Delekate, A., Füchtemeier, M., Schumacher, T., Ulbrich, C., Foddis, M., and Petzold, G. C. (2014). Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat. Commun. 5:5422. doi: 10.1038/ncomms6422

PubMed Abstract | Crossref Full Text | Google Scholar

Ding, S., Fellin, T., Zhu, Y., Lee, S. Y., Auberson, Y. P., Meaney, D. F., et al. (2007). Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus. J. Neurosci. 27, 10674–10674. doi: 10.1523/JNEUROSCI.2001-07.2007

PubMed Abstract | Crossref Full Text | Google Scholar

Ding, Z. B., Song, L. J., Wang, Q., Kumar, G., Yan, Y. Q., and Ma, C. G. (2021). Astrocytes: A double-edged sword in neurodegenerative diseases. Neural Regen. Res. 16, 1702–1710. doi: 10.4103/1673-5374.306064

PubMed Abstract | Crossref Full Text | Google Scholar

Doherty, J., Sheehan, A. E., Bradshaw, R., Fox, A. N., Lu, T. Y., and Freeman, M. R. (2014). PI3K signaling and Stat92E converge to modulate glial responsiveness to axonal injury. PLoS Biol. 12:e1001985. doi: 10.1371/journal.pbio.1001985

PubMed Abstract | Crossref Full Text | Google Scholar

Dowjat, K., Adayev, T., Kaczmarski, W., Wegiel, J., and Hwang, Y. W. (2012). Gene dosage-dependent association of DYRK1A with the cytoskeleton in the brain and lymphocytes of down syndrome patients. J. Neuropathol. Exp. Neurol. 71, 1100–1112. doi: 10.1097/NEN.0b013e31827733c8

PubMed Abstract | Crossref Full Text | Google Scholar

Dowjat, K., Adayev, T., Wojda, U., Brzozowska, K., Barczak, A., Gabryelewicz, T., et al. (2019). Abnormalities of DYRK1A-Cytoskeleton complexes in the blood cells as potential biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 72, 1059–1075. doi: 10.3233/JAD-190475

PubMed Abstract | Crossref Full Text | Google Scholar

Duchon, A., and Herault, Y. (2016). DYRK1A, a dosage-sensitive gene involved in neurodevelopmental disorders, is a target for drug development in down syndrome. Front. Behav. Neurosci. 10:104. doi: 10.3389/fnbeh.2016.00104

PubMed Abstract | Crossref Full Text | Google Scholar

Duffy, J. B. (2002). GAL4 system in Drosophila: A fly geneticist’s Swiss army knife. Genesis 34, 1–15. doi: 10.1002/gene.10150

PubMed Abstract | Crossref Full Text | Google Scholar

Escartin, C., Galea, E., Lakatos, A., O’Callaghan, J. P., Petzold, G. C., Serrano-Pozo, A., et al. (2021). Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325. doi: 10.1038/s41593-020-00783-4

PubMed Abstract | Crossref Full Text | Google Scholar

Ezerskiy, L. A., Schoch, K. M., Sato, C., Beltcheva, M., Horie, K., Rigo, F., et al. (2022). Astrocytic 4R tau expression drives astrocyte reactivity and dysfunction. JCI Insight 7:e152012. doi: 10.1172/jci.insight.152012

PubMed Abstract | Crossref Full Text | Google Scholar

Fan, K., Tang, B. S., Wang, Y. Q., Kang, J. F., Li, K., Liu, Z. H., et al. (2016). The GBA, DYRK1A and MS4A6A polymorphisms influence the age at onset of Chinese Parkinson patients. Neurosci. Lett. 621, 133–136. doi: 10.1016/j.neulet.2016.04.014

PubMed Abstract | Crossref Full Text | Google Scholar

Feany, M. B., and Dickson, D. W. (1995). Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am. J. Pathol. 146, 1388–1396.

Google Scholar

Feng, Z. H., Hao, J., Ye, L., Dayao, C., Yan, N., Yan, Y., et al. (2011). Overexpression of μ-calpain in the anterior temporal neocortex of patients with intractable epilepsy correlates with clinicopathological characteristics. Seizure 20, 395–401. doi: 10.1016/j.seizure.2011.01.010

PubMed Abstract | Crossref Full Text | Google Scholar

Fernandez Bessone, I., Navarro, J., Martinez, E., Karmirian, K., Holubiec, M., Alloatti, M., et al. (2022). DYRK1A regulates the bidirectional axonal transport of APP in human-derived neurons. J. Neurosci. 42, 6344–6358. doi: 10.1523/JNEUROSCI.2551-21.2022

PubMed Abstract | Crossref Full Text | Google Scholar

Ferrer, I., Barrachina, M., Puig, B., Martínez de Lagrán, M., Martí, E., Avila, J., et al. (2005). Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol. Dis. 20, 392–400. doi: 10.1016/j.nbd.2005.03.020

PubMed Abstract | Crossref Full Text | Google Scholar

Ferrer, I., García, M. A., González, I. L., Lucena, D. D., Villalonga, A. R., Tech, M. C., et al. (2018). Aging-related tau astrogliopathy (ARTAG): Not only tau phosphorylation in astrocytes. Brain Pathol. 28, 965–985. doi: 10.1111/bpa.12593

PubMed Abstract | Crossref Full Text | Google Scholar

Ferrer, I., Legati, A., García-Monco, J. C., Gomez-Beldarrain, M., Carmona, M., Blanco, R., et al. (2015). Familial behavioral variant frontotemporal dementia associated with astrocyte-predominant tauopathy. J. Neuropathol. Exp. Neurol. 74, 370–379. doi: 10.1097/NEN.0000000000000180

PubMed Abstract | Crossref Full Text | Google Scholar

Ferrer, I., López-González, I., Carmona, M., Arregui, L., Dalfó, E., Torrejón-Escribano, B., et al. (2014). Glial and neuronal tau pathology in tauopathies: Characterization of disease-specific phenotypes and tau pathology progression. J. Neuropathol. Exp. Neurol. 73, 81–97. doi: 10.1097/NEN.0000000000000030

PubMed Abstract | Crossref Full Text | Google Scholar

Fiock, K. L., Hook, J. N., and Hefti, M. M. (2023). Determinants of astrocytic pathology in stem cell models of primary tauopathies. Acta Neuropathol. Commun. 11:161. doi: 10.1186/s40478-023-01655-1

PubMed Abstract | Crossref Full Text | Google Scholar

Fleeman, R. M., and Proctor, E. A. (2021). Astrocytic propagation of tau in the context of Alzheimer’s disease. Front. Cell Neurosci. 15:645233. doi: 10.3389/fncel.2021.645233

PubMed Abstract | Crossref Full Text | Google Scholar

Forman, M. S., Lal, D., Zhang, B., Dabir, D. V., Swanson, E., Lee, V. M., et al. (2005). Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J. Neurosci. 25, 3539–3550. doi: 10.1523/JNEUROSCI.0081-05.2005

PubMed Abstract | Crossref Full Text | Google Scholar

Forrest, S. L., Lee, S., Nassir, N., Martinez-Valbuena, I., Sackmann, V., Li, J., et al. (2023). Cell-specific MAPT gene expression is preserved in neuronal and glial tau cytopathologies in progressive supranuclear palsy. Acta Neuropathol. 146, 395–414. doi: 10.1007/s00401-023-02604-x

PubMed Abstract | Crossref Full Text | Google Scholar

Fortea, J., Zaman, S. H., Hartley, S., Rafii, M. S., Head, E., and Carmona-Iragui, M. (2021). Alzheimer’s disease associated with Down syndrome: A genetic form of dementia. Lancet Neurol. 20, 930–942. doi: 10.1016/S1474-4422(21)00245-3

PubMed Abstract | Crossref Full Text | Google Scholar

Frost, G. R., and Li, Y. M. (2017). The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol. 7:170228. doi: 10.1098/rsob.170228

PubMed Abstract | Crossref Full Text | Google Scholar

Garcia, O., Torres, M., Helguera, P., Coskun, P., and Busciglio, J. (2010). A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS One 5:e14200. doi: 10.1371/journal.pone.0014200

PubMed Abstract | Crossref Full Text | Google Scholar

García-Cerro, S., Martínez, P., Vidal, V., Corrales, A., Flórez, J., Vidal, R., et al. (2014). Overexpression of Dyrk1A is implicated in several cognitive, electrophysiological and neuromorphological alterations found in a mouse model of Down syndrome. PLoS One 9:e106572. doi: 10.1371/journal.pone.0106572

PubMed Abstract | Crossref Full Text | Google Scholar

García-Cerro, S., Vidal, V., Lantigua, S., Berciano, M. T., Lafarga, M., Ramos-Cabrer, P., et al. (2018). Cerebellar alterations in a model of Down syndrome: The role of the Dyrk1A gene. Neurobiol. Dis. 110, 206–217. doi: 10.1016/j.nbd.2017.12.002

PubMed Abstract | Crossref Full Text | Google Scholar

Gendron, T. F., and Petrucelli, L. (2009). The role of tau in neurodegeneration. Mol. Neurodegener. 4:13. doi: 10.1186/1750-1326-4-13

