Your new experience awaits. Try the new design now and help us make it even better

REVIEW article

Front. Pharmacol., 31 July 2025

Sec. Respiratory Pharmacology

Volume 16 - 2025 | https://doi.org/10.3389/fphar.2025.1617546

This article is part of the Research TopicWhat's on the Horizon for Asthma Treatment?View all 3 articles

Gut-lung axis in allergic asthma: microbiota-driven immune dysregulation and therapeutic strategies

Jian Lv&#x;Jian Lv1Yu Zhang&#x;Yu Zhang1Shuang LiuShuang Liu1Ruoyu Wang
Ruoyu Wang2*Jianan Zhao
Jianan Zhao3*
  • 1Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
  • 2The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China
  • 3Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Background: Allergic asthma, a chronic respiratory disorder, is intricately linked to gut microbiota dysbiosis and metabolite perturbations through the gut-lung axis.

Objective: This review the relationship between microbial immune crosstalk and the onset of asthma, with the aim of determining the mechanism by which gut microbiota drives the onset of asthma and providing evidence for therapeutic interventions.

Methods: Literature search was conducted on PubMed using keywords (“gut microbiota” or “gut microbiota” or “gut microbiota metabolites” or “lung gut axis”), (“allergic asthma” or “asthma”), and (“immune regulation”), without date restrictions. Including peer-reviewed studies on human/animal models, articles that do not meet the requirements are excluded.

Result: Microbial imbalance in asthma patients—marked by reduced α-diversity, depletion of immunomodulatory taxa (e.g., Bifidobacterium, Faecalibacterium), and enrichment of pathobionts—disrupts short-chain fatty acid (SCFA) and tryptophan metabolism, skewing Th17/Treg balance toward Th2-dominated inflammation and airway hyperresponsiveness. SCFAs, particularly butyrate, activate GPR41/43 receptors and inhibit histone deacetylases (HDACs), enhancing Treg differentiation while suppressing Th2/Th17 responses. Tryptophan metabolites, such as indole derivatives, alleviate pulmonary inflammation via aryl hydrocarbon receptor (AhR)-dependent IL-22 production. Clinically, diminished SCFA levels correlate with impaired immune tolerance and airway remodeling, while probiotics (Lactobacillus, Bifidobacterium), prebiotics, and high-fiber diets restore microbial equilibrium, attenuating asthma severity.

Conclusion: Future research must integrate multi-omics data to delineate strain-specific functions, host-microbe interactions, and individualized responses influenced by genetics, diet, and environmental factors. This review underscores the gut microbiota’s dual role as a biomarker and therapeutic target, advocating for microbiota-directed strategies in asthma prevention and precision medicine.

1 Introduction

Allergic asthma, a prevalent chronic respiratory disorder, imposes a substantial global health burden. Epidemiological data reveal that 60%–80% of asthma cases exhibit allergic phenotypes, constituting the predominant disease subtype (Zhang et al., 2025). Notably, geographic disparities exist in prevalence trends: high-income countries demonstrate plateauing incidence rates of allergic disorders, whereas low- and middle-income nations face escalating trends, potentially reflecting environmental and socioeconomic determinants (Genuneit and Standl, 2022). Clinically, this condition manifests through characteristic airway hyperresponsiveness, episodic dyspnea, nonproductive cough, and chest constriction, with symptom severity correlating with allergen exposure levels (Shah and Newcomb, 2018). Importantly, 40%–60% of patients present with allergic multimorbidity, particularly concurrent allergic rhinitis and atopic dermatitis, which synergistically exacerbate disease progression and substantially impair quality of life metrics (Humbert et al., 2019).

The gut microbiota, comprising a complex ecosystem of commensal microorganisms, exerts systemic immunomodulatory effects through bidirectional gut-lung axis communication. With estimated microbial densities exceeding 1014 organisms and compositionally diverse taxonomy, this microbial consortium critically regulates host physiological homeostasis, including nutrient assimilation, xenobiotic metabolism, and intestinal epithelial barrier fortification (Yang and Chun, 2021). Mounting evidence from multi-omics studies implicates microbial imbalance in the pathogenesis of diverse disease states, spanning metabolic syndrome, autoimmune disorders, and neuropsychiatric conditions (Ding et al., 2024). Mechanistically, microbial-derived metabolites such as short-chain fatty acids (SCFAs) serve as key immunoregulatory mediators, modulating T-cell differentiation pathways and attenuating systemic inflammation through G protein-coupled receptor interactions (Li et al., 2022a). We hypothesize that gut microbiota modulation can recalibrate Th2/Th17-Treg imbalances in allergic asthma.

Emerging evidence has elucidated critical cross-talk between gut microbial communities and pulmonary pathophysiology through the gut-lung axis—a bidirectional immunoregulatory network involving microbial metabolites and immune cell trafficking. Contemporary research demonstrates that taxonomic alterations and functional perturbations in gut microbiota (microbial imbalance) significantly impact respiratory disease trajectories, particularly in COPD and allergic asthma exacerbations, as evidenced by longitudinal clinical cohort studies (Shi et al., 2021). Mechanistic investigations reveal that depleted microbial diversity compromises pulmonary immune homeostasis, predisposing hosts to enhanced type 2 inflammation and impaired antiviral defense mechanisms, as substantiated by preclinical models of allergic airway disease (Neag et al., 2022). Microbial-derived metabolites, including but not limited to SCFAs, exert distal immunomodulatory effects through systemic circulation and vagus nerve signaling—notably regulating Treg cell differentiation and suppressing neutrophilic infiltration in bronchial tissues via G protein-coupled receptor (GPCR) signaling pathways (Alswat, 2024). These mechanistic insights are revolutionizing our understanding of asthma pathogenesis, positioning microbiota-targeted interventions (e.g., probiotics, postbiotics) as promising disease-modifying approaches in precision allergology.

2 Methods

2.1 Search strategy

To identify published studies, we conducted a comprehensive search of PubMed and Embase databases, covering records up to January 2025. Our search strategy includes the following keyword sets: (“gut microbiota” or “gut microbiota” or “gut microbiota metabolites” or “lung gut axis”), (“allergic asthma” or “asthma”), (“immune regulation”). We only search for English publications. Preliminary screening is conducted using search engines provided by various databases.

2.2 Data extraction and synthesis

Before reading the full text of a given paper, we manually select references related to the topic using Excel software. Finally, all included are peer-reviewed articles related to the topic. During the process of writing the paper, one author is responsible for data extraction. Subsequently, other authors conducted cross checks on the extracted data to maintain its integrity and reliability.

3 Gut microbiota composition in allergic asthma

The gut microbiota in healthy individuals forms a phylogenetically complex ecosystem comprising bacteria, archaea, fungi, and viruses, with bacterial dominance primarily observed in four phyla: Firmicutes, Bacteroidetes (including genera like Prevotella), Actinobacteria (exemplified by Bifidobacterium species), and Clostridia (particularly the butyrate-producing species Faecalibacterium prausnitzii). This microbial consortium demonstrates substantial α-diversity (intra-individual species richness) and functional redundancy, enabling robust ecosystem stability that facilitates immune tolerance, epithelial barrier maintenance, and metabolic homeostasis through mechanisms including short-chain fatty acid (SCFA) biosynthesis (notably butyrate) and essential vitamin production (Liu et al., 2024; Mirmohammadali and Rosenkranz, 2023). Bidirectional communication with the central nervous system further establishes the microbiota’s role in regulating mood and cognitive functions through neuroendocrine, immune, and neural pathways, a relationship termed the gut-brain axis (Alves et al., 2024; Salami, 2021). These multifunctional interactions underscore the necessity of preserving microbial compositional integrity for systemic health maintenance.

Microbial diversity serves as a key biomarker for health status and pathological susceptibility. Epidemiological evidence associates reduced gut microbiota diversity with increased incidence of metabolic disorders (obesity, diabetes), cardiovascular pathologies, and immune-mediated conditions including allergic diseases (Guo et al., 2020; Shi et al., 2024). The diversity-immune function nexus manifests through microbial regulation of immune cell differentiation and inflammatory responses, where high diversity correlates with enhanced immune homeostasis and reduced chronic inflammation risks (Liu et al., 2024; Sottas et al., 2021). This immunological modulation, coupled with direct metabolic contributions, positions microbiota diversity preservation as a critical factor not merely for gastrointestinal health, but for comprehensive disease prevention strategies spanning multiple physiological systems.

