- 1 Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune, India
- 2 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, HUN-REN, Budapest, Hungary
- 3 CSFK, MTA Centre of Excellence, Budapest, Hungary
- 4 INAF-Osservatorio Astronomico di Capodimonte, Naples, Italy
Type II Cepheids are a class of pulsating variable stars that play a critical role in our understanding of stellar evolution, distance measurement and tracing the structure and kinematics of old stars in nearby galaxies. This review provides a comprehensive summary of the current state of research on Type II Cepheids, including their observed properties, pulsation mechanisms and their distinction from other variable stars. These pulsating variable stars, found primarily in older stellar populations, exhibit well-defined period-luminosity relations but with an added advantage that they exhibit weak or negligible dependence on metallicity in most passbands. We explore their relevance in the context of their role as distance indicators and potential calibrators of the first rung of the extragalactic distance ladder. Finally, the review highlights recent advancements in theoretical models, observations across different wavelengths and ongoing debates concerning their classification.
1 Introduction
Cepheid variables have long served as vital distance indicators due to their well-defined period-luminosity
The role of metallicity in calibrating the
In this review, we sum up the current theoretical and empirical understanding of the metallicity effects on T2CEP
2 Period-based classification and evolution of T2CEPs
Based on their pulsation periods and evolutionary states, T2CEPs are sub-divided into three main classes following the classification suggested by Soszyński et al. (2018): the BL Herculis stars (BL Her), the W Virginis stars (W Vir) and the RV Tauri stars (RV Tau). In addition, there is a fourth sub-class
BL Her stars typically have short pulsation periods with
3 The effect of metallicity on
relations
Similar to classical Cepheids, T2CEPs obey well-defined
Since then, there have been quite a few studies dedicated towards studying the different aspects of T2CEPS, on both the theoretical (Carson and Stothers, 1982; Kovacs and Buchler, 1988; Bono et al., 1997; Deka et al., 2024) and the empirical (Gonzalez, 1994; Bersier et al., 1997; Balog et al., 1997; Vinko et al., 1998; Kiss et al., 2007; Wielgórski et al., 2024; Yacob et al., 2025) fronts. For the most recent empirical
One of the earliest
Almost a decade later, the study of the metallicity dependence (or lack thereof) was re-ignited in a series of papers by Matsunaga et al. (2006), Matsunaga et al. (2009), Matsunaga et al. (2011). The photometric data of T2CEPs analysed in Matsunaga et al. (2006) were obtained from the Infrared Survey Facility (IRSF) 1.4-m telescope and the Simultaneous 3-Colour Imager for Unbiased Survey (SIRIUS) near-infrared camera (Nagashima et al., 1999; Nagayama et al., 2003) while the parameters for the globular clusters
On the theoretical front, Di Criscienzo et al. (2007) computed pulsation models following Bono and Stellingwerf (1994), with identical nonlinear, nonlocal, time-dependent convective hydrodynamics and the same equation-of-state and opacity prescriptions. In particular, opacity compilations for temperatures higher than 10,000 K were used from Iglesias and Rogers (1996) and for lower temperatures from Alexander and Ferguson (1994). The bolometric light curves were transformed into respective passbands by adopting bolometric corrections and temperature-color transformations from Castelli et al. (1997a); Castelli et al. (1997b). They thereby provided theoretical relations over multiple wavelengths for the short-period T2CEPs. However, for the purpose of this review, we follow the same convention for BL Her stars as those with pulsation periods between 1 and 4 days while for W Vir stars as those with periods between 4 and 20 days for a uniform comparison throughout the literature. Therefore, although Di Criscienzo et al. (2007) presents the results for BL Her models, we include the study in the BL Her + W Vir category for this review since the models span the range of pulsation periods up to 8 days. In a series of papers, Das et al. (2021), Das et al. (2024), Das et al. (2025b) presented theoretical period relations for BL Her stars across multiple wavelength bands, including Johnson–Cousins–Glass
Table 1 presents, to the best of our knowledge, a comprehensive compilation of all available
Table 1. Compilation of all
Figure 1. Empirical (in circles) and theoretical (in star-shaped symbols) estimates of the T2CEP metallicity dependence
4 Applications in distance scale and precision cosmology
Classical Cepheids have been extensively used in the first rung of the distance ladder scale of the SH0ES program (Supernovae and
In this context, it is essential to validate distances derived from classical Cepheids by employing independent populations of pulsating variables. T2CEPs are particularly promising for this purpose due to their minimal metallicity dependence in the
Despite their promise, T2CEPs currently face a few challenges when applied to precision cosmology. The intrinsically lower luminosity of T2CEPs restricts their effective use as distance indicators to approximately only a few Mpc with present-day instrumentation and the population of known T2CEPs beyond the Local Group therefore remains small. Studies of T2CEPs in the Milky Way have largely focused on globular clusters and the Galactic bulge (e.g., Bhardwaj et al., 2017c; Bhardwaj et al., 2022; Narloch et al., 2025; Cruz Reyes et al., 2025). Investigations in the Magellanic Clouds have examined their luminosities and
5 Summary
This work provides a comprehensive review of the effect of metallicity on the
Despite significant progress, the field of T2CEPs still presents many open challenges. On the theoretical side, current stellar pulsation codes are able to reliably reproduce the behavior of BL Her and short-period W Vir stars, but they face substantial difficulties in modeling long-period W Vir and RV Tau variables. These complications arise from the unstable outer layers of such stars, where the radiation-diffusion approximation breaks down and pulsation-driven mass loss may also need to be included to adequately describe their variability (Smolec, 2016; Paxton et al., 2019). Empirical
In summary, T2CEPs are emerging as reliable and complementary distance indicators, owing to the minimal impact of metallicity on their
Author contributions
SD: Data curation, Formal Analysis, Writing – original draft, Writing – review and editing. AB: Writing – review and editing. MM: Writing – review and editing.