PubMed Abstract | Crossref Full Text | Google Scholar

Geng, J., Wang, L., Lee, J. Y., Chen, C. K., and Chang, K. T. (2016). Phosphorylation of synaptojanin differentially regulates endocytosis of functionally distinct synaptic vesicle pools. J. Neurosci. 36, 8882–8894. doi: 10.1523/JNEUROSCI.1470-16.2016

PubMed Abstract | Crossref Full Text | Google Scholar

Giusti, V., Kaur, G., Giusto, E., and Civiero, L. (2024). Brain clearance of protein aggregates: A close-up on astrocytes. Mol. Neurodegener. 19:5. doi: 10.1186/s13024-024-00703-1

PubMed Abstract | Crossref Full Text | Google Scholar

Goenaga, J., Araque, A., Kofuji, P., and Herrera Moro Chao, D. (2023). Calcium signaling in astrocytes and gliotransmitter release. Front. Synaptic Neurosci. 15:1138577. doi: 10.3389/fnsyn.2023.1138577

PubMed Abstract | Crossref Full Text | Google Scholar

Gong, Z., Huang, J., Xu, B., Ou, Z., Zhang, L., Lin, X., et al. (2019). Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. J. Neuroinflamm. 16:62. doi: 10.1186/s12974-019-1450-3

PubMed Abstract | Crossref Full Text | Google Scholar

Goodman, L. D., Ralhan, I., Li, X., Lu, S., Moulton, M. J., Park, Y. J., et al. (2024). Tau is required for glial lipid droplet formation and resistance to neuronal oxidative stress. Nat. Neurosci. 27, 1918–1933. doi: 10.1038/s41593-024-01740-1

PubMed Abstract | Crossref Full Text | Google Scholar

Grau, C., Arató, K., Fernández-Fernández, J. M., Valderrama, A., Sindreu, C., Fillat, C., et al. (2014). DYRK1A-mediated phosphorylation of GluN2A at Ser(1048) regulates the surface expression and channel activity of GluN1/GluN2A receptors. Front. Cell Neurosci. 8:331. doi: 10.3389/fncel.2014.00331

PubMed Abstract | Crossref Full Text | Google Scholar

Grebe, C., Klingebiel, T. M., Grau, S. P., Toischer, K., Didié, M., Jacobshagen, C., et al. (2011). Enhanced expression of DYRK1A in cardiomyocytes inhibits acute NFAT activation but does not prevent hypertrophy in vivo. Cardiovasc. Res. 90, 521–528. doi: 10.1093/cvr/cvr023

PubMed Abstract | Crossref Full Text | Google Scholar

Guedj, F., Pereira, P. L., Najas, S., Barallobre, M. J., Chabert, C., Souchet, B., et al. (2012). DYRK1A: A master regulatory protein controlling brain growth. Neurobiol. Dis. 46, 190–203. doi: 10.1016/j.nbd.2012.01.007

PubMed Abstract | Crossref Full Text | Google Scholar

Halassa, M. M., Fellin, T., and Haydon, P. G. (2007). The tripartite synapse: Roles for gliotransmission in health and disease. Trends Mol. Med. 13, 54–63. doi: 10.1016/j.molmed.2006.12.005

PubMed Abstract | Crossref Full Text | Google Scholar

Hallmann, A. L., Araúzo-Bravo, M. J., Mavrommatis, L., Ehrlich, M., Röpke, A., Brockhaus, J., et al. (2017). Astrocyte pathology in a human neural stem cell model of frontotemporal dementia caused by mutant TAU protein. Sci. Rep. 7:42991. doi: 10.1038/srep42991

PubMed Abstract | Crossref Full Text | Google Scholar

Hämmerle, B., and Tejedor, F. J. (2002). A method for pulse and chase BrdU-labeling of early chick embryos. J. Neurosci. Methods 122, 59–64. doi: 10.1016/s0165-0270(02)00278-9

PubMed Abstract | Crossref Full Text | Google Scholar

Haughey, N. J., and Mattson, M. P. (2003). Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. Neuromol. Med. 3, 173–180. doi: 10.1385/NMM:3:3:173

PubMed Abstract | Crossref Full Text | Google Scholar

Heneka, M. T., Sastre, M., Dumitrescu-Ozimek, L., Dewachter, I., Walter, J., Klockgether, T., et al. (2005). Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice. J. Neuroinflamm. 2:22. doi: 10.1186/1742-2094-2-22

PubMed Abstract | Crossref Full Text | Google Scholar

Hepp, R., Perraut, M., Chasserot-Golaz, S., Galli, T., Aunis, D., Langley, K., et al. (1999). Cultured glial cells express the SNAP-25 analogue SNAP-23. Glia 27, 181–187. doi: 10.1002/(sici)1098-1136(199908)27:2<181::aid-glia8>3.0.co;2-9

Crossref Full Text | Google Scholar

Herrmann, J. E., Imura, T., Song, B., Qi, J., Ao, Y., Nguyen, T. K., et al. (2008). STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243. doi: 10.1523/JNEUROSCI.1709-08.2008

PubMed Abstract | Crossref Full Text | Google Scholar

Himpel, S., Panzer, P., Eirmbter, K., Czajkowska, H., Sayed, M., Packman, L. C., et al. (2001). Identification of the autophosphorylation sites and characterization of their effects in the protein kinase DYRK1A. Biochem. J. 359(Pt 3), 497–505. doi: 10.1042/0264-6021:3590497

PubMed Abstract | Crossref Full Text | Google Scholar

Holsopple, J. M., Smoot, S. R., Popodi, E. M., Colbourne, J. K., Shaw, J. R., Oliver, B., et al. (2023). Assessment of chemical toxicity in adult drosophila melanogaster. J. Vis. Exp. 193:10.3791/65029. doi: 10.3791/65029

PubMed Abstract | Crossref Full Text | Google Scholar

Huang, M., Long, A., Hao, L., Shi, Z., and Zhang, M. (2025). Astrocyte in neurological disease: Pathogenesis and therapy. MedComm 6:e70299. doi: 10.1002/mco2.70299

PubMed Abstract | Crossref Full Text | Google Scholar

Hynd, M. R., Scott, H. L., and Dodd, P. R. (2004). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45, 583–595. doi: 10.1016/j.neuint.2004.03.007

PubMed Abstract | Crossref Full Text | Google Scholar

Im, E., and Chung, K. C. (2015). Dyrk1A phosphorylates parkin at Ser-131 and negatively regulates its ubiquitin E3 ligase activity. J. Neurochem. 134, 756–768. doi: 10.1111/jnc.13164

PubMed Abstract | Crossref Full Text | Google Scholar

Impey, S., Obrietan, K., and Storm, D. R. (1999). Making new connections: Role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23, 11–14. doi: 10.1016/s0896-6273(00)80747-3

PubMed Abstract | Crossref Full Text | Google Scholar

Iwatsubo, T., Hasegawa, M., and Ihara, Y. (1994). Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics. Acta Neuropathol. 88, 129–136. doi: 10.1007/BF00294505

PubMed Abstract | Crossref Full Text | Google Scholar

Jackson, R. J., Melloni, A., Fykstra, D. P., Serrano-Pozo, A., Shinobu, L., and Hyman, B. T. (2024). Astrocyte tau deposition in progressive supranuclear palsy is associated with dysregulation of MAPT transcription. Acta Neuropathol. Commun. 12:132. doi: 10.1186/s40478-024-01844-6

PubMed Abstract | Crossref Full Text | Google Scholar

Jarhad, D. B., Mashelkar, K. K., Kim, H. R., Noh, M., and Jeong, L. S. (2018). Dual-Specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors as potential therapeutics. J. Med. Chem. 61, 9791–9810. doi: 10.1021/acs.jmedchem.8b00185

PubMed Abstract | Crossref Full Text | Google Scholar

Jiménez-Balado, J., and Eich, T. S. (2021). GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Semin. Cell Dev. Biol. 116, 146–159. doi: 10.1016/j.semcdb.2021.01.005

PubMed Abstract | Crossref Full Text | Google Scholar

Jin, N., Yin, X., Gu, J., Zhang, X., Shi, J., Qian, W., et al. (2015). Truncation and activation of dual specificity tyrosine phosphorylation-regulated kinase 1A by Calpain I: A molecular mechanism linked to tau pathology in Alzheimer disease. J. Biol. Chem. 290, 15219–15237. doi: 10.1074/jbc.M115.645507

PubMed Abstract | Crossref Full Text | Google Scholar

Jones, E. L., Aarsland, D., Londos, E., and Ballard, C. (2012). A pilot study examining associations between DYRK1A and α-synuclein dementias. Neurodegener. Dis. 10, 229–231. doi: 10.1159/000334759

PubMed Abstract | Crossref Full Text | Google Scholar

Kaech, S., and Banker, G. (2006). Culturing hippocampal neurons. Nat. Protoc. 1, 2406–2415. doi: 10.1038/nprot.2006.356

PubMed Abstract | Crossref Full Text | Google Scholar

Kang, J. E., Choi, S. A., Park, J. B., and Chung, K. C. (2005). Regulation of the proapoptotic activity of huntingtin interacting protein 1 by Dyrk1 and caspase-3 in hippocampal neuroprogenitor cells. J. Neurosci. Res. 81, 62–72. doi: 10.1002/jnr.20534