Emerging evidence highlights significant compositional disparities between the gut microbiota of allergic asthma patients and healthy populations. Ke et al. demonstrated an inverse correlation between childhood gut microbiota diversity and susceptibility to asthma/allergic conditions, implicating depauperate microbiota as a potential risk amplifier (Ke et al., 2021). Asthma patients characteristically exhibit diminished α-diversity, a feature mechanistically linked to dysregulated immune homeostasis (Heinrich et al., 2023; Hsu et al., 2021). Concurrently, these individuals display depletion of immunomodulatory taxa like Bifidobacterium and Lactobacillus, alongside pathobiont enrichment such as Escherichia coli—a microbial signature that may perpetuate inflammatory cascades (Heinrich et al., 2023; Li et al., 2022b). Mechanistically, early-life microbial colonization patterns exert long-term immunological consequences, exemplified by Clostridium difficile establishment at 1 month predicting asthma development by age 6–7 years (van Nimwegen et al., 2011). Parallel microbial imbalance extends to respiratory ecosystems, where asthma severity correlates positively with reduced bacterial diversity and elevated proteobacterial abundance in the airway microbiome (Carr et al., 2019). Age-stratified analyses further reveal distinct microbiota configurations between asthmatic and non-asthmatic cohorts across developmental stages (Lee et al., 2019). Exogenous modifiers including antibiotic exposure and dietary patterns potentially exacerbate these ecological perturbations, creating feedforward loops that may intensify symptomatology. Therapeutic modulation through targeted probiotics or precision nutrition emerges as a promising strategy to restore microbial equilibrium, with clinical studies suggesting concomitant improvements in both immunological parameters and quality-of-life metrics (Liao et al., 2022; Ozerskaia et al., 2021). This review systematically delineates gut microbiota alterations in allergic asthma (summarized in Table 1), providing a framework to understand their pathogenic contributions and therapeutic potential.

Table 1
www.frontiersin.org

Table 1. The correlation between gut microbiota and allergic asthma.

4 Biological activity of gut microbial metabolites

The gut microbiota-derived metabolites exhibit significant biological activities through intricate biosynthetic pathways and host-microbe interactions. Short-chain fatty acids (SCFAs), principal microbial fermentation products of dietary fibers, are synthesized via carbohydrate-active enzymes expressed by commensal bacteria. These ≤6-carbon molecules–predominantly acetate, propionate, and butyrate–exist in strictly regulated colonic ratios (Fernandes et al., 2014). Acetate production predominates through the Wood-Ljungdahl pathway in acetogenic bacteria, demonstrating superior metabolic efficiency compared to other SCFAs (Miller and Wolin, 1996). Propionate biosynthesis occurs via three distinct routes: Bacteroidetes species preferentially employ the succinate pathway (Reichardt et al., 2014), while Firmicutes utilize acrylate and propanediol pathways, particularly when metabolizing pentoses/hexoses (Macfarlane and Macfarlane, 2003). Butyrogenesis is specialized to select Firmicutes taxa expressing butyryl-CoA:acetate CoA-transferase, with Faecalibacterium prausnitzii being a key producer (Louis et al., 2010). SCFAs are key factors linking gut microbial imbalance with allergic airway diseases. Clinically relevant SCFA deficiencies are observed in allergic rhinitis patients and infants predisposed to later asthma/wheezing development (Zhou et al., 2021), establishing these metabolites as critical mediators in allergic airway pathogenesis (Cheng et al., 2022; Roduit et al., 2019). Some scholars speculate that low levels of butyrate may be associated with increased severity in asthma patients.

Tryptophan metabolism represents another pivotal microbial-host interaction axis. While dietary tryptophan is primarily absorbed intestinally for protein synthesis, colonic microbiota extensively catabolize residual tryptophan through multiple pathways. Direct bacterial conversion yields immunomodulatory indole derivatives (indole, IE, IPA, ILA) via tryptophanase-expressing species like Escherichia coli and Proteus vulgaris (Lee and Lee, 2010; Palusiak, 2013; Smith, 1897). Concurrently, microbial regulation of host tryptophan metabolism occurs through serotonin synthesis and kynurenine pathway modulation(Roager and Licht, 2018). These metabolites demonstrate dual neuroimmune regulatory capacity: indole derivatives activate aryl hydrocarbon receptor (AhR) signaling to promote anti-inflammatory cytokine production (Brown et al., 2022; Zhao et al., 2024), while kynurenine accumulation correlates with chronic inflammatory and neuropsychiatric disorders (Basnet et al., 2023; Diether et al., 2023).

The gut-lung axis operationalizes these metabolites through systemic immunomodulation. SCFAs mitigate allergic airway inflammation via GPR41/43-mediated suppression of Th2 responses and HDAC inhibition-induced Treg cell expansion, as evidenced by their therapeutic efficacy in murine asthma models (Bloor and Mitchell, 2021; Zhang et al., 2025). Clinical translation potential is suggested by probiotic interventions restoring SCFA levels and improving respiratory outcomes (Hu et al., 2021b; Thorburn et al., 2015). Similarly, tryptophan metabolites regulate pulmonary immunity through AhR-dependent IL-22 production and Th17/ILC3 modulation, with microbial imbalance-induced kynurenine/SCFA imbalances exacerbating airway hyperreactivity (Basnet et al., 2023; Padhi et al., 2024). These mechanistic insights position microbial metabolite modulation as a promising therapeutic strategy for allergic asthma and related airway pathologies, bridging microbial ecology with clinical immunology through targeted microbiome engineering approaches.

5 The interaction between gut microbiota and immune system

The dynamic interplay between gut microbiota and the host immune system represents a fundamental axis in maintaining physiological homeostasis (Chen et al., 2022). Through multifaceted mechanisms—including immune cell modulation, metabolite production, and intestinal barrier maintenance—the microbiota directly shapes systemic immune competence. Microbial imbalance is increasingly implicated in immune-mediated pathologies such as autoimmune disorders, allergies, and inflammatory bowel diseases (Al-Rashidi, 2022; Yoo et al., 2020). Key findings from investigations into these interactions are systematically summarized in Table 2 and Figure 1.

Table 2
www.frontiersin.org

Table 2. The characteristics and functions of metabolites in the main gut microbiota.

Figure 1
Diagram illustrating the interaction between diet, gut microbiota, and the immune system. It shows a human figure consuming food, with a focus on the intestines. The epithelial layer and mucus layer are labeled, with short-chain fatty acids (SCFAs) and metabolites interacting with immune cells, including macrophages and lymphocytes, detailed in the lamina propria section. Various cytokines like IL-6 and IL-17 and their effects on immune responses are depicted. A legend explains symbols for different cells, such as IECs, macrophages, and different lymphocytes.

Figure 1. The interaction between gut microbiota and gut immune system. Metabolites of gut microbiota, such as SCFAs, can activate DCs and macrophages. Stimulation of DCs can activate B lymphocytes and T lymphocytes. The activation of M1 subtype macrophages, M2 subtype macrophages, B lymphocytes, and T lymphocytes can inhibit gut microbiota by releasing factors such as IL6, IL-10, IL12, IL17, and TGF - β. SCFAs, Short-chain fatty acids; DCs, Dendritic Cells.

5.1 T cell regulation

Gut microbiota critically influences T cell ontogeny and polarization. Microbial-derived short-chain fatty acids (SCFAs), generated through dietary fiber fermentation, drive the differentiation of regulatory T cells (Tregs), a process essential for immune tolerance and prevention of autoimmunity (Wang et al., 2024; Yoo et al., 2020). SCFAs bind to G protein-coupled receptors (e.g., GPR41, GPR43) on intestinal epithelial and immune cells, enhancing barrier integrity, suppressing inflammation, and modulating T cell subsets. Butyrate, for instance, serves dual roles as a primary energy source for colonocytes and an anti-inflammatory mediator via inhibition of pro-inflammatory cytokine production, as demonstrated by Chen et al. (2018). Importantly, SCFAs promote Treg expansion while suppressing pro-inflammatory Th17 cell activation, thereby exerting protective effects in allergic and autoimmune contexts (Gong et al., 2023; Yang and Cong, 2021). Furthermore, specific microbial taxa enhance CD8+ T cell cytotoxicity, as evidenced by Baruch et al. Research by Baruch et al. (2021), who reported improved anti-tumor immunity through microbiota-driven CD8+ T cell priming. These findings underscore the microbiota’s role as a rheostat for T cell homeostasis, where microbial imbalance may disrupt effector-regulatory balances, predisposing to immune dysregulation (Wang and Gong, 2022).

5.2 Cytokine-mediated crosstalk

Microbial-immune crosstalk is further mediated through cytokine networks. Gut commensals stimulate epithelial and immune cells to secrete cytokines that orchestrate local and systemic immunity. For example, select taxa induce anti-inflammatory IL-10 production, counteracting inflammation, while others trigger pro-inflammatory cytokines like TNF-α and IFN-γ, exacerbating conditions such as inflammatory bowel disease (Saini et al., 2022). Microbial imbalance disrupts this cytokine equilibrium, skewing responses toward pathogenic inflammation or immunosuppression (Guo et al., 2021; Hou et al., 2022). This regulatory nexus highlights the microbiota’s capacity to calibrate immune activation thresholds through cytokine signaling.

