ORIGINAL RESEARCH article
Front. Cell Dev. Biol.
Sec. Embryonic Development
Volume 13 - 2025 | doi: 10.3389/fcell.2025.1587052
miR-383-3p and miR-6951-3p activate cell proliferation through the regulation of genes related to hypertelorism
Provisionally accepted- University of Michigan, Ann Arbor, United States
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Hypertelorism, characterized by an abnormal increase in the distance between the eyes, is often associated with various congenital birth defects. While there is increasing evidence suggesting common underlying mechanisms for hypertelorism, the role of microRNAs (miRNAs)-short noncoding RNAs that suppress target genes by inhibiting translation and degrading mRNA-in the condition's pathogenesis remains unclear. This study aimed to identify the miRNAs associated with hypertelorism in mice. By searching the Mouse Genome Informatics (MGI) database and reviewing full-text references, we identified a total of 31 genes potentially related to hypertelorism. Advanced bioinformatics analyses revealed nine miRNAs that may regulate these genes. We experimentally evaluated candidate miRNAs in assays of cell proliferation and target gene regulation in primary cells isolated from developing frontonasal process (MEFM) and O9-1 cells, a murine neural crest cell line. Our findings indicated that overexpression of either miR-383-3p or miR-6951-3p stimulated cell proliferation, whereas miR-7116-3p and miR-124-3p did not have this effect. Additionally, we confirmed that miR-383-3p and miR-6951-3p regulated the expression of a set of hypertelorism-related genes in a dose-dependent manner. These results suggest that miR-383-3p and miR-6951-3p play significant roles in the development of hypertelorism.
Keywords: Craniofacial Development, MicroRNAs, Hypertelorism, Birth defects, Cranial neural crest cells
Received: 03 Mar 2025; Accepted: 15 Jul 2025.
Copyright: © 2025 Iwaya and Iwata. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Junichi Iwata, University of Michigan, Ann Arbor, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.