PubMed Abstract | Crossref Full Text | Google Scholar

Kawakubo, T., Mori, R., Shirotani, K., Iwata, N., and Asai, M. (2017). Neprilysin is suppressed by dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) in down-syndrome-derived fibroblasts. Biol. Pharm. Bull. 40, 327–333. doi: 10.1248/bpb.b16-00825

PubMed Abstract | Crossref Full Text | Google Scholar

Kawatani, K., Nambara, T., Nawa, N., Yoshimatsu, H., Kusakabe, H., Hirata, K., et al. (2021). A human isogenic iPSC-derived cell line panel identifies major regulators of aberrant astrocyte proliferation in Down syndrome. Commun. Biol. 4:730. doi: 10.1038/s42003-021-02242-7

PubMed Abstract | Crossref Full Text | Google Scholar

Kelly, P. A., and Rahmani, Z. (2005). DYRK1A enhances the mitogen-activated protein kinase cascade in PC12 cells by forming a complex with Ras. B-Raf, and MEK1. Mol. Biol. Cell 16, 3562–3573. doi: 10.1091/mbc.e04-12-1085

PubMed Abstract | Crossref Full Text | Google Scholar

Kida, E., Walus, M., Jarząbek, K., Palminiello, S., Albertini, G., Rabe, A., et al. (2011). Form of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A nonphosphorylated at tyrosine 145 and 147 is enriched in the nuclei of astroglial cells, adult hippocampal progenitors, and some cholinergic axon terminals. Neuroscience 195, 112–127. doi: 10.1016/j.neuroscience.2011.08.028

PubMed Abstract | Crossref Full Text | Google Scholar

Kilian, J. G., Hsu, H. W., Mata, K., Wolf, F. W., and Kitazawa, M. (2017). Astrocyte transport of glutamate and neuronal activity reciprocally modulate tau pathology in Drosophila. Neuroscience 348, 191–200. doi: 10.1016/j.neuroscience.2017.02.011

PubMed Abstract | Crossref Full Text | Google Scholar

Kim, D., Won, J., Shin, D. W., Kang, J., Kim, Y. J., Choi, S. Y., et al. (2004). Regulation of Dyrk1A kinase activity by 14-3-3. Biochem. Biophys. Res. Commun. 323, 499–504. doi: 10.1016/j.bbrc.2004.08.102

PubMed Abstract | Crossref Full Text | Google Scholar

Kim, E. J., Sung, J. Y., Lee, H. J., Rhim, H., Hasegawa, M., Iwatsubo, T., et al. (2006). Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J. Biol. Chem. 281, 33250–33257. doi: 10.1074/jbc.M606147200

PubMed Abstract | Crossref Full Text | Google Scholar

Kim, Y., Park, J., and Choi, Y. K. (2019). The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: A review. Antioxidants 8:121. doi: 10.3390/antiox8050121

PubMed Abstract | Crossref Full Text | Google Scholar

Kim, Y., Park, J., Song, W. J., and Chang, S. (2010). Overexpression of Dyrk1A causes the defects in synaptic vesicle endocytosis. Neurosignals 18, 164–172. doi: 10.1159/000321994

PubMed Abstract | Crossref Full Text | Google Scholar

Kimura, R., Kamino, K., Yamamoto, M., Nuripa, A., Kida, T., Kazui, H., et al. (2007). The DYRK1A gene, encoded in chromosome 21 down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum. Mol. Genet. 16, 15–23. doi: 10.1093/hmg/ddl437

PubMed Abstract | Crossref Full Text | Google Scholar

Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., et al. (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat. Med. 10, 719–726. doi: 10.1038/nm1058

PubMed Abstract | Crossref Full Text | Google Scholar

Komori, T. (1999). Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol. 9, 663–679. doi: 10.1111/j.1750-3639.1999.tb00549.x

PubMed Abstract | Crossref Full Text | Google Scholar

Konradsson-Geuken, A., Gash, C. R., Alexander, K., Pomerleau, F., Huettl, P., Gerhardt, G. A., et al. (2009). Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 63, 1069–1082. doi: 10.1002/syn.20693

PubMed Abstract | Crossref Full Text | Google Scholar

Kovacs, G. G. (2017). Tauopathies. Handb. Clin. Neurol. 145, 355–368. doi: 10.1016/B978-0-12-802395-2.00025-0

PubMed Abstract | Crossref Full Text | Google Scholar

Kovacs, G. G. (2020). Astroglia and Tau: New perspectives. Front. Aging Neurosci. 12:96. doi: 10.3389/fnagi.2020.00096

PubMed Abstract | Crossref Full Text | Google Scholar

Kovacs, G. G., Ferrer, I., Grinberg, L. T., Alafuzoff, I., Attems, J., Budka, H., et al. (2016). Aging-related tau astrogliopathy (ARTAG): Harmonized evaluation strategy. Acta Neuropathol. 131, 87–102. doi: 10.1007/s00401-015-1509-x

PubMed Abstract | Crossref Full Text | Google Scholar

Kovacs, G. G., Xie, S. X., Robinson, J. L., Lee, E. B., Smith, D. H., Schuck, T., et al. (2018a). Sequential stages and distribution patterns of aging-related tau astrogliopathy (ARTAG) in the human brain. Acta Neuropathol. Commun. 6:50. doi: 10.1186/s40478-018-0552-y

PubMed Abstract | Crossref Full Text | Google Scholar

Kovacs, G. G., Yousef, A., Kaindl, S., Lee, V. M., and Trojanowski, J. Q. (2018b). Connexin-43 and aquaporin-4 are markers of ageing-related tau astrogliopathy (ARTAG)-related astroglial response. Neuropathol. Appl. Neurobiol. 44, 491–505. doi: 10.1111/nan.12427

PubMed Abstract | Crossref Full Text | Google Scholar

Kuchibhotla, K. V., Lattarulo, C. R., Hyman, B. T., and Bacskai, B. J. (2009). Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323, 1211–1215. doi: 10.1126/science.1169096

PubMed Abstract | Crossref Full Text | Google Scholar

Kumar, A., Fontana, I. C., and Nordberg, A. (2023). Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem. 164, 309–324. doi: 10.1111/jnc.15565

PubMed Abstract | Crossref Full Text | Google Scholar

Kumar, A., Singh, A., and Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 67, 195–203. doi: 10.1016/j.pharep.2014.09.004

PubMed Abstract | Crossref Full Text | Google Scholar

Kurabayashi, N., Nguyen, M. D., and Sanada, K. (2015). DYRK1A overexpression enhances STAT activity and astrogliogenesis in a Down syndrome mouse model. EMBO Rep. 16, 1548–1562. doi: 10.15252/embr.201540374

PubMed Abstract | Crossref Full Text | Google Scholar

Larsen, F. K., Baksh, R. A., McGlinchey, E., Langballe, E. M., Benejam, B., Beresford-Webb, J., et al. (2024). Age of Alzheimer’s disease diagnosis in people with Down syndrome and associated factors: Results from the Horizon 21 European Down syndrome consortium. Alzheimers Dement. 20, 3270–3280. doi: 10.1002/alz.13779

PubMed Abstract | Crossref Full Text | Google Scholar

Lawrence, J. M., Schardien, K., Wigdahl, B., and Nonnemacher, M. R. (2023). Roles of neuropathology-associated reactive astrocytes: A systematic review. Acta Neuropathol. Commun. 11:42. doi: 10.1186/s40478-023-01526-9

PubMed Abstract | Crossref Full Text | Google Scholar

Lee, H. J., and Hoe, H. S. (2023). Inhibition of CDK4/6 regulates AD pathology, neuroinflammation and cognitive function through DYRK1A/STAT3 signaling. Pharmacol. Res. 190:106725. doi: 10.1016/j.phrs.2023.106725

PubMed Abstract | Crossref Full Text | Google Scholar

Lee, H. J., Woo, H., Lee, H. E., Jeon, H., Ryu, K. Y., Nam, J. H., et al. (2020). The novel DYRK1A inhibitor KVN93 regulates cognitive function, amyloid-beta pathology, and neuroinflammation. Free Radic Biol. Med. 160, 575–595. doi: 10.1016/j.freeradbiomed.2020.08.030

PubMed Abstract | Crossref Full Text | Google Scholar

Lee, J. W., Lee, Y. K., Ban, J. O., Ha, T. Y., Yun, Y. P., Han, S. B., et al. (2009). Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J. Nutr. 139, 1987–1993. doi: 10.3945/jn.109.109785

PubMed Abstract | Crossref Full Text | Google Scholar

Lepagnol-Bestel, A. M., Haziza, S., Viard, J., Salin, P. A., Duchon, A., Herault, Y., et al. (2025). DYRK1A up-regulation specifically impairs a presynaptic form of long-term potentiation. Life 15:149. doi: 10.3390/life15020149

PubMed Abstract | Crossref Full Text | Google Scholar

Lepagnol-Bestel, A. M., Zvara, A., Maussion, G., Quignon, F., Ngimbous, B., Ramoz, N., et al. (2009). DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum. Mol. Genet. 18, 1405–1414. doi: 10.1093/hmg/ddp047