5.3 Barrier-immune interactions

The intestinal barrier—comprising mucus layers, epithelial tight junctions, and mucosal immune cells—acts as a frontline defense against luminal pathogens (Ulluwishewa et al., 2022). Gut microbiota fortify this barrier by stimulating epithelial cell proliferation, mucus secretion, and tight junction protein expression (e.g., occludin, claudins) (Huang et al., 2022a; Yoo et al., 2020). Conversely, microbial imbalance impairs barrier function, precipitating “leaky gut” syndrome, wherein bacterial translocation incites systemic inflammation and immune activation (Stepanova and Aherne, 2024; Terciolo et al., 2019). Thus, microbiota-barrier interactions are pivotal not only for intestinal health but also for preventing extra-intestinal immune pathologies. Collectively, these mechanisms illustrate the microbiota’s indispensable role in immune system education and regulation, positioning microbial modulation as a strategic target for immune-related disease management.

5.4 Other immune components

Short-chain fatty acids (SCFAs) enhance acetyl-CoA production, promoting antibody synthesis and IL-10 secretion (Luu et al., 2019). Tryptophan metabolites (e.g., indole-3-acetic acid) induce IL-35+ B cells via TLR4 signaling (Tomii et al., 2023). SCFAs inhibit pro-inflammatory cytokine (IL-6, IL-12) release from DCs via GPR109A and HDAC suppression, skewing T cell differentiation toward tolerance (Kleuskens et al., 2022). Gut microbial metabolites (e.g., propionate) modulate macrophage phagocytosis and anti-inflammatory function via WNT/ERK pathways and HDAC inhibition (Liang et al., 2022).

6 Gut microbiota mechanisms in allergic asthma

We delineate the multifaceted role of gut microbiota in allergic asthma pathophysiology, highlighting microbial-immune interactions as a therapeutic frontier for airway hyperreactivity, remodeling, and allergenic sensitization as shown in Figure 2.

Figure 2
Illustration of the gut-lung axis showing the interaction between gut microbiota and airway epithelium. Gut bacteria metabolize to produce SCFAs, affecting DCs precursors, Th2 cells, and other immune responses. This process inhibits airway remodeling and hyperresponsiveness through various cytokines like IL-4, IL-17, and TGF-beta. Clostridium species influence Treg cells, reducing OVA-specific IgE. The diagram highlights multiple pathways impacting bronchial smooth muscle and inflammation.

Figure 2. The relationship between gut microbiota and allergic asthma. SCFAs, Short-chain fatty acids; DCs, Dendritic Cells.

6.1 Airway hyperresponsiveness and microbial regulation

The nexus between gut microbiota imbalance and airway hyperresponsiveness (AHR) has emerged as a pivotal focus in asthma pathogenesis. AHR, a hallmark of allergic asthma, is intricately linked to gut microbial composition and diversity through immune crosstalk. Gut microbiota modulate airway inflammation via systemic immune regulation, with microbial metabolites like short-chain fatty acids (SCFAs) playing central roles. Liu et al. demonstrated that SCFAs suppress inflammatory cytokine release, directly attenuating AHR severity (Liu et al., 2023). Patients with AHR exhibit marked reductions in gut microbial diversity, particularly depletion of immunomodulatory taxa such as Bifidobacterium and Lactobacillus, which may compromise immune tolerance and exacerbate allergic sensitization (Chen et al., 2024). Intervention studies highlight therapeutic potential: Lactobacillus johnsonii supplementation reduces immune cell activation in lungs and Th2 cytokine expression (IL-4, IL-5, IL-13, IL-17), suggesting microbiota-targeted strategies for AHR modulation (Aagaard et al., 2012).

6.2 Gut microbiota and airway remodeling

Airway remodeling—characterized by structural alterations like smooth muscle hypertrophy and subepithelial fibrosis—is mechanistically influenced by gut microbiota via systemic inflammatory pathways. Chen et al. identified that specific gut microbes inhibit remodeling-associated cytokines (IL-4, IL-5, IL-9, IL-13) through SCFA production, mitigating airway wall thickening (Chen et al., 2024). Microbial imbalance may potentiate smooth muscle hyperplasia by enhancing pro-fibrotic signaling, as evidenced in murine models where Lactobacillus rhamnosus (Lr) administration reduced leukocyte infiltration, bronchial hyperreactivity, and remodeling markers (IL-4, IL-5, IL-13, STAT6, GATA3, IL-17, IL-21, IL-22, STAT3, RORγt) in asthma-COPD overlap syndrome (Vasconcelos et al., 2023). These findings position microbiota modulation as a viable approach to attenuate or reverse remodeling processes, potentially improving long-term asthma outcomes.

6.3 Microbial modulation of allergic sensitization

Gut microbiota critically shapes immune responses to allergens through T cell polarization and cytokine regulation. Pantazi et al. revealed that select commensals enhance regulatory T cell (Treg) differentiation, suppressing allergic effector responses (Pantazi et al., 2023). Murine studies demonstrate that Clostridia clusters IV/XIV supplementation elevates colonic Tregs and IL-10 production, correlating with reduced ovalbumin-specific IgE and IL-4 levels in allergic models (Atarashi et al., 2011). In allergic asthma patients, microbial imbalance disrupts this immunoregulatory balance, amplifying hypersensitivity to aeroallergens (e.g., dust mites, pollen) and triggering exacerbations (Han et al., 2024). Microbial metabolites, particularly SCFAs, further mitigate allergic sensitization by modulating DC function and Th2 cytokine production. These mechanistic insights underscore the potential of microbiota-targeted interventions—probiotic supplementation, dietary modulation, or metabolite administration—as novel strategies for asthma prevention and management (Du et al., 2022; Zheng et al., 2023).

6.4 Gut-lung axis in asthma pathogenesis

SCFAs (e.g., butyrate) circulate to the lung, activating GPR43 on Tregs to suppress Th2-mediated eosinophilia (Yao et al., 2022). Tryptophan metabolites (e.g., IPA) activate pulmonary AhR, inducing IL-22 production by ILC3s (Zhang et al., 2024). Gut-primed DCs migrate to the lung via lymphatics, regulating local Th17/Treg balance (Zhang et al., 2022). Microbial imbalance reduces vagal tone, impairing acetylcholine-dependent suppression of airway mast cell degranulation (de Haan et al., 2013). Clinical evidence linking depleted Faecalibacterium prausnitzii (and reduced SCFAs) to airway hyperresponsiveness, reversible via probiotics, is also included (Hu et al., 2021b).

7 Intervention strategy based on gut microbiota

Probiotics, defined as live microorganisms conferring host health benefits, modulate gut microbial equilibrium by enhancing colonization resistance, immunomodulation, and epithelial barrier reinforcement. Clinical applications span gastrointestinal disorders (diarrhea, constipation, inflammatory bowel disease) through mechanisms involving pathogen exclusion, bacteriocin production, and immune cell priming (Li et al., 2024). Prebiotics—non-digestible substrates selectively fermented by commensals—stimulate beneficial taxa proliferation (e.g., Bifidobacterium, Lactobacillus) while increasing short-chain fatty acid (SCFA) production, thereby improving intestinal homeostasis (You et al., 2022). Synbiotic formulations combining probiotics with prebiotics demonstrate synergistic effects, enhancing microbial diversity and metabolic functions more effectively than individual components (Du et al., 2024). Despite therapeutic promise, clinical translation requires rigorous validation through randomized controlled trials to establish strain-specific mechanisms, dosing protocols, and long-term safety profiles (Raghani et al., 2024). Special attention should be paid to leveraging strain specific effects, such as lactobacilli competing with pathogenic bacteria for nutrients and adhesion sites by occupying space on the surface of the intestinal mucosa, thereby inhibiting the overgrowth of harmful bacteria.

Dietary patterns exert profound effects on gut microbiota composition and functionality (Leeming et al., 2019). High-fiber diets increase SCFA producers by ∼40% (Faecalibacterium, Roseburia) and improving metabolic parameters through GLP-1 secretion and hepatic gluconeogenesis suppression (Fu et al., 2022). Conversely, Western-style diets high in saturated fats and refined sugars drive microbial imbalance, characterized by Bacteroides enrichment and reduced microbial diversity, correlating with chronic inflammation and metabolic syndrome (Mehmood et al., 2021). Temporal dynamics further influence intervention efficacy: transient dietary changes induce reversible microbial shifts, whereas sustained dietary habits remodel enterotypes, suggesting long-term adherence is critical for durable ecological benefits (Li et al., 2024). Precision nutrition strategies, integrating host genetics, microbiota profiling, and lifestyle factors, represent emerging paradigms for personalized microbiota engineering.

Advancements in microbiota research are driving the development of multidimensional intervention frameworks. Combinatorial approaches—integrating probiotics, prebiotics, dietary modifications, and phage therapy—show enhanced efficacy in restoring microbial networks disrupted in conditions like obesity and diabetes (Sumida et al., 2023). Elucidating cross-system interactions (e.g., microbiota-immune-nervous axis crosstalk) will uncover novel therapeutic targets, as evidenced by SCFA-mediated neuroimmune regulation in allergic airway diseases [54]. Clinically, microbiota-targeted therapies are being incorporated into disease-specific protocols, including fecal microbiota transplantation for C. difficile infection and engineered probiotics for inflammatory bowel disease (Xu et al., 2024). However, challenges persist in standardizing microbial products, optimizing personalized dosing, and establishing long-term safety monitoring systems. Moreover, the optimal dosage and long-term safety of probiotics have not yet been determined. Addressing these barriers will be pivotal for translating microbiota science into mainstream clinical practice, ultimately enabling precision medicine approaches for complex chronic diseases.

