ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Veterinary Infectious Diseases
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1677378
First Detection of Two Cycloviruses in Cormorant Fecal Samples in China by High-throughput Sequencing Technology
Provisionally accepted- 1Jiangsu University School of Medicine, Zhenjiang, China
- 2Department of Rehabilitation, Danyang Hospital of Traditional Chinese Medicine, Danyang,Jiangsu, China
- 3Shenzhen MSU-BIT University, Shenzhen, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The Great Cormorant (Phalacrocorax carbo) is widely distributed across China. As an apex predator in aquatic ecosystems, it plays a tripartite ecological role: acting as a natural host, transmission vector, and indicator species for viruses. Current research confirms that cormorants carry diverse viral pathogens from the families including Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Polyomaviridae. Significant knowledge gaps persist regarding their virome diversity. This study identified two novel cycloviruses, Corcyclo-1 (1,856 bp) and Corcyclo-2 (1,831 bp), from cormorant fecal samples using viral metagenomics. Genomic analyses revealed hallmark features of the genus Cyclovirus, including inversely oriented open reading frames (ORFs) encoding the capsid protein (Cap) and replication-associated protein (Rep), as well as a conserved stem-loop sequence TAATACTAT. The Rep gene of Corcyclo-1 contained a 166-bp intron and shared >96.9% amino acid identity with human-, wild boar-, and chicken-derived cyclovirus strains (HaCV-8) from Vietnam and Madagascar, classifying it as a novel strain of HaCV-8. In contrast, Corcyclo-2 harbored a 98-bp intron in its Rep gene and clustered with unclassified cyclovirus strains from bats and mongooses in China and Saint Kitts and Nevis (>97.4% identity), constituting a putative new species. Phylogenetic and pairwise sequence analyses further supported their taxonomic positions. Epidemiological screening demonstrated a high prevalence of Corcyclo-1 (82.6%, 38/46) and Corcyclo-2 (32.6%, 15/46) in cormorant feces. Cross-species surveillance detected Corcyclo-2 in chickens (25.8%, 16/62) and ducks (11.7%, 9/77), whereas Corcyclo-1 was absent in these hosts. This study represents the first report of cormorant-associated cycloviruses, highlighting their potential for cross-species transmission and providing new insights into the ecological diversity and evolutionary mechanisms of cyclovirus.
Keywords: viral metagenomics, Circovirus, Sequence Alignment, phylogenetic analysis, genomic structure
Received: 31 Jul 2025; Accepted: 25 Aug 2025.
Copyright: © 2025 Pei, Cai, Xue, Fu, Zhang, Shen, Ji, Wu, Wang, Wang, Zhang and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Shixing Yang, Jiangsu University School of Medicine, Zhenjiang, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.