PubMed Abstract | Crossref Full Text | Google Scholar

Levy, J. A., LaFlamme, C. W., Tsaprailis, G., Crynen, G., and Page, D. T. (2021). Dyrk1a mutations cause undergrowth of cortical pyramidal neurons via dysregulated growth factor signaling. Biol. Psychiatry 90, 295–306. doi: 10.1016/j.biopsych.2021.01.012

PubMed Abstract | Crossref Full Text | Google Scholar

Li, K., Zhao, S., Karur, V., and Wojchowski, D. M. (2002). DYRK3 activation, engagement of protein kinase A/cAMP response element-binding protein, and modulation of progenitor cell survival. J. Biol. Chem. 277, 47052–47060. doi: 10.1074/jbc.M205374200

PubMed Abstract | Crossref Full Text | Google Scholar

Li, S., Mallory, M., Alford, M., Tanaka, S., and Masliah, E. (1997). Glutamate transporter alterations in Alzheimer disease are possibly associated with abnormal APP expression. J. Neuropathol. Exp. Neurol. 56, 901–911. doi: 10.1097/00005072-199708000-00008

PubMed Abstract | Crossref Full Text | Google Scholar

Li, Y., Sattler, R., Yang, E. J., Nunes, A., Ayukawa, Y., Akhtar, S., et al. (2011). Harmine, a natural beta-carboline alkaloid, upregulates astroglial glutamate transporter expression. Neuropharmacology 60, 1168–1175. doi: 10.1016/j.neuropharm.2010.10.016

PubMed Abstract | Crossref Full Text | Google Scholar

Liddelow, S. A., and Barres, B. A. (2017). Reactive astrocytes: Production. function, and therapeutic potential. Immunity 46, 957–967. doi: 10.1016/j.immuni.2017.06.006

PubMed Abstract | Crossref Full Text | Google Scholar

Lisman, J., Yasuda, R., and Raghavachari, S. (2012). Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182. doi: 10.1038/nrn3192

PubMed Abstract | Crossref Full Text | Google Scholar

Liu, F., Liang, Z., Wegiel, J., Hwang, Y. W., Iqbal, K., Grundke-Iqbal, I., et al. (2008). Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 22, 3224–3233. doi: 10.1096/fj.07-104539

PubMed Abstract | Crossref Full Text | Google Scholar

Liu, X., Lai, L. Y., Chen, J. X., Li, X., Wang, N., Zhou, L. J., et al. (2023). An inhibitor with GSK3β and DYRK1A dual inhibitory properties reduces Tau hyperphosphorylation and ameliorates disease in models of Alzheimer’s disease. Neuropharmacology 232:109525. doi: 10.1016/j.neuropharm.2023.109525

PubMed Abstract | Crossref Full Text | Google Scholar

Lochhead, P. A., Sibbet, G., Morrice, N., and Cleghon, V. (2005). Activation-loop autophosphorylation is mediated by a novel transitional intermediate form of DYRKs. Cell 121, 925–936. doi: 10.1016/j.cell.2005.03.034

PubMed Abstract | Crossref Full Text | Google Scholar

Lowe, S. A., Usowicz, M. M., and Hodge, J. J. L. (2019). Neuronal overexpression of Alzheimer’s disease and Down’s syndrome associated DYRK1A/minibrain gene alters motor decline, neurodegeneration and synaptic plasticity in Drosophila. Neurobiol. Dis. 125, 107–114. doi: 10.1016/j.nbd.2019.01.017

PubMed Abstract | Crossref Full Text | Google Scholar

Lu, M., Zheng, L., Han, B., Wang, L., Wang, P., Liu, H., et al. (2011). REST regulates DYRK1A transcription in a negative feedback loop. J. Biol. Chem. 286, 10755–10763. doi: 10.1074/jbc.M110.174540

PubMed Abstract | Crossref Full Text | Google Scholar

Maenz, B., Hekerman, P., Vela, E. M., Galceran, J., and Becker, W. (2008). Characterization of the human DYRK1A promoter and its regulation by the transcription factor E2F1. BMC Mol. Biol. 9:30. doi: 10.1186/1471-2199-9-30

PubMed Abstract | Crossref Full Text | Google Scholar

Mahmoud, S., Gharagozloo, M., Simard, C., and Gris, D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8:184. doi: 10.3390/cells8020184

PubMed Abstract | Crossref Full Text | Google Scholar

Maienschein, V., Marxen, M., Volknandt, W., and Zimmermann, H. (1999). A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia 26, 233–244. doi: 10.1002/(sici)1098-1136(199905)26:3<233::aid-glia5>3.0.co;2-2

Crossref Full Text | Google Scholar

Malarkey, E. B., and Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochem. Int. 52, 142–154. doi: 10.1016/j.neuint.2007.06.005

PubMed Abstract | Crossref Full Text | Google Scholar

Malik, A. R., and Willnow, T. E. (2019). Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int. J. Mol. Sci. 20:5671. doi: 10.3390/ijms20225671

PubMed Abstract | Crossref Full Text | Google Scholar

Manubens-Gil, L., Pons-Espinal, M., Gener, T., Ballesteros-Yañez, I., de Lagrán, M. M., and Dierssen, M. (2023). Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A. bioRxiv [Preprint] doi: 10.1101/2023.03.09.531874

PubMed Abstract | Crossref Full Text | Google Scholar

Marchaland, J., Calì, C., Voglmaier, S. M., Li, H., Regazzi, R., Edwards, R. H., et al. (2008). Fast subplasma membrane Ca2+ transients control exo-endocytosis of synaptic-like microvesicles in astrocytes. J. Neurosci. 28, 9122–9132. doi: 10.1523/JNEUROSCI.0040-08.2008

PubMed Abstract | Crossref Full Text | Google Scholar

Martí, E., Altafaj, X., Dierssen, M., de la Luna, S., Fotaki, V., Alvarez, M., et al. (2003). Dyrk1A expression pattern supports specific roles of this kinase in the adult central nervous system. Brain Res. 964, 250–263. doi: 10.1016/s0006-8993(02)04069-6

PubMed Abstract | Crossref Full Text | Google Scholar

Martinez de Lagran, M., Benavides-Piccione, R., Ballesteros-Yañez, I., Calvo, M., Morales, M., Fillat, C., et al. (2012). Dyrk1A influences neuronal morphogenesis through regulation of cytoskeletal dynamics in mammalian cortical neurons. Cereb. Cortex 22, 2867–2877. doi: 10.1093/cercor/bhr362

PubMed Abstract | Crossref Full Text | Google Scholar

Martinez de Lagran, M., Bortolozzi, A., Millan, O., Gispert, J. D., Gonzalez, J. R., Arbones, M. L., et al. (2007). Dopaminergic deficiency in mice with reduced levels of the dual-specificity tyrosine-phosphorylated and regulated kinase 1A, Dyrk1A(+/-). Genes Brain Behav. 6, 569–578. doi: 10.1111/j.1601-183X.2006.00285.x

PubMed Abstract | Crossref Full Text | Google Scholar

Martínez-Cué, C., and Rueda, N. (2020). Signalling pathways implicated in Alzheimer’s disease neurodegeneration in individuals with and without down syndrome. Int. J. Mol. Sci. 21:6906. doi: 10.3390/ijms21186906

PubMed Abstract | Crossref Full Text | Google Scholar

Marutle, A., Gillberg, P. G., Bergfors, A., Yu, W., Ni, R., Nennesmo, I., et al. (2013). łH-deprenyl and łH-PIB autoradiography show different laminar distributions of astroglia and fibrillar β-amyloid in Alzheimer brain. J. Neuroinflamm. 10:90. doi: 10.1186/1742-2094-10-90

PubMed Abstract | Crossref Full Text | Google Scholar

Meine, R., Becker, W., Falke, H., Preu, L., Loaëc, N., Meijer, L., et al. (2018). Indole-3-Carbonitriles as DYRK1A inhibitors by fragment-based drug design. Molecules. 23:64. doi: 10.3390/molecules23020064

PubMed Abstract | Crossref Full Text | Google Scholar

Melchior, B., Mittapalli, G. K., Lai, C., Duong-Polk, K., Stewart, J., Güner, B., et al. (2019). Tau pathology reduction with SM07883, a novel, potent, and selective oral DYRK1A inhibitor: A potential therapeutic for Alzheimer’s disease. Aging Cell 18:e13000. doi: 10.1111/acel.13000

PubMed Abstract | Crossref Full Text | Google Scholar

Mielnicka, A., and Michaluk, P. (2021). Exocytosis in astrocytes. Biomolecules 11:1367. doi: 10.3390/biom11091367

PubMed Abstract | Crossref Full Text | Google Scholar

Miyata, Y., and Nishida, E. (2023). Identification of FAM53C as a cytosolic-anchoring inhibitory binding protein of the kinase DYRK1A. Life Sci. Alliance 6:e202302129. doi: 10.26508/lsa.202302129

PubMed Abstract | Crossref Full Text | Google Scholar

Mizuno, G. O., Wang, Y., Shi, G., Wang, Y., Sun, J., Papadopoulos, S., et al. (2018). Aberrant calcium signaling in astrocytes inhibits neuronal excitability in a human down syndrome stem cell model. Cell Rep. 24, 355–365. doi: 10.1016/j.celrep.2018.06.033