8 Conclusion

New evidence highlights the key role of gut microbiota and their metabolites in allergic asthma development. Microbial imbalance—altered diversity, changes in key taxa (e.g., bifidobacteria) and metabolites (e.g., SCFAs, tryptophan derivatives)—may link to immune dysfunction. These microbe-immune interactions improve our understanding of asthma and reveal new microbial-targeted therapies. Probiotics, prebiotics, and dietary changes show potential to reset immune responses and reduce asthma severity. Yet, while microbial shifts correlate with disease, causal links are poorly defined, requiring more mechanistic research using gnotobiotic models and long-term human studies.

Future research should focus on clarifying strain-specific microbial functions, host-microbe interaction pathways (e.g., gut-lung axis signaling), and individual responses influenced by genetics, environment, and diet. Validating strain-specific probiotics through human trials is crucial. Large-scale multi-omics cohorts combined with randomized controlled trials of targeted microbiota interventions are needed to confirm therapeutic effects and improve precision medicine approaches. In short, the gut microbiota is both a biomarker and a modifiable driver of allergic asthma. Unraveling its complex interactions with host immunity and physiology will advance microbiome-based strategies for asthma prevention, personalized treatment, and long-term control.

Author contributions

JL: Data curation, Writing – review and editing, Writing – original draft. YZ: Writing – review and editing, Investigation. SL: Conceptualization, Writing – review and editing, Methodology. RW: Supervision, Writing – original draft, Project administration, Methodology, Validation. JZ: Investigation, Project administration, Formal Analysis, Data curation, Writing – original draft.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Aagaard, K., Riehle, K., Ma, J., Segata, N., Mistretta, T. A., Coarfa, C., et al. (2012). A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 7 (6), e36466. doi:10.1371/journal.pone.0036466

PubMed Abstract | CrossRef Full Text | Google Scholar

Al-Rashidi, H. E. (2022). Gut microbiota and immunity relevance in eubiosis and dysbiosis. Saudi J. Biol. Sci. 29 (3), 1628–1643. doi:10.1016/j.sjbs.2021.10.068

PubMed Abstract | CrossRef Full Text | Google Scholar

Alswat, A. S. (2024). The influence of the gut microbiota on host health: a focus on the gut-lung axis and therapeutic approaches. Life (Basel) 14 (10), 1279. doi:10.3390/life14101279

PubMed Abstract | CrossRef Full Text | Google Scholar

Alves, J. L. B., Costa, P., Sales, L. C. S., Silva Luis, C. C., Bezerra, T. P. T., Souza, M. L. A., et al. (2024). Shedding light on the impacts of Spirulina platensis on gut microbiota and related health benefits. Crit. Rev. Food Sci. Nutr. 65, 2062–2075. doi:10.1080/10408398.2024.2323112

PubMed Abstract | CrossRef Full Text | Google Scholar

Aoki, R., Aoki-Yoshida, A., Suzuki, C., and Takayama, Y. (2018). Indole-3-pyruvic acid, an Aryl hydrocarbon receptor activator, suppresses experimental colitis in mice. J. Immunol. 201 (12), 3683–3693. doi:10.4049/jimmunol.1701734

PubMed Abstract | CrossRef Full Text | Google Scholar

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., et al. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504 (7480), 451–455. doi:10.1038/nature12726

PubMed Abstract | CrossRef Full Text | Google Scholar

Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., et al. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331 (6015), 337–341. doi:10.1126/science.1198469

PubMed Abstract | CrossRef Full Text | Google Scholar

Balmer, M. L., Ma, E. H., Bantug, G. R., Grählert, J., Pfister, S., Glatter, T., et al. (2016). Memory CD8(+) T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44 (6), 1312–1324. doi:10.1016/j.immuni.2016.03.016

PubMed Abstract | CrossRef Full Text | Google Scholar

Baruch, E. N., Wang, J., and Wargo, J. A. (2021). Gut microbiota and antitumor immunity: potential mechanisms for clinical effect. Cancer Immunol. Res. 9 (4), 365–370. doi:10.1158/2326-6066.CIR-20-0877

PubMed Abstract | CrossRef Full Text | Google Scholar

Basnet, T. B., Gc, S., Basnet, R., Fatima, S., Safdar, M., Sehar, B., et al. (2023). Interaction between gut microbiota metabolites and dietary components in lipid metabolism and metabolic diseases. Access Microbiol. 5 (6), acmi000403. doi:10.1099/acmi.0.000403

PubMed Abstract | CrossRef Full Text | Google Scholar

Bloor, S. J., and Mitchell, K. A. (2021). Metabolic products of European-type propolis. Synthesis and analysis of glucuronides and sulfates. J. Ethnopharmacol. 274, 114035. doi:10.1016/j.jep.2021.114035

PubMed Abstract | CrossRef Full Text | Google Scholar

Brown, J., Abboud, G., Ma, L., Choi, S. C., Kanda, N., Zeumer-Spataro, L., et al. (2022). Microbiota-mediated skewing of tryptophan catabolism modulates CD4(+) T cells in lupus-prone mice. iScience 25 (5), 104241. doi:10.1016/j.isci.2022.104241

PubMed Abstract | CrossRef Full Text | Google Scholar

Carr, T. F., Alkatib, R., and Kraft, M. (2019). Microbiome in mechanisms of asthma. Clin. Chest Med. 40 (1), 87–96. doi:10.1016/j.ccm.2018.10.006

PubMed Abstract | CrossRef Full Text | Google Scholar

Cervantes-Barragan, L., Chai, J. N., Tianero, M. D., Di Luccia, B., Ahern, P. P., Merriman, J., et al. (2017). Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8αα(+) T cells. Science 357 (6353), 806–810. doi:10.1126/science.aah5825

PubMed Abstract | CrossRef Full Text | Google Scholar

Chang, P. V., Hao, L., Offermanns, S., and Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. U. S. A. 111 (6), 2247–2252. doi:10.1073/pnas.1322269111

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, G., Ran, X., Li, B., Li, Y., He, D., Huang, B., et al. (2018). Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30, 317–325. doi:10.1016/j.ebiom.2018.03.030

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, L., Sun, M., Wu, W., Yang, W., Huang, X., Xiao, Y., et al. (2019). Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells' differentiation and function in induction of colitis. Inflamm. Bowel Dis. 25 (9), 1450–1461. doi:10.1093/ibd/izz046

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, X., Yong, S. B., Yii, C. Y., Feng, B., Hsieh, K. S., and Li, Q. (2024). Intestinal microbiota and probiotic intervention in children with bronchial asthma. Heliyon 10 (15), e34916. doi:10.1016/j.heliyon.2024.e34916

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, Z., Xu, Q., Liu, Y., Wei, Y., He, S., Lin, W., et al. (2022). Vancomycin-induced gut microbiota dysbiosis aggravates allergic rhinitis in mice by altered short-chain fatty acids. Front. Microbiol. 13, 1002084. doi:10.3389/fmicb.2022.1002084

PubMed Abstract | CrossRef Full Text | Google Scholar

Cheng, H. Y., Chan, J. C. Y., Yap, G. C., Huang, C. H., Kioh, D. Y. Q., Tham, E. H., et al. (2022). Evaluation of stool short chain fatty acids profiles in the first year of life with childhood atopy-related outcomes. Front. Allergy 3, 873168. doi:10.3389/falgy.2022.873168

PubMed Abstract | CrossRef Full Text | Google Scholar

de Haan, J. J., Hadfoune, M., Lubbers, T., Hodin, C., Lenaerts, K., Ito, A., et al. (2013). Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am. J. Physiol. Gastrointest. Liver Physiol. 305 (5), G383–G391. doi:10.1152/ajpgi.00333.2012

PubMed Abstract | CrossRef Full Text | Google Scholar

Demirci, M., Tokman, H. B., Uysal, H. K., Demiryas, S., Karakullukcu, A., Saribas, S., et al. (2019). Reduced Akkermansia muciniphila and Faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma. Allergol. Immunopathol. (Madr) 47 (4), 365–371. doi:10.1016/j.aller.2018.12.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Diether, N. E., Hulshof, T. G., Willing, B. P., and van Kempen, T. (2023). A blend of medium-chain fatty acids, butyrate, organic acids, and a phenolic compound accelerates microbial maturation in newly weaned piglets. PLoS One 18 (7), e0289214. doi:10.1371/journal.pone.0289214

PubMed Abstract | CrossRef Full Text | Google Scholar

Ding, G., Yang, X., Li, Y., Wang, Y., Du, Y., Wang, M., et al. (2024). Gut microbiota regulates gut homeostasis, mucosal immunity and influences immune-related diseases. Mol. Cell Biochem. 480, 1969–1981. doi:10.1007/s11010-024-05077-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Du, Q., Li, Q., Liu, C., Liao, G., Li, J., Yang, J., et al. (2024). Probiotics/prebiotics/synbiotics and human neuropsychiatric outcomes: an umbrella review. Benef. Microbes 15 (6), 589–608. doi:10.1163/18762891-bja00035

