ORIGINAL RESEARCH article

Front. Vet. Sci.

Sec. Veterinary Epidemiology and Economics

Volume 12 - 2025 | doi: 10.3389/fvets.2025.1568484

Network analysis of farmed Atlantic salmon movements in British Columbia, Canada

Provisionally accepted
  • 1Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
  • 2Centre for Veterinary Epidemiological Research (CVER), Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
  • 3Department of Fisheries, Forestry and Agriculture, Aquatic Animal Health Division, St. John's, Newfoundland and Labrador, Canada

The final, formatted version of the article will be published soon.

An inherent issue to the Atlantic salmon aquaculture production is the possible transmission of infectious pathogens due to the transportation of live fish. This study employed network analysis to model the contribution of Atlantic salmon transfers to the spread of pathogens. We used a publicly available salmon transfer dataset covering the period 2015-2022. Official records showed that 812 transfers of Atlantic salmon occurred between various British Columbian (BC) salmon production units in that timeframe. For the purpose of evaluating changes in the network structure of farmed Atlantic salmon movements, the daily networks were aggregated into two-year periods to generate a time-ordered series of biennial movements. The freshwater hatchery and marine netpen sites comprised the two types of facilities that made up the Atlantic salmon transfer network, which consisted of 99 nodes (facilities) and 350 edges (links) overall. All the networks showed both scale-free and small-world topology, which would encourage the persistence and spread of pathogens in the Atlantic salmon facilities while simultaneously making it easier to develop risk-based surveillance techniques by focusing on high centrality nodes. Additionally, the rare occurrence of high betweenness and reach, presence of disassortative mixing, negative correlation between the in-and out-degree and between ingoing and outgoing infection chain of facilities, and the identification of freshwater hatcheries as potential superspreaders all suggest that Atlantic salmon transfers might not play a significant role in the spread of pathogens between facilities in the British Columbian Atlantic salmon farming industry. Community detection revealed two or three communities persistently in the aquaculture management unit (AMU) level network, and it would be more effective to make zoning based on AMU. In conclusion, targeted surveillance efforts on high-centrality facilities can be employed to combat any infectious outbreak in the BC Atlantic salmon industry caused by live Atlantic salmon movement.

Keywords: Atlantic salmon, Disease control, Fish Diseases, Network analysis, Risk-based surveillance

Received: 29 Jan 2025; Accepted: 30 May 2025.

Copyright: © 2025 Raquib, Hammell, Sanchez, O'Brien and Thakur. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Ahsan Raquib, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.