PubMed Abstract | Crossref Full Text | Google Scholar

Montana, V., Ni, Y., Sunjara, V., Hua, X., and Parpura, V. (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci. 24, 2633–2642. doi: 10.1523/JNEUROSCI.3770-03.2004

PubMed Abstract | Crossref Full Text | Google Scholar

Moreau, M., Carmona-Iragui, M., Altuna, M., Dalzon, L., Barroeta, I., Vilaire, M., et al. (2022). DYRK1A and activity-dependent neuroprotective protein comparative diagnosis interest in cerebrospinal fluid and plasma in the context of Alzheimer-Related cognitive impairment in down syndrome patients. Biomedicines 10:1380. doi: 10.3390/biomedicines10061380

PubMed Abstract | Crossref Full Text | Google Scholar

Mostowy, S., and Cossart, P. (2012). Septins: The fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 13, 183–194. doi: 10.1038/nrm3284

PubMed Abstract | Crossref Full Text | Google Scholar

Murakami, N., Bolton, D. C., Kida, E., Xie, W., and Hwang, Y. W. (2012). Phosphorylation by Dyrk1A of clathrin coated vesicle-associated proteins: Identification of the substrate proteins and the effects of phosphorylation. PLoS One 7:e34845. doi: 10.1371/journal.pone.0034845

PubMed Abstract | Crossref Full Text | Google Scholar

Murakami, N., Bolton, D., and Hwang, Y. W. (2009). Dyrk1A binds to multiple endocytic proteins required for formation of clathrin-coated vesicles. Biochemistry 48, 9297–9305. doi: 10.1021/bi9010557

PubMed Abstract | Crossref Full Text | Google Scholar

Murakami, N., Xie, W., Lu, R. C., Chen-Hwang, M. C., Wieraszko, A., and Hwang, Y. W. (2006). Phosphorylation of amphiphysin I by minibrain kinase/dual-specificity tyrosine phosphorylation-regulated kinase, a kinase implicated in Down syndrome. J. Biol. Chem. 281, 23712–23724. doi: 10.1074/jbc.M513497200

PubMed Abstract | Crossref Full Text | Google Scholar

Nakano, I., Iwatsubo, T., Otsuka, N., Kamei, M., Matsumura, K., and Mannen, T. (1992). Paired helical filaments in astrocytes: Electron microscopy and immunohistochemistry in a case of atypical Alzheimer’s disease. Acta Neuropathol. 83, 228–232. doi: 10.1007/BF00296783

PubMed Abstract | Crossref Full Text | Google Scholar

Nguyen, T. L., Duchon, A., Manousopoulou, A., Loaëc, N., Villiers, B., Pani, G., et al. (2018). Correction of cognitive deficits in mouse models of Down syndrome by a pharmacological inhibitor of DYRK1A. Dis. Model. Mech. 11:dmm035634. doi: 10.1242/dmm.035634

PubMed Abstract | Crossref Full Text | Google Scholar

Nolan, A., De Paula Franca Resende, E., Petersen, C., Neylan, K., Spina, S., Huang, E., et al. (2019). Astrocytic tau deposition is frequent in typical and atypical Alzheimer disease presentations. J. Neuropathol. Exp. Neurol. 78, 1112–1123. doi: 10.1093/jnen/nlz094

PubMed Abstract | Crossref Full Text | Google Scholar

Ori-McKenney, K. M., McKenney, R. J., Huang, H. H., Li, T., Meltzer, S., Jan, L. Y., et al. (2016). Phosphorylation of β-Tubulin by the down syndrome kinase, Minibrain/DYRK1a, regulates microtubule dynamics and dendrite morphogenesis. Neuron 90, 551–563. doi: 10.1016/j.neuron.2016.03.027

PubMed Abstract | Crossref Full Text | Google Scholar

Ortiz, C., Pearson, A., McCartan, R., Roche, S., Carothers, N., Browning, M., et al. (2024). Overexpression of pathogenic tau in astrocytes causes a reduction in AQP4 and GLT1, an immunosuppressed phenotype and unique transcriptional responses to repetitive mild TBI without appreciable changes in tauopathy. J. Neuroinflamm. 21:130. doi: 10.1186/s12974-024-03117-4

PubMed Abstract | Crossref Full Text | Google Scholar

Osborn, L. M., Kamphuis, W., Wadman, W. J., and Hol, E. M. (2016). Astrogliosis: An integral player in the pathogenesis of Alzheimer’s disease. Prog. Neurobiol. 144, 121–141. doi: 10.1016/j.pneurobio.2016.01.001

PubMed Abstract | Crossref Full Text | Google Scholar

Osorio, M. J., Mariani, J. N., Zou, L., Schanz, S. J., Heffernan, K., Cornwell, A., et al. (2023). Glial progenitor cells of the adult human white and grey matter are contextually distinct. Glia 71, 524–540. doi: 10.1002/glia.24291

PubMed Abstract | Crossref Full Text | Google Scholar

Ouyang, X., Wu, B., Yu, H., and Dong, B. (2023). DYRK1-mediated phosphorylation of endocytic components is required for extracellular lumen expansion in ascidian notochord. Biol. Res. 56:10. doi: 10.1186/s40659-023-00422-9

PubMed Abstract | Crossref Full Text | Google Scholar

Papadopoulos, C., Arato, K., Lilienthal, E., Zerweck, J., Schutkowski, M., Chatain, N., et al. (2011). Splice variants of the dual specificity tyrosine phosphorylation-regulated kinase 4 (DYRK4) differ in their subcellular localization and catalytic activity. J. Biol. Chem. 286, 5494–5505. doi: 10.1074/jbc.M110.157909

PubMed Abstract | Crossref Full Text | Google Scholar

Park, J. H., Jung, M. S., Kim, Y. S., Song, W. J., and Chung, S. H. (2012). Phosphorylation of Munc18-1 by Dyrk1A regulates its interaction with Syntaxin 1 and X11α. J. Neurochem. 122, 1081–1091. doi: 10.1111/j.1471-4159.2012.07861.x

PubMed Abstract | Crossref Full Text | Google Scholar

Park, J., Song, W. J., and Chung, K. C. (2009). Function and regulation of Dyrk1A: Towards understanding Down syndrome. Cell Mol. Life Sci. 66, 3235–3240. doi: 10.1007/s00018-009-0123-2

PubMed Abstract | Crossref Full Text | Google Scholar

Park, J., Sung, J. Y., Park, J., Song, W. J., Chang, S., and Chung, K. C. (2012). Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP. J. Cell Sci. 125(Pt 1), 67–80. doi: 10.1242/jcs.086124

PubMed Abstract | Crossref Full Text | Google Scholar

Parpura, V., and Haydon, P. G. (2000). Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl. Acad. Sci. U. S. A. 97, 8629–8634. doi: 10.1073/pnas.97.15.8629

PubMed Abstract | Crossref Full Text | Google Scholar

Patani, R., Hardingham, G. E., and Liddelow, S. A. (2023). Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat. Rev. Neurol. 19, 395–409. doi: 10.1038/s41582-023-00822-1

PubMed Abstract | Crossref Full Text | Google Scholar

Paumier, A., Boisseau, S., Jacquier-Sarlin, M., Pernet-Gallay, K., Buisson, A., and Albrieux, M. (2022). Astrocyte-neuron interplay is critical for Alzheimer’s disease pathogenesis and is rescued by TRPA1 channel blockade. Brain 145, 388–405. doi: 10.1093/brain/awab281

PubMed Abstract | Crossref Full Text | Google Scholar

Pekny, M., and Pekna, M. (2014). Astrocyte reactivity and reactive astrogliosis: Costs and benefits. Physiol. Rev. 94, 1077–1098. doi: 10.1152/physrev.00041.2013

PubMed Abstract | Crossref Full Text | Google Scholar

Pham, C., Hérault, K., Oheim, M., Maldera, S., Vialou, V., Cauli, B., et al. (2021). Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca2+ alteration and multiphasic transmitter release. Acta Neuropathol. Commun. 9:44. doi: 10.1186/s40478-021-01146-1

PubMed Abstract | Crossref Full Text | Google Scholar

Pike, C. J., Cummings, B. J., Monzavi, R., and Cotman, C. W. (1994). Beta-amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer’s disease. Neuroscience 63, 517–531. doi: 10.1016/0306-4522(94)90547-9

PubMed Abstract | Crossref Full Text | Google Scholar

Pirttimaki, T. M., Codadu, N. K., Awni, A., Pratik, P., Nagel, D. A., Hill, E. J., et al. (2013). α7 Nicotinic receptor-mediated astrocytic gliotransmitter release: Aβ effects in a preclinical Alzheimer’s mouse model. PLoS One 8:e81828. doi: 10.1371/journal.pone.0081828

PubMed Abstract | Crossref Full Text | Google Scholar

Ponroy Bally, B., Farmer, W. T., Jones, E. V., Jessa, S., Kacerovsky, J. B., Mayran, A., et al. (2020). Human iPSC-derived Down syndrome astrocytes display genome-wide perturbations in gene expression, an altered adhesion profile, and increased cellular dynamics. Hum. Mol. Genet. 29, 785–802. doi: 10.1093/hmg/ddaa003