PubMed Abstract | CrossRef Full Text | Google Scholar

Du, T., Lei, A., Zhang, N., and Zhu, C. (2022). The beneficial role of probiotic lactobacillus in respiratory diseases. Front. Immunol. 13, 908010. doi:10.3389/fimmu.2022.908010

PubMed Abstract | CrossRef Full Text | Google Scholar

Dupraz, L., Magniez, A., Rolhion, N., Richard, M. L., Da Costa, G., Touch, S., et al. (2021). Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36 (1), 109332. doi:10.1016/j.celrep.2021.109332

PubMed Abstract | CrossRef Full Text | Google Scholar

Fernandes, J., Su, W., Rahat-Rozenbloom, S., Wolever, T. M., and Comelli, E. M. (2014). Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 4 (6), e121. doi:10.1038/nutd.2014.23

PubMed Abstract | CrossRef Full Text | Google Scholar

Föh, B., Buhre, J. S., Lunding, H. B., Moreno-Fernandez, M. E., König, P., Sina, C., et al. (2022). Microbial metabolite butyrate promotes induction of IL-10+IgM+ plasma cells. PLoS One 17 (3), e0266071. doi:10.1371/journal.pone.0266071

PubMed Abstract | CrossRef Full Text | Google Scholar

Fu, J., Zheng, Y., Gao, Y., and Xu, W. (2022). Dietary fiber intake and gut microbiota in human health. Microorganisms 10 (12), 2507. doi:10.3390/microorganisms10122507

PubMed Abstract | CrossRef Full Text | Google Scholar

Fujimura, K. E., Sitarik, A. R., Havstad, S., Lin, D. L., Levan, S., Fadrosh, D., et al. (2016). Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22 (10), 1187–1191. doi:10.1038/nm.4176

PubMed Abstract | CrossRef Full Text | Google Scholar

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504 (7480), 446–450. doi:10.1038/nature12721

PubMed Abstract | CrossRef Full Text | Google Scholar

Gao, Y., Nanan, R., Macia, L., Tan, J., Sominsky, L., Quinn, T. P., et al. (2021). The maternal gut microbiome during pregnancy and offspring allergy and asthma. J. Allergy Clin. Immunol. 148 (3), 669–678. doi:10.1016/j.jaci.2021.07.011

PubMed Abstract | CrossRef Full Text | Google Scholar

Genuneit, J., and Standl, M. (2022). Epidemiology of allergy: natural course and risk factors of allergic diseases. Handb. Exp. Pharmacol. 268, 21–27. doi:10.1007/164_2021_507

PubMed Abstract | CrossRef Full Text | Google Scholar

Gong, Y., Chen, A., Zhang, G., Shen, Q., Zou, L., Li, J., et al. (2023). Cracking brain diseases from gut microbes-mediated metabolites for precise treatment. Int. J. Biol. Sci. 19 (10), 2974–2998. doi:10.7150/ijbs.85259

PubMed Abstract | CrossRef Full Text | Google Scholar

Guo, W., Chen, Y., Wang, C., Ning, R., Zeng, B., Tang, J., et al. (2020). The carnivorous digestive system and bamboo diet of giant pandas may shape their low gut bacterial diversity. Conserv. Physiol. 8 (1), coz104. doi:10.1093/conphys/coz104

PubMed Abstract | CrossRef Full Text | Google Scholar

Guo, W., Zhou, X., Li, X., Zhu, Q., Peng, J., Zhu, B., et al. (2021). Depletion of gut microbiota impairs gut barrier function and antiviral immune defense in the liver. Front. Immunol. 12, 636803. doi:10.3389/fimmu.2021.636803

PubMed Abstract | CrossRef Full Text | Google Scholar

Han, K., Xie, F., Animasahun, O., Nenwani, M., Kitamoto, S., Kim, Y., et al. (2024). Inulin-gel-based oral immunotherapy remodels the small intestinal microbiome and suppresses food allergy. Nat. Mater 23 (10), 1444–1455. doi:10.1038/s41563-024-01909-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Hang, S., Paik, D., Yao, L., Kim, E., Trinath, J., Lu, J., et al. (2019). Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature 576 (7785), 143–148. doi:10.1038/s41586-019-1785-z

PubMed Abstract | CrossRef Full Text | Google Scholar

Heinrich, V. A., Uvalle, C., Manni, M. L., Li, K., Mullett, S. J., Donepudi, S. R., et al. (2023). Meta-omics profiling of the gut-lung axis illuminates metabolic networks and host-microbial interactions associated with elevated lung elastance in a murine model of obese allergic asthma. Front. Microbiomes 2, 1153691. doi:10.3389/frmbi.2023.1153691

PubMed Abstract | CrossRef Full Text | Google Scholar

Hevia, A., Milani, C., López, P., Donado, C. D., Cuervo, A., González, S., et al. (2016). Allergic patients with long-term asthma display low levels of Bifidobacterium adolescentis. PLoS One 11 (2), e0147809. doi:10.1371/journal.pone.0147809

PubMed Abstract | CrossRef Full Text | Google Scholar

Hou, X., Zheng, Z., Wei, J., and Zhao, L. (2022). Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front. Immunol. 13, 1030745. doi:10.3389/fimmu.2022.1030745

PubMed Abstract | CrossRef Full Text | Google Scholar

Hsu, W. H., Lin, L. J., Lu, C. K., Kao, S. T., and Lin, Y. L. (2021). Effect of you-gui-wan on house dust mite-induced mouse allergic asthma via regulating amino acid metabolic disorder and gut dysbiosis. Biomolecules 11 (6), 812. doi:10.3390/biom11060812

PubMed Abstract | CrossRef Full Text | Google Scholar

Hu, J., Wang, C., Huang, X., Yi, S., Pan, S., Zhang, Y., et al. (2021a). Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep. 36 (12), 109726. doi:10.1016/j.celrep.2021.109726

PubMed Abstract | CrossRef Full Text | Google Scholar

Hu, J., Zhang, Y., Yi, S., Wang, C., Huang, X., Pan, S., et al. (2022). Lithocholic acid inhibits dendritic cell activation by reducing intracellular glutathione via TGR5 signaling. Int. J. Biol. Sci. 18 (11), 4545–4559. doi:10.7150/ijbs.71287

PubMed Abstract | CrossRef Full Text | Google Scholar

Hu, W., Lu, W., Li, L., Zhang, H., Lee, Y. K., Chen, W., et al. (2021b). Both living and dead Faecalibacterium prausnitzii alleviate house dust mite-induced allergic asthma through the modulation of gut microbiota and short-chain fatty acid production. J. Sci. Food Agric. 101 (13), 5563–5573. doi:10.1002/jsfa.11207

PubMed Abstract | CrossRef Full Text | Google Scholar

Huang, T., Che, Q., Chen, X., Chen, D., Yu, B., He, J., et al. (2022a). Apple polyphenols improve intestinal antioxidant capacity and barrier function by activating the Nrf2/Keap1 signaling pathway in a pig model. J. Agric. Food Chem. 70 (24), 7576–7585. doi:10.1021/acs.jafc.2c02495

PubMed Abstract | CrossRef Full Text | Google Scholar

Huang, Z. B., Hu, Z., Lu, C. X., Luo, S. D., Chen, Y., Zhou, Z. P., et al. (2022b). Gut microbiota-derived indole 3-propionic acid partially activates aryl hydrocarbon receptor to promote macrophage phagocytosis and attenuate septic injury. Front. Cell Infect. Microbiol. 12, 1015386. doi:10.3389/fcimb.2022.1015386

PubMed Abstract | CrossRef Full Text | Google Scholar

Hubbard, T. D., Murray, I. A., Bisson, W. H., Lahoti, T. S., Gowda, K., Amin, S. G., et al. (2015). Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci. Rep. 5, 12689. doi:10.1038/srep12689

PubMed Abstract | CrossRef Full Text | Google Scholar

Humbert, M., Bousquet, J., Bachert, C., Palomares, O., Pfister, P., Kottakis, I., et al. (2019). IgE-Mediated multimorbidities in allergic asthma and the potential for omalizumab therapy. J. Allergy Clin. Immunol. Pract. 7 (5), 1418–1429. doi:10.1016/j.jaip.2019.02.030

PubMed Abstract | CrossRef Full Text | Google Scholar

Hwang, W. B., Kim, D. J., Oh, G. S., and Park, J. H. (2018). Aryl hydrocarbon receptor ligands indoxyl 3-sulfate and Indole-3-carbinol inhibit FMS-like tyrosine kinase 3 ligand-induced bone marrow-derived plasmacytoid dendritic cell differentiation. Immune Netw. 18 (5), e35. doi:10.4110/in.2018.18.e35

PubMed Abstract | CrossRef Full Text | Google Scholar

Isobe, J., Maeda, S., Obata, Y., Iizuka, K., Nakamura, Y., Fujimura, Y., et al. (2020). Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon. Int. Immunol. 32 (4), 243–258. doi:10.1093/intimm/dxz078