Funding
The authors declare that financial support was received for the research and/or publication of this article. This research was supported by the International Space Science Institute (ISSI) in Bern/Beijing through ISSI/ISSI-BJ International Team project ID #24-603 - “EXPANDING Universe” (EXploiting Precision AstroNomical Distance INdicators in the Gaia Universe). SD acknowledges the KKP-137523 ‘SeismoLab’ Élvonal grant of the Hungarian Research, Development and Innovation Office (NKFIH). AB thanks the funding from the Anusandhan National Research Foundation (ANRF) under the Prime Minister Early Career Research Grant scheme (ANRF/ECRG/2024/000675/PMS).
Acknowledgements
The authors are grateful to the referee for useful suggestions that improved the quality of the manuscript. This research has made use of NASA’s Astrophysics Data System.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
Generative AI statement
The authors declare that no Generative AI was used in the creation of this manuscript.
Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Footnotes
1 https://gea.esac.esa.int/archive/
2 https://ogle.astrouw.edu.pl/
3 https://www.eso.org/sci/facilities/paranal/telescopes/vista.html
4 https://www.sdss4.org/dr17/irspec/
6
The explanation for the different
7 https://rubinobservatory.org/
8 https://waps.cfa.harvard.edu/MIST/index.html
9 https://roman.gsfc.nasa.gov/
References
Alcock, C., Allsman, R. A., Alves, D. R., Axelrod, T. S., Becker, A., Bennett, D. P., et al. (1998). The MACHO project LMC variable star inventory. VII. The discovery of RV tauri stars and new type II cepheids in the Large Magellanic Cloud. AJ 115, 1921–1933. doi:10.1086/300317
Alexander, D. R., and Ferguson, J. W. (1994). Low-temperature rosseland opacities. ApJ 437, 879. doi:10.1086/175039
Arp, H. C. (1955). Cepheids of period greater than 1 day in globular clusters. AJ 60, 1–17. doi:10.1086/107091
Baade, W. (1944). The resolution of Messier 32, NGC 205, and the central region of the andromeda nebula. ApJ 100, 137. doi:10.1086/144650
Balog, Z., Vinko, J., and Kaszas, G. (1997). Baade-wesselink radius determination of type II cepheids. AJ 113, 1833. doi:10.1086/118394
Baumgardt, H., and Vasiliev, E. (2021). Accurate distances to galactic globular clusters through a combination of gaia EDR3, HST, and literature data. MNRAS 505, 5957–5977. doi:10.1093/mnras/stab1474
Beaton, R. L., Freedman, W. L., Madore, B. F., Bono, G., Carlson, E. K., Clementini, G., et al. (2016). The carnegie-chicago hubble program. I. An independent approach to the extragalactic distance scale using only population II distance indicators. ApJ 832, 210. doi:10.3847/0004-637X/832/2/210
Bellm, E. C., Kulkarni, S. R., Graham, M. J., Dekany, R., Smith, R. M., Riddle, R., et al. (2019). The Zwicky transient facility: system overview, performance, and first results. PASP 131, 018002. doi:10.1088/1538-3873/aaecbe
Bersier, D., Burki, G., and Kurucz, R. L. (1997). Fundamental parameters of cepheids. IV. Radii and luminosities. A&A 320, 228–236.
Bhardwaj, A. (2020). High-precision distance measurements with classical pulsating stars. J. Astrophysics Astronomy 41, 23. doi:10.