PubMed Abstract | Crossref Full Text | Google Scholar

Powell, C. E., Hatcher, J. M., Jiang, J., Vatsan, P. S., Che, J., and Gray, N. S. (2022). Selective macrocyclic inhibitors of DYRK1A/B. ACS Med. Chem. Lett. 13, 577–585. doi: 10.1021/acsmedchemlett.1c00630

PubMed Abstract | Crossref Full Text | Google Scholar

Price, B. R., Johnson, L. A., and Norris, C. M. (2021). Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer’s disease. Ageing Res. Rev. 68:101335. doi: 10.1016/j.arr.2021.101335

PubMed Abstract | Crossref Full Text | Google Scholar

Qian, K., Jiang, X., Liu, Z. Q., Zhang, J., Fu, P., Su, Y., et al. (2023). Revisiting the critical roles of reactive astrocytes in neurodegeneration. Mol. Psychiatry 28, 2697–2706. doi: 10.1038/s41380-023-02061-8

PubMed Abstract | Crossref Full Text | Google Scholar

Qian, W., Jin, N., Shi, J., Yin, X., Jin, X., Wang, S., et al. (2013). Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) enhances tau expression. J. Alzheimers Dis. 37, 529–538. doi: 10.3233/JAD-130824

PubMed Abstract | Crossref Full Text | Google Scholar

Rakers, C., and Petzold, G. C. (2017). Astrocytic calcium release mediates peri-infarct depolarizations in a rodent stroke model. J. Clin. Invest. 127, 511–516. doi: 10.1172/JCI89354

PubMed Abstract | Crossref Full Text | Google Scholar

Rand, M. D., Tennessen, J. M., Mackay, T. F. C., and Anholt, R. R. H. (2023). Perspectives on the Drosophila melanogaster model for advances in toxicological science. Curr. Protoc. 3:e870. doi: 10.1002/cpz1.870

PubMed Abstract | Crossref Full Text | Google Scholar

Reichenbach, N., Delekate, A., Breithausen, B., Keppler, K., Poll, S., Schulte, T., et al. (2018). P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer’s disease model. J. Exp. Med. 215, 1649–1663. doi: 10.1084/jem.20171487

PubMed Abstract | Crossref Full Text | Google Scholar

Reichenbach, N., Delekate, A., Plescher, M., Schmitt, F., Krauss, S., Blank, N., et al. (2019). Inhibition of Stat3-mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med. 11:e9665. doi: 10.15252/emmm.201809665

PubMed Abstract | Crossref Full Text | Google Scholar

Reid, M. J., Beltran-Lobo, P., Johnson, L., Perez-Nievas, B. G., and Noble, W. (2020). Astrocytes in tauopathies. Front. Neurol. 11:572850. doi: 10.3389/fneur.2020.572850

PubMed Abstract | Crossref Full Text | Google Scholar

Richetin, K., Steullet, P., Pachoud, M., Perbet, R., Parietti, E., Maheswaran, M., et al. (2020). Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat. Neurosci. 23, 1567–1579. doi: 10.1038/s41593-020-00728-x

PubMed Abstract | Crossref Full Text | Google Scholar

Rodríguez-Callejas, J. D., Fuchs, E., and Perez-Cruz, C. (2023). Atrophic astrocytes in aged marmosets present tau hyperphosphorylation, RNA oxidation, and DNA fragmentation. Neurobiol. Aging 129, 121–136. doi: 10.1016/j.neurobiolaging.2023.04.010

PubMed Abstract | Crossref Full Text | Google Scholar

Rodriguez-Vieitez, E., Ni, R., Gulyás, B., Tóth, M., Häggkvist, J., Halldin, C., et al. (2015). Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: A correlative positron emission tomography and in vitro imaging study. Eur. J. Nucl. Med. Mol. Imag. 42, 1119–1132. doi: 10.1007/s00259-015-3047-0

PubMed Abstract | Crossref Full Text | Google Scholar

Rodriguez-Vieitez, E., Saint-Aubert, L., Carter, S. F., Almkvist, O., Farid, K., Schöll, M., et al. (2016). Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain 139(Pt 3), 922–936. doi: 10.1093/brain/awv404

PubMed Abstract | Crossref Full Text | Google Scholar

Rozen, E. J., Roewenstrunk, J., Barallobre, M. J., Di Vona, C., Jung, C., Figueiredo, A. F., et al. (2018). DYRK1A kinase positively regulates angiogenic responses in endothelial cells. Cell Rep. 23, 1867–1878. doi: 10.1016/j.celrep.2018.04.008

PubMed Abstract | Crossref Full Text | Google Scholar

Ruiz-Mejias, M., Martinez de Lagran, M., Mattia, M., Castano-Prat, P., Perez-Mendez, L., Ciria-Suarez, L., et al. (2016). Overexpression of Dyrk1A, a down syndrome candidate, decreases excitability and impairs gamma oscillations in the prefrontal cortex. J. Neurosci. 36, 3648–3659. doi: 10.1523/JNEUROSCI.2517-15.2016

PubMed Abstract | Crossref Full Text | Google Scholar

Ryoo, S. R., Cho, H. J., Lee, H. W., Jeong, H. K., Radnaabazar, C., Kim, Y. S., et al. (2008). Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: Evidence for a functional link between Down syndrome and Alzheimer’s disease. J. Neurochem. 104, 1333–1344. doi: 10.1111/j.1471-4159.2007.05075.x

PubMed Abstract | Crossref Full Text | Google Scholar

Ryoo, S. R., Jeong, H. K., Radnaabazar, C., Yoo, J. J., Cho, H. J., Lee, H. W., et al. (2007). DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850–34857. doi: 10.1074/jbc.M707358200

PubMed Abstract | Crossref Full Text | Google Scholar

Ryu, Y. S., Park, S. Y., Jung, M. S., Yoon, S. H., Kwen, M. Y., Lee, S. Y., et al. (2010). Dyrk1A-mediated phosphorylation of Presenilin 1: A functional link between Down syndrome and Alzheimer’s disease. J. Neurochem. 115, 574–584. doi: 10.1111/j.1471-4159.2010.06769.x

PubMed Abstract | Crossref Full Text | Google Scholar

Saito, K., Kakizaki, T., Hayashi, R., Nishimaru, H., Furukawa, T., Nakazato, Y., et al. (2010). The physiological roles of vesicular GABA transporter during embryonic development: A study using knockout mice. Mol. Brain 3:40. doi: 10.1186/1756-6606-3-40

PubMed Abstract | Crossref Full Text | Google Scholar

Sakai, K., Piao, Y. S., Kikugawa, K., Ohara, S., Hasegawa, M., Takano, H., et al. (2006). Corticobasal degeneration with focal, massive tau accumulation in the subcortical white matter astrocytes. Acta Neuropathol. 112, 341–348. doi: 10.1007/s00401-006-0093-5

PubMed Abstract | Crossref Full Text | Google Scholar

Saleh, R. A., Eissa, T. F., Abdallah, D. M., Saad, M. A., and El-Abhar, H. S. (2021). Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl3-induced Alzheimer-like pathology model. Sci. Rep. 11:12040. doi: 10.1038/s41598-021-90545-4

PubMed Abstract | Crossref Full Text | Google Scholar

Saliñska, E., Danysz, W., and Łazarewicz, J. W. (2005). The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 43, 322–339.

Google Scholar

Scales, T. M., Lin, S., Kraus, M., Goold, R. G., and Gordon-Weeks, P. R. (2009). Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J. Cell Sci. 122(Pt 14), 2424–2435. doi: 10.1242/jcs.040162

PubMed Abstract | Crossref Full Text | Google Scholar

Schneider, P., Bayo-Fina, J. M., Singh, R., Kumar Dhanyamraju, P., Holz, P., Baier, A., et al. (2015). Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1. Nat. Commun. 6:8023. doi: 10.1038/ncomms9023

PubMed Abstract | Crossref Full Text | Google Scholar

Schöll, M., Carter, S. F., Westman, E., Rodriguez-Vieitez, E., Almkvist, O., Thordardottir, S., et al. (2015). Early astrocytosis in autosomal dominant Alzheimer’s disease measured in vivo by multi-tracer positron emission tomography. Sci. Rep. 5:16404. doi: 10.1038/srep16404

PubMed Abstract | Crossref Full Text | Google Scholar

Seirafi, M., Kozlov, G., and Gehring, K. (2015). Parkin structure and function. FEBS J. 282, 2076–2088. doi: 10.1111/febs.13249

PubMed Abstract | Crossref Full Text | Google Scholar

Sharma, G., and Vijayaraghavan, S. (2001). Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl. Acad. Sci. U. S. A. 98, 4148–4153. doi: 10.1073/pnas.071540198

PubMed Abstract | Crossref Full Text | Google Scholar

Shen, W., Taylor, B., Jin, Q., Nguyen-Tran, V., Meeusen, S., Zhang, Y. Q., et al. (2015). Inhibition of DYRK1A and GSK3B induces human β-cell proliferation. Nat. Commun. 6:8372. doi: 10.1038/ncomms9372

PubMed Abstract | Crossref Full Text | Google Scholar

Shi, J., Zhang, T., Zhou, C., Chohan, M. O., Gu, X., Wegiel, J., et al. (2008). Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. J. Biol. Chem. 283, 28660–28669. doi: 10.1074/jbc.M802645200

PubMed Abstract | Crossref Full Text | Google Scholar

Shields, D. C., Schaecher, K. E., Hogan, E. L., and Banik, N. L. (2000). Calpain activity and expression increased in activated glial and inflammatory cells in penumbra of spinal cord injury lesion. J. Neurosci. Res. 61, 146–150. doi: 10.1002/1097-4547(20000715)61:2<146::AID-JNR5>3.0.CO;2-C

Crossref Full Text | Google Scholar

Shields, D. C., Tyor, W. R., Deibler, G. E., Hogan, E. L., and Banik, N. L. (1998). Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc. Natl. Acad. Sci. U. S. A. 95, 5768–5772. doi: 10.1073/pnas.95.10.5768

PubMed Abstract | Crossref Full Text | Google Scholar

Shih, Y. T., Alipio, J. B., and Sahay, A. (2023). An inhibitory circuit-based enhancer of DYRK1A function reverses Dyrk1a-associated impairment in social recognition. Neuron 111, 3084–3101.e5. doi: 10.1016/j.neuron.2023.09.009.