PubMed Abstract | CrossRef Full Text | Google Scholar

Kaisar, M. M. M., Pelgrom, L. R., van der Ham, A. J., Yazdanbakhsh, M., and Everts, B. (2017). Butyrate conditions human dendritic cells to prime type 1 regulatory T cells via both histone deacetylase inhibition and G protein-coupled receptor 109A signaling. Front. Immunol. 8, 1429. doi:10.3389/fimmu.2017.01429

PubMed Abstract | CrossRef Full Text | Google Scholar

Ke, S., Yu, Y., Xu, Q., Zhang, B., Wang, S., Jin, W., et al. (2021). Composition-activity relationships of polysaccharides from Saccharina japonica in regulating gut microbiota in short-term high-fat diet-fed mice. J. Agric. Food Chem. 69 (37), 11121–11130. doi:10.1021/acs.jafc.1c04490

PubMed Abstract | CrossRef Full Text | Google Scholar

Kespohl, M., Vachharajani, N., Luu, M., Harb, H., Pautz, S., Wolff, S., et al. (2017). The microbial metabolite butyrate induces expression of Th1-Associated factors in CD4(+) T cells. Front. Immunol. 8, 1036. doi:10.3389/fimmu.2017.01036

PubMed Abstract | CrossRef Full Text | Google Scholar

Kibbie, J. J., Dillon, S. M., Thompson, T. A., Purba, C. M., McCarter, M. D., and Wilson, C. C. (2021). Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology 226 (5), 152126. doi:10.1016/j.imbio.2021.152126

PubMed Abstract | CrossRef Full Text | Google Scholar

Kim, C. H. (2016). B cell-helping functions of gut microbial metabolites. Microb. Cell 3 (10), 529–531. doi:10.15698/mic2016.10.536

PubMed Abstract | CrossRef Full Text | Google Scholar

Kim, D. S., Woo, J. S., Min, H. K., Choi, J. W., Moon, J. H., Park, M. J., et al. (2021). Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren's syndrome. J. Autoimmun. 119, 102611. doi:10.1016/j.jaut.2021.102611

PubMed Abstract | CrossRef Full Text | Google Scholar

Kleuskens, M. T. A., Haasnoot, M. L., Herpers, B. M., Ampting, M., Bredenoord, A. J., Garssen, J., et al. (2022). Butyrate and propionate restore interleukin 13-compromised esophageal epithelial barrier function. Allergy 77 (5), 1510–1521. doi:10.1111/all.15069

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, J. H., and Lee, J. (2010). Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34 (4), 426–444. doi:10.1111/j.1574-6976.2009.00204.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Lee, J. J., Kim, S. H., Lee, M. J., Kim, B. K., Song, W. J., Park, H. W., et al. (2019). Different upper airway microbiome and their functional genes associated with asthma in young adults and elderly individuals. Allergy 74 (4), 709–719. doi:10.1111/all.13608

PubMed Abstract | CrossRef Full Text | Google Scholar

Leeming, E. R., Johnson, A. J., Spector, T. D., and Le Roy, C. I. (2019). Effect of diet on the gut Microbiota: rethinking intervention duration. Nutrients 11 (12), 2862. doi:10.3390/nu11122862

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, C., Liang, Y., and Qiao, Y. (2022a). Messengers from the gut: gut microbiota-derived metabolites on host regulation. Front. Microbiol. 13, 863407. doi:10.3389/fmicb.2022.863407

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, L., Liang, T., Jiang, T., Li, Y., Yang, L., Wu, L., et al. (2024). Gut microbiota: candidates for a novel strategy for ameliorating sleep disorders. Crit. Rev. Food Sci. Nutr. 64 (29), 10772–10788. doi:10.1080/10408398.2023.2228409

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, N., Chen, J., Xie, S., Zhang, M., Shi, T., He, Y., et al. (2022b). Oral antibiotics relieve allergic asthma in post-weaning mice via reducing iNKT cells and function of ADRB2. Front. Immunol. 13, 1024235. doi:10.3389/fimmu.2022.1024235

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, W., Hang, S., Fang, Y., Bae, S., Zhang, Y., Zhang, M., et al. (2021). A bacterial bile acid metabolite modulates T(reg) activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29 (9), 1366–1377.e9. doi:10.1016/j.chom.2021.07.013

PubMed Abstract | CrossRef Full Text | Google Scholar

Liang, L., Liu, L., Zhou, W., Yang, C., Mai, G., Li, H., et al. (2022). Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin. Sci. (Lond) 136 (4), 291–307. doi:10.1042/CS20210778

PubMed Abstract | CrossRef Full Text | Google Scholar

Liao, W., Liu, W., Yan, Y., Li, L., Tong, J., Huang, Y., et al. (2022). Hylocereus undatus flower extract suppresses OVA-induced allergic asthma in BALb/c mice by reducing airway inflammation and modulating gut microbiota. Biomed. Pharmacother. 153, 113476. doi:10.1016/j.biopha.2022.113476

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, Y., Liu, J., Du, M., Yang, H., Shi, R., Shi, Y., et al. (2023). Short-chain fatty acid - a critical interfering factor for allergic diseases. Chem. Biol. Interact. 385, 110739. doi:10.1016/j.cbi.2023.110739

PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, Z., Chen, H., Ning, X., Li, J., and Pan, L. (2024). Oxymatrine and gut microbiota modulation: a potential therapeutic strategy for bone cancer pain management. J. Pain 25 (10), 104588. doi:10.1016/j.jpain.2024.104588

PubMed Abstract | CrossRef Full Text | Google Scholar

Louis, P., Young, P., Holtrop, G., and Flint, H. J. (2010). Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12 (2), 304–314. doi:10.1111/j.1462-2920.2009.02066.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., et al. (2019). The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10 (1), 760. doi:10.1038/s41467-019-08711-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Luu, M., Weigand, K., Wedi, F., Breidenbend, C., Leister, H., Pautz, S., et al. (2018). Regulation of the effector function of CD8(+) T cells by gut microbiota-derived metabolite butyrate. Sci. Rep. 8 (1), 14430. doi:10.1038/s41598-018-32860-x

PubMed Abstract | CrossRef Full Text | Google Scholar

Macfarlane, S., and Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 62 (1), 67–72. doi:10.1079/PNS2002207

PubMed Abstract | CrossRef Full Text | Google Scholar

Mehmood, K., Moin, A., Hussain, T., Rizvi, S. M. D., Gowda, D. V., Shakil, S., et al. (2021). Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management? Folia Microbiol. (Praha) 66 (6), 897–916. doi:10.1007/s12223-021-00926-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Miller, T. L., and Wolin, M. J. (1996). Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62 (5), 1589–1592. doi:10.1128/aem.62.5.1589-1592.1996

PubMed Abstract | CrossRef Full Text | Google Scholar

Mirmohammadali, S. N., and Rosenkranz, S. K. (2023). Dietary phytochemicals, gut microbiota composition, and health outcomes in human and animal models. Biosci. Microbiota Food Health 42 (3), 152–171. doi:10.12938/bmfh.2022-078

PubMed Abstract | CrossRef Full Text | Google Scholar

Mohammadi, S., Memarian, A., Sedighi, S., Behnampour, N., and Yazdani, Y. (2018). Immunoregulatory effects of indole-3-carbinol on monocyte-derived macrophages in systemic lupus erythematosus: a crucial role for aryl hydrocarbon receptor. Autoimmunity 51 (5), 199–209. doi:10.1080/08916934.2018.1494161

PubMed Abstract | CrossRef Full Text | Google Scholar

Mousavian, A. H., Zare Garizi, F., Ghoreshi, B., Ketabi, S., Eslami, S., Ejtahed, H. S., et al. (2024). The association of infant and mother gut microbiomes with development of allergic diseases in children: a systematic review. J. Asthma 61 (10), 1121–1135. doi:10.1080/02770903.2024.2332921

PubMed Abstract | CrossRef Full Text | Google Scholar

Nastasi, C., Candela, M., Bonefeld, C. M., Geisler, C., Hansen, M., Krejsgaard, T., et al. (2015). The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5, 16148. doi:10.1038/srep16148

PubMed Abstract | CrossRef Full Text | Google Scholar

Neag, M. A., Vulturar, D. M., Gherman, D., Burlacu, C. C., Todea, D. A., and Buzoianu, A. D. (2022). Gastrointestinal microbiota: a predictor of COVID-19 severity? World J. Gastroenterol. 28 (45), 6328–6344. doi:10.3748/wjg.v28.i45.6328

PubMed Abstract | CrossRef Full Text | Google Scholar

Ozerskaia, I. V., Geppe, N. A., Romantseva, E. V., and Yablokova, E. A. (2021). Prospects for the correction of intestinal microbiota in the prevention and treatment of asthma in children. Vopr. Pitan. 90 (4), 74–83. doi:10.33029/0042-8833-2021-90-4-74-83

PubMed Abstract | CrossRef Full Text | Google Scholar

Padhi, S., Sarkar, P., Sahoo, D., and Rai, A. K. (2024). Potential of fermented foods and their metabolites in improving gut microbiota function and lowering gastrointestinal inflammation. J. Sci. Food Agric. 105, 4058–4069. doi:10.1002/jsfa.13313

PubMed Abstract | CrossRef Full Text | Google Scholar

Palusiak, A. (2013). Immunochemical properties of Proteus penneri lipopolysaccharides--one of the major proteus sp. virulence factors. Carbohydr. Res. 380, 16–22. doi:10.1016/j.carres.2013.06.025

PubMed Abstract | CrossRef Full Text | Google Scholar

Pantazi, A. C., Mihai, C. M., Balasa, A. L., Chisnoiu, T., Lupu, A., Frecus, C. E., et al. (2023). Relationship between gut microbiota and allergies in children: a literature review. Nutrients 15 (11), 2529. doi:10.3390/nu15112529

PubMed Abstract | CrossRef Full Text | Google Scholar

Park, J., Kim, M., Kang, S. G., Jannasch, A. H., Cooper, B., Patterson, J., et al. (2015). Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 8 (1), 80–93. doi:10.1038/mi.2014.44

PubMed Abstract | CrossRef Full Text | Google Scholar

Park, J. S., Lee, E. J., Lee, J. C., Kim, W. K., and Kim, H. S. (2007). Anti-inflammatory effects of short chain fatty acids in IFN-gamma-stimulated RAW 264.7 murine macrophage cells: involvement of NF-kappaB and ERK signaling pathways. Int. Immunopharmacol. 7 (1), 70–77. doi:10.1016/j.intimp.2006.08.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Park, J. W., Kim, H. Y., Kim, M. G., Jeong, S., Yun, C. H., and Han, S. H. (2019). Short-chain fatty acids inhibit staphylococcal lipoprotein-induced nitric oxide production in murine macrophages. Immune Netw. 19 (2), e9. doi:10.4110/in.2019.19.e9

PubMed Abstract | CrossRef Full Text | Google Scholar

Raghani, N., Postwala, H., Shah, Y., Chorawala, M., and Parekh, P. (2024). From gut to brain: unraveling the intricate link between microbiome and stroke. Probiotics Antimicrob. Proteins 16 (6), 2039–2053. doi:10.1007/s12602-024-10295-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Rangan, P., and Mondino, A. (2022). Microbial short-chain fatty acids: a strategy to tune adoptive T cell therapy. J. Immunother. Cancer 10 (7), e004147. doi:10.1136/jitc-2021-004147

PubMed Abstract | CrossRef Full Text | Google Scholar

Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam Leitch, C., Scott, K. P., et al. (2014). Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. Isme J. 8 (6), 1323–1335. doi:10.1038/ismej.2014.14

PubMed Abstract | CrossRef Full Text | Google Scholar

Roager, H. M., and Licht, T. R. (2018). Microbial tryptophan catabolites in health and disease. Nat. Commun. 9 (1), 3294. doi:10.1038/s41467-018-05470-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Roduit, C., Frei, R., Ferstl, R., Loeliger, S., Westermann, P., Rhyner, C., et al. (2019). High levels of butyrate and propionate in early life are associated with protection against atopy. Allergy 74 (4), 799–809. doi:10.1111/all.13660

PubMed Abstract | CrossRef Full Text | Google Scholar

Rouse, M., Singh, N. P., Nagarkatti, P. S., and Nagarkatti, M. (2013). Indoles mitigate the development of experimental autoimmune encephalomyelitis by induction of reciprocal differentiation of regulatory T cells and Th17 cells. Br. J. Pharmacol. 169 (6), 1305–1321. doi:10.1111/bph.12205

PubMed Abstract | CrossRef Full Text | Google Scholar

Sagar, S., Morgan, M. E., Chen, S., Vos, A. P., Garssen, J., van Bergenhenegouwen, J., et al. (2014). Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma. Respir. Res. 15 (1), 46. doi:10.1186/1465-9921-15-46

PubMed Abstract | CrossRef Full Text | Google Scholar

Saini, A., Dalal, P., and Sharma, D. (2022). Deciphering the interdependent labyrinth between gut microbiota and the immune system. Lett. Appl. Microbiol. 75 (5), 1122–1135. doi:10.1111/lam.13775

PubMed Abstract | CrossRef Full Text | Google Scholar

Salami, M. (2021). Interplay of good bacteria and central nervous system: cognitive aspects and mechanistic considerations. Front. Neurosci. 15, 613120. doi:10.3389/fnins.2021.613120

PubMed Abstract | CrossRef Full Text | Google Scholar

Schulthess, J., Pandey, S., Capitani, M., Rue-Albrecht, K. C., Arnold, I., Franchini, F., et al. (2019). The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50 (2), 432–445.e7. doi:10.1016/j.immuni.2018.12.018

PubMed Abstract | CrossRef Full Text | Google Scholar

Shah, R., and Newcomb, D. C. (2018). Sex bias in asthma prevalence and pathogenesis. Front. Immunol. 9, 2997. doi:10.3389/fimmu.2018.02997

PubMed Abstract | CrossRef Full Text | Google Scholar

Shi, C. Y., Yu, C. H., Yu, W. Y., and Ying, H. Z. (2021). Gut-lung microbiota in chronic pulmonary diseases: Evolution, pathogenesis, and therapeutics. Can. J. Infect. Dis. Med. Microbiol. 2021, 9278441. doi:10.1155/2021/9278441

PubMed Abstract | CrossRef Full Text | Google Scholar

Shi, Z., Yao, F., Chen, Q., Chen, Y., Zhang, J., Guo, J., et al. (2024). More deterministic assembly constrains the diversity of gut microbiota in freshwater snails. Front. Microbiol. 15, 1394463. doi:10.3389/fmicb.2024.1394463

PubMed Abstract | CrossRef Full Text | Google Scholar

Shiratori, H., Oguchi, H., Isobe, Y., Han, K. H., Sen, A., Yakebe, K., et al. (2023). Gut microbiota-derived lipid metabolites facilitate regulatory T cell differentiation. Sci. Rep. 13 (1), 8903. doi:10.1038/s41598-023-35097-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Singh, N. P., Singh, U. P., Rouse, M., Zhang, J., Chatterjee, S., Nagarkatti, P. S., et al. (2016). Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of MicroRNA. J. Immunol. 196 (3), 1108–1122. doi:10.4049/jimmunol.1501727

PubMed Abstract | CrossRef Full Text | Google Scholar

Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., et al. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341 (6145), 569–573. doi:10.1126/science.1241165

PubMed Abstract | CrossRef Full Text | Google Scholar

Smith, T. (1897). A modification of the method for determining the production of indol by bacteria. J. Exp. Med. 2 (5), 543–547. doi:10.1084/jem.2.5.543

PubMed Abstract | CrossRef Full Text | Google Scholar

Song, X., Zhang, H., Zhang, Y., Goh, B., Bao, B., Mello, S. S., et al. (2023). Gut microbial fatty acid isomerization modulates intraepithelial T cells. Nature 619 (7971), 837–843. doi:10.1038/s41586-023-06265-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Sottas, C., Schmiedová, L., Kreisinger, J., Albrecht, T., Reif, J., Osiejuk, T. S., et al. (2021). Gut microbiota in two recently diverged passerine species: evaluating the effects of species identity, habitat use and geographic distance. BMC Ecol. Evol. 21 (1), 41. doi:10.1186/s12862-021-01773-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Stepanova, M., and Aherne, C. M. (2024). Adenosine in intestinal epithelial barrier function. Cells 13 (5), 381. doi:10.3390/cells13050381

PubMed Abstract | CrossRef Full Text | Google Scholar

Stiemsma, L. T., Arrieta, M. C., Dimitriu, P. A., Cheng, J., Thorson, L., Lefebvre, D. L., et al. (2016). Shifts in lachnospira and clostridium sp. in the 3-month stool microbiome are associated with preschool age asthma. Clin. Sci. (Lond) 130 (23), 2199–2207. doi:10.1042/CS20160349

PubMed Abstract | CrossRef Full Text | Google Scholar

Su, X., Zhang, M., Qi, H., Gao, Y., Yang, Y., Yun, H., et al. (2022). Gut microbiota-derived metabolite 3-idoleacetic acid together with LPS induces IL-35(+) B cell generation. Microbiome 10 (1), 13. doi:10.1186/s40168-021-01205-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Sumida, K., Pierre, J. F., Yuzefpolskaya, M., Colombo, P. C., Demmer, R. T., and Kovesdy, C. P. (2023). Gut microbiota-targeted interventions in the management of chronic kidney disease. Semin. Nephrol. 43 (2), 151408. doi:10.1016/j.semnephrol.2023.151408

PubMed Abstract | CrossRef Full Text | Google Scholar

Sun, M., Wu, W., Chen, L., Yang, W., Huang, X., Ma, C., et al. (2018). Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9 (1), 3555. doi:10.1038/s41467-018-05901-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Tang, H., Zhan, Z., Liu, X., Zhang, Y., Huang, X., and Xu, M. (2023). Propionate reduces the viability of Salmonella enterica Serovar Typhi in macrophages by propionylation of PhoP K102. Microb. Pathog. 178, 106078. doi:10.1016/j.micpath.2023.106078