PubMed Abstract | Crossref Full Text | Google Scholar

Shin, R. W., Iwaki, T., Kitamoto, T., and Tateishi, J. (1991). Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer’s disease brain tissues. Lab Invest. 64, 693–702.

Google Scholar

Shukla, R., Kumar, A., Kelvin, D. J., and Singh, T. R. (2023). Disruption of DYRK1A-induced hyperphosphorylation of amyloid-beta and tau protein in Alzheimer’s disease: An integrative molecular modeling approach. Front. Mol. Biosci. 9:1078987. doi: 10.3389/fmolb.2022.1078987

PubMed Abstract | Crossref Full Text | Google Scholar

Sitz, J. H., Baumgärtel, K., Hämmerle, B., Papadopoulos, C., Hekerman, P., Tejedor, F. J., et al. (2008). The Down syndrome candidate dual-specificity tyrosine phosphorylation-regulated kinase 1A phosphorylates the neurodegeneration-related septin 4. Neuroscience 157, 596–605. doi: 10.1016/j.neuroscience.2008.09.034

PubMed Abstract | Crossref Full Text | Google Scholar

Sofroniew, M. V. (2020). Astrocyte reactivity: Subtypes, States, and functions in CNS innate immunity. Trends Immunol. 41, 758–770. doi: 10.1016/j.it.2020.07.004

PubMed Abstract | Crossref Full Text | Google Scholar

Sofroniew, M. V., and Vinters, H. V. (2010). Astrocytes: Biology and pathology. Acta Neuropathol. 119, 7–35. doi: 10.1007/s00401-009-0619-8

PubMed Abstract | Crossref Full Text | Google Scholar

Söllvander, S., Nikitidou, E., Gallasch, L., Zyśk, M., Söderberg, L., Sehlin, D., et al. (2018). The Aβ protofibril selective antibody mAb158 prevents accumulation of Aβ in astrocytes and rescues neurons from Aβ-induced cell death. J. Neuroinflamm. 15:98. doi: 10.1186/s12974-018-1134-4

PubMed Abstract | Crossref Full Text | Google Scholar

Sompol, P., Furman, J. L., Pleiss, M. M., Kraner, S. D., Artiushin, I. A., Batten, S. R., et al. (2017). Calcineurin/NFAT signaling in activated astrocytes drives network hyperexcitability in Aβ-Bearing mice. J. Neurosci. 37, 6132–6148. doi: 10.1523/JNEUROSCI.0877-17.2017

PubMed Abstract | Crossref Full Text | Google Scholar

Soppa, U., Schumacher, J., Florencio Ortiz, V., Pasqualon, T., Tejedor, F. J., and Becker, W. (2014). The Down syndrome-related protein kinase DYRK1A phosphorylates p27(Kip1) and Cyclin D1 and induces cell cycle exit and neuronal differentiation. Cell Cycle 13, 2084–2100. doi: 10.4161/cc.29104

PubMed Abstract | Crossref Full Text | Google Scholar

Souchet, B., Audrain, M., Billard, J. M., Dairou, J., Fol, R., Orefice, N. S., et al. (2019). Inhibition of DYRK1A proteolysis modifies its kinase specificity and rescues Alzheimer phenotype in APP/PS1 mice. Acta Neuropathol. Commun. 7:46. doi: 10.1186/s40478-019-0678-6

PubMed Abstract | Crossref Full Text | Google Scholar

Souchet, B., Audrain, M., Gu, Y., Lindberg, M. F., Orefice, N. S., Rey, E., et al. (2022). Cerebral Phospho-Tau acts synergistically with soluble Aβ42 leading to mild cognitive impairment in AAV-AD rats. J. Prev. Alzheimers Dis. 9, 480–490. doi: 10.14283/jpad.2022.18

PubMed Abstract | Crossref Full Text | Google Scholar

Souchet, B., Guedj, F., Sahún, I., Duchon, A., Daubigney, F., Badel, A., et al. (2014). Excitation/inhibition balance and learning are modified by Dyrk1a gene dosage. Neurobiol. Dis. 69, 65–75. doi: 10.1016/j.nbd.2014.04.016

PubMed Abstract | Crossref Full Text | Google Scholar

Stagni, F., and Bartesaghi, R. (2022). The challenging pathway of treatment for neurogenesis impairment in down syndrome: Achievements and perspectives. Front. Cell Neurosci. 16:903729. doi: 10.3389/fncel.2022.903729

PubMed Abstract | Crossref Full Text | Google Scholar

Stefanis, L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2:a009399. doi: 10.1101/cshperspect.a009399

PubMed Abstract | Crossref Full Text | Google Scholar

Stenovec, M., Kreft, M., Grilc, S., Pangrsic, T., and Zorec, R. (2008). EAAT2 density at the astrocyte plasma membrane and Ca(2 +)-regulated exocytosis. Mol. Membr. Biol. 25, 203–215. doi: 10.1080/09687680701790925

PubMed Abstract | Crossref Full Text | Google Scholar

Suanes-Cobos, L., Aguilera-Ventura, I., Torres-Ramos, M., Serrano-Yubero, A., Moreno Fernández-Aliseda, C., Fernández, S., et al. (2025). A novel feedback loop between DYRK2 and USP28 regulates cancer homeostasis and DNA damage signaling. Cell Death Differ. doi: 10.1038/s41418-025-01565-w [Epub ahead of print].

PubMed Abstract | Crossref Full Text | Google Scholar

Sun, X., Chen, W. D., and Wang, Y. D. (2015). β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 6:221. doi: 10.3389/fphar.2015.00221

PubMed Abstract | Crossref Full Text | Google Scholar

Takano, T., Han, X., Deane, R., Zlokovic, B., and Nedergaard, M. (2007). Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1097, 40–50. doi: 10.1196/annals.1379.004

PubMed Abstract | Crossref Full Text | Google Scholar

Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M. W., Okamoto, S., et al. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. U. S. A. 110, E2518–E2527. doi: 10.1073/pnas.1306832110

PubMed Abstract | Crossref Full Text | Google Scholar

Tanaka, H., Lee, S., Martinez-Valbuena, I., Couto, B., Tartaglia, M. C., de Gordoa, J. S., et al. (2024). Ageing-related tau astrogliopathy severely affecting the substantia nigra. Neuropathol. Appl. Neurobiol. 50:e13000. doi: 10.1111/nan.13000

PubMed Abstract | Crossref Full Text | Google Scholar

Tandon, V., de la Vega, L., and Banerjee, S. (2021). Emerging roles of DYRK2 in cancer. J. Biol. Chem. 296:100233. doi: 10.1074/jbc.REV120.015217

PubMed Abstract | Crossref Full Text | Google Scholar

Thomazeau, A., Lassalle, O., Iafrati, J., Souchet, B., Guedj, F., Janel, N., et al. (2014). Prefrontal deficits in a murine model overexpressing the down syndrome candidate gene dyrk1a. J. Neurosci. 34, 1138–1147. doi: 10.1523/JNEUROSCI.2852-13.2014

PubMed Abstract | Crossref Full Text | Google Scholar

Tian, T., Zhang, Y., Wu, T., Yang, L., Chen, C., Li, N., et al. (2019). miRNA profiling in the hippocampus of attention-deficit/hyperactivity disorder rats. J. Cell Biochem. 120, 3621–3629. doi: 10.1002/jcb.27639

PubMed Abstract | Crossref Full Text | Google Scholar

Torres, M. D., Garcia, O., Tang, C., and Busciglio, J. (2018). Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic Biol. Med. 114, 10–14. doi: 10.1016/j.freeradbiomed.2017.09.025

PubMed Abstract | Crossref Full Text | Google Scholar

Uddin, M. S., Kabir, M. T., Rahman, M. S., Behl, T., Jeandet, P., Ashraf, G. M., et al. (2020). Revisiting the amyloid cascade hypothesis: From Anti-aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int. J. Mol. Sci. 21:5858. doi: 10.3390/ijms21165858

PubMed Abstract | Crossref Full Text | Google Scholar

Underhill, S. M., Wheeler, D. S., and Amara, S. G. (2015). Differential regulation of two isoforms of the glial glutamate transporter EAAT2 by DLG1 and CaMKII. J. Neurosci. 35, 5260–5270. doi: 10.1523/JNEUROSCI.4365-14.2015

PubMed Abstract | Crossref Full Text | Google Scholar

Vanderklish, P. W., and Bahr, B. A. (2000). The pathogenic activation of calpain: A marker and mediator of cellular toxicity and disease states. Int. J. Exp. Pathol. 81, 323–339. doi: 10.1111/j.1365-2613.2000.00169.x

PubMed Abstract | Crossref Full Text | Google Scholar

Vardjan, N., and Zorec, R. (2015). Excitable astrocytes: Ca(2+)- and cAMP-regulated exocytosis. Neurochem. Res. 40, 2414–2424. doi: 10.1007/s11064-015-1545-x

PubMed Abstract | Crossref Full Text | Google Scholar

Verkhratsky, A., Butt, A., Li, B., Illes, P., Zorec, R., Semyanov, A., et al. (2023). Astrocytes in human central nervous system diseases: A frontier for new therapies. Signal Transduct Target Ther. 8:396. doi: 10.1038/s41392-023-01628-9

PubMed Abstract | Crossref Full Text | Google Scholar

Walte, A., Rüben, K., Birner-Gruenberger, R., Preisinger, C., Bamberg-Lemper, S., Hilz, N., et al. (2013). Mechanism of dual specificity kinase activity of DYRK1A. FEBS J. 280, 4495–4511. doi: 10.1111/febs.12411

PubMed Abstract | Crossref Full Text | Google Scholar

Wang, P., Wang, L., Chen, L., and Sun, X. (2017). Dual-specificity tyrosine-phosphorylation regulated kinase 1A gene transcription is regulated by myocyte enhancer factor 2D. Sci. Rep. 7:7240. doi: 10.1038/s41598-017-07655-1

PubMed Abstract | Crossref Full Text | Google Scholar

Wang, Z. W. (2008). Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol. Neurobiol. 38, 153–166. doi: 10.1007/s12035-008-8039-7

PubMed Abstract | Crossref Full Text | Google Scholar

Wegiel, J., Dowjat, K., Kaczmarski, W., Kuchna, I., Nowicki, K., Frackowiak, J., et al. (2008). The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol. 116, 391–407. doi: 10.1007/s00401-008-0419-6

PubMed Abstract | Crossref Full Text | Google Scholar

Wegiel, J., Gong, C. X., and Hwang, Y. W. (2011a). The role of DYRK1A in neurodegenerative diseases. FEBS J. 278, 236–245. doi: 10.1111/j.1742-4658.2010.07955.x

PubMed Abstract | Crossref Full Text | Google Scholar

Wegiel, J., Kaczmarski, W., Barua, M., Kuchna, I., Nowicki, K., Wang, K. C., et al. (2011b). Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J. Neuropathol. Exp. Neurol. 70, 36–50. doi: 10.1097/NEN.0b013e318202bfa1

PubMed Abstract | Crossref Full Text | Google Scholar

Wegiel, J., Kuchna, I., Nowicki, K., Frackowiak, J., Dowjat, K., Silverman, W. P., et al. (2004). Cell type- and brain structure-specific patterns of distribution of minibrain kinase in human brain. Brain Res. 1010, 69–80. doi: 10.1016/j.brainres.2004.03.008

PubMed Abstract | Crossref Full Text | Google Scholar

Whitney, K., Song, W. M., Sharma, A., Dangoor, D. K., Farrell, K., Krassner, M. M., et al. (2023). Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. Acta Neuropathol. 148:80. doi: 10.1007/s00401-024-02823-w

PubMed Abstract | Crossref Full Text | Google Scholar

Wiechmann, S., Czajkowska, H., de Graaf, K., Grötzinger, J., Joost, H. G., and Becker, W. (2003). Unusual function of the activation loop in the protein kinase DYRK1A. Biochem. Biophys. Res. Commun. 302, 403–408. doi: 10.1016/s0006-291x(03)00148-7

PubMed Abstract | Crossref Full Text | Google Scholar

Wojtas, A. M., Sens, J. P., Kang, S. S., Baker, K. E., Berry, T. J., Kurti, A., et al. (2020). Astrocyte-derived clusterin suppresses amyloid formation in vivo. Mol. Neurodegener. 15:71. doi: 10.1186/s13024-020-00416-1

PubMed Abstract | Crossref Full Text | Google Scholar

Wu, C. I., Vinton, E. A., Pearse, R. V., Heo, K., Aylward, A. J., Hsieh, Y. C., et al. (2022). APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer’s pathology in trisomy 21 neurons. Mol. Psychiatry 27, 1970–1989. doi: 10.1038/s41380-022-01454-5

PubMed Abstract | Crossref Full Text | Google Scholar

Wu, M., Wang, L., Li, F., Hu, R., Ma, J., Zhang, K., et al. (2020). Resveratrol Downregulates STAT3 expression and astrocyte activation in primary astrocyte cultures of rat. Neurochem. Res. 45, 455–464. doi: 10.1007/s11064-019-02936-9

PubMed Abstract | Crossref Full Text | Google Scholar

Wyss-Coray, T., Loike, J. D., Brionne, T. C., Lu, E., Anankov, R., Yan, F., et al. (2003). Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat. Med. 9, 453–457. doi: 10.1038/nm838

PubMed Abstract | Crossref Full Text | Google Scholar

Xiang, J., Yang, S., Xin, N., Gaertig, M. A., Reeves, R. H., Li, S., et al. (2017). DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc. Natl. Acad. Sci. U. S. A. 114, E1224–E1233. doi: 10.1073/pnas.1614893114

PubMed Abstract | Crossref Full Text | Google Scholar

Yabut, O., Domogauer, J., and D’Arcangelo, G. (2010). Dyrk1A overexpression inhibits proliferation and induces premature neuronal differentiation of neural progenitor cells. J. Neurosci. 30, 4004–4014. doi: 10.1523/JNEUROSCI.4711-09.2010

PubMed Abstract | Crossref Full Text | Google Scholar

Yamamoto, N., Shibata, M., Ishikuro, R., Tanida, M., Taniguchi, Y., Ikeda-Matsuo, Y., et al. (2017). Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience 362, 70–78. doi: 10.1016/j.neuroscience.2017.08.030

PubMed Abstract | Crossref Full Text | Google Scholar

Yasuda, R., Hayashi, Y., and Hell, J. W. (2022). CaMKII: A central molecular organizer of synaptic plasticity, learning and memory. Nat. Rev. Neurosci. 23, 666–682. doi: 10.1038/s41583-022-00624-2

PubMed Abstract | Crossref Full Text | Google Scholar

Yin, X., Jin, N., Shi, J., Zhang, Y., Wu, Y., Gong, C. X., et al. (2017). Dyrk1A overexpression leads to increase of 3R-tau expression and cognitive deficits in Ts65Dn Down syndrome mice. Sci. Rep. 7:619. doi: 10.1038/s41598-017-00682-y

PubMed Abstract | Crossref Full Text | Google Scholar

Yong, Y., Wu, Q., Meng, X., Lu, R., Xia, H., Pei, F., et al. (2023). Dyrk1a phosphorylation of α-Synuclein mediating apoptosis of dopaminergic neurons in Parkinson’s disease. Parkinsons. Dis. 2023:8848642. doi: 10.1155/2023/8848642

PubMed Abstract | Crossref Full Text | Google Scholar

Yousefelahiyeh, M., Xu, J., Alvarado, E., Yu, Y., Salven, D., and Nissen, R. M. (2018). DCAF7/WDR68 is required for normal levels of DYRK1A and DYRK1B. PLoS One 13:e0207779. doi: 10.1371/journal.pone.0207779

PubMed Abstract | Crossref Full Text | Google Scholar

Zhu, B., Parsons, T., Foley, C., Shaw, Y., Dunckley, T., Hulme, C., et al. (2022). DYRK1A antagonists rescue degeneration and behavioural deficits of in vivo models based on amyloid-β, Tau and DYRK1A neurotoxicity. Sci. Rep. 12:15847. doi: 10.1038/s41598-022-19967-y

PubMed Abstract | Crossref Full Text | Google Scholar

Keywords: DYRK1A, gene dosage, neuron, astrocyte, Alzheimer’s disease

Citation: Cisternas P, Kim J, Ashfeld B and Zartman J (2025) DYRK1A in the physiology and pathology of the neuron-astrocyte axis. Front. Neurosci. 19:1626062. doi: 10.3389/fnins.2025.1626062

Received: 09 May 2025; Accepted: 29 September 2025;
Published: 20 October 2025.

Edited by:

Anna Pfalzer, COMBINEDBrain, United States

Reviewed by:

Deepesh Khanna, Nova Southeastern University, United States
Miren Altuna, Fundacion CITA Alzheimer, Spain

Copyright © 2025 Cisternas, Kim, Ashfeld and Zartman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Pablo Cisternas, cGNpc3Rlcm5AbmQuZWR1; Jeremiah Zartman, anphcnRtYW5AbmQuZWR1

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.