PubMed Abstract | CrossRef Full Text | Google Scholar

Terciolo, C., Dapoigny, M., and Andre, F. (2019). Beneficial effects of Saccharomyces boulardii CNCM I-745 on clinical disorders associated with intestinal barrier disruption. Clin. Exp. Gastroenterol. 12, 67–82. doi:10.2147/CEG.S181590

PubMed Abstract | CrossRef Full Text | Google Scholar

Thangaraju, M., Cresci, G. A., Liu, K., Ananth, S., Gnanaprakasam, J. P., Browning, D. D., et al. (2009). GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69 (7), 2826–2832. doi:10.1158/0008-5472.CAN-08-4466

PubMed Abstract | CrossRef Full Text | Google Scholar

Thorburn, A. N., McKenzie, C. I., Shen, S., Stanley, D., Macia, L., Mason, L. J., et al. (2015). Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320. doi:10.1038/ncomms8320

PubMed Abstract | CrossRef Full Text | Google Scholar

Tomii, A., Higa, M., Naito, K., Kurata, K., Kobayashi, J., Takei, C., et al. (2023). Activation of the TLR4-JNK but not the TLR4-ERK pathway induced by indole-3-acetic acid exerts anti-proliferative effects on Caco-2 cells. Biosci. Biotechnol. Biochem. 87 (8), 839–849. doi:10.1093/bbb/zbad055

PubMed Abstract | CrossRef Full Text | Google Scholar

Ulluwishewa, D., Mullaney, J., Adam, K., Claycomb, R., and Anderson, R. C. (2022). A bioactive bovine whey protein extract improves intestinal barrier function in vitro. JDS Commun. 3 (6), 387–392. doi:10.3168/jdsc.2022-0245

PubMed Abstract | CrossRef Full Text | Google Scholar

van Nimwegen, F. A., Penders, J., Stobberingh, E. E., Postma, D. S., Koppelman, G. H., Kerkhof, M., et al. (2011). Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol. 128 (5), 948–55.e553. doi:10.1016/j.jaci.2011.07.027

PubMed Abstract | CrossRef Full Text | Google Scholar

Vasconcelos, J. A., Mota, A. S., Olímpio, F., Rosa, P. C., Damaceno-Rodrigues, N., de Paula Vieira, R., et al. (2023). Lactobacillus rhamnosus modulates lung inflammation and mitigates gut dysbiosis in a murine model of Asthma-COPD overlap syndrome. Probiotics Antimicrob. Proteins 17, 588–605. doi:10.1007/s12602-023-10167-2

PubMed Abstract | CrossRef Full Text | Google Scholar

Venkatesh, M., Mukherjee, S., Wang, H., Li, H., Sun, K., Benechet, A. P., et al. (2014). Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4. Immunity 41 (2), 296–310. doi:10.1016/j.immuni.2014.06.014

PubMed Abstract | CrossRef Full Text | Google Scholar

Versi, A., Ivan, F. X., Abdel-Aziz, M. I., Bates, S., Riley, J., Baribaud, F., et al. (2023). Haemophilus influenzae and Moraxella catarrhalis in sputum of severe asthma with inflammasome and neutrophil activation. Allergy 78 (11), 2906–2920. doi:10.1111/all.15776

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, J., He, M., Yang, M., and Ai, X. (2024). Gut microbiota as a key regulator of intestinal mucosal immunity. Life Sci. 345, 122612. doi:10.1016/j.lfs.2024.122612

PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, Z. Y., and Gong, J. F. (2022). Gut microbiota and immune-related diseases. Zhonghua Wei Chang. Wai Ke Za Zhi 25 (9), 777–783. doi:10.3760/cma.j.cn441530-20211130-00480

PubMed Abstract | CrossRef Full Text | Google Scholar

Wilck, N., Matus, M. G., Kearney, S. M., Olesen, S. W., Forslund, K., Bartolomaeus, H., et al. (2017). Salt-responsive gut commensal modulates T(H)17 axis and disease. Nature 551 (7682), 585–589. doi:10.1038/nature24628

PubMed Abstract | CrossRef Full Text | Google Scholar

Wu, W., Sun, M., Chen, F., Cao, A. T., Liu, H., Zhao, Y., et al. (2017). Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 10 (4), 946–956. doi:10.1038/mi.2016.114

PubMed Abstract | CrossRef Full Text | Google Scholar

Xu, Y., He, C., Xi, Y., Zhang, Y., and Bai, Y. (2024). Gut microbiota and immunosenescence in cancer. Semin. Cancer Biol. 104-105, 32–45. doi:10.1016/j.semcancer.2024.07.004

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, J., and Chun, J. (2021). Taxonomic composition and variation in the gut microbiota of laboratory mice. Mamm. Genome 32 (4), 297–310. doi:10.1007/s00335-021-09871-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, W., and Cong, Y. (2021). Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 18 (4), 866–877. doi:10.1038/s41423-021-00661-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Yang, W., Yu, T., Huang, X., Bilotta, A. J., Xu, L., Lu, Y., et al. (2020). Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11 (1), 4457. doi:10.1038/s41467-020-18262-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Yao, Y., Cai, X., Zheng, Y., Zhang, M., Fei, W., Sun, D., et al. (2022). Short-chain fatty acids regulate B cells differentiation via the FFA2 receptor to alleviate rheumatoid arthritis. Br. J. Pharmacol. 179 (17), 4315–4329. doi:10.1111/bph.15852

PubMed Abstract | CrossRef Full Text | Google Scholar

Yoo, J. Y., Groer, M., Dutra, S. V. O., Sarkar, A., and McSkimming, D. I. (2020). Gut microbiota and immune system interactions. Microorganisms 8 (10), 1587. doi:10.3390/microorganisms8101587

PubMed Abstract | CrossRef Full Text | Google Scholar

You, S., Ma, Y., Yan, B., Pei, W., Wu, Q., Ding, C., et al. (2022). The promotion mechanism of prebiotics for probiotics: a review. Front. Nutr. 9, 1000517. doi:10.3389/fnut.2022.1000517

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, B., Zeng, M., Zhang, Q., Wang, R., Jia, J., Cao, B., et al. (2022). Ephedrae Herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance. Mol. Immunol. 152, 14–26. doi:10.1016/j.molimm.2022.09.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, M., Qin, Z., Huang, C., Liang, B., Zhang, X., and Sun, W. (2025). The gut microbiota modulates airway inflammation in allergic asthma through the gut-lung axis related immune modulation: a review. Biomol. Biomed. 25 (4), 727–738. doi:10.17305/bb.2024.11280

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, Y., Han, L., Dong, J., Yuan, Z., Yao, W., Ji, P., et al. (2024). Shaoyao decoction improves damp-heat colitis by activating the AHR/IL-22/STAT3 pathway through tryptophan metabolism driven by gut microbiota. J. Ethnopharmacol. 326, 117874. doi:10.1016/j.jep.2024.117874

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhao, F., Huang, Y., Ji, J., Liu, X., Li, X., Zou, L., et al. (2024). IDO1 promotes CSFV replication by mediating tryptophan metabolism to inhibit NF-κB signaling. J. Virol. 98 (7), e0045824. doi:10.1128/jvi.00458-24

PubMed Abstract | CrossRef Full Text | Google Scholar

Zheng, Y., Zhang, Z., Tang, P., Wu, Y., Zhang, A., Li, D., et al. (2023). Probiotics fortify intestinal barrier function: a systematic review and meta-analysis of randomized trials. Front. Immunol. 14, 1143548. doi:10.3389/fimmu.2023.1143548

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., et al. (2018). Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm. Bowel Dis. 24 (9), 1926–1940. doi:10.1093/ibd/izy182

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhou, M. S., Zhang, B., Gao, Z. L., Zheng, R. P., Marcellin, D., Saro, A., et al. (2021). Altered diversity and composition of gut microbiota in patients with allergic rhinitis. Microb. Pathog. 161, 105272. doi:10.1016/j.micpath.2021.105272

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: gut microbiota, SCFAs, allergic asthma, gut-lung axis, immune regulation, probiotics

Citation: Lv J, Zhang Y, Liu S, Wang R and Zhao J (2025) Gut-lung axis in allergic asthma: microbiota-driven immune dysregulation and therapeutic strategies. Front. Pharmacol. 16:1617546. doi: 10.3389/fphar.2025.1617546

Received: 24 April 2025; Accepted: 21 July 2025;
Published: 31 July 2025.

Edited by:

Izolde Bouloukaki, University of Crete, Greece

Reviewed by:

Maimaiti Tuniyazi, Jilin University, China
zhiqiang Dou, Changchun University of Chinese Medicine, China
Xue Wan, Mayo Clinic, United States

Copyright © 2025 Lv, Zhang, Liu, Wang and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Ruoyu Wang, d2FuZ3J1b3l1eXVpQDE2My5jb20=; Jianan Zhao, YWFyb25saXZlckAxNjMuY29t

These authors have contributed equally to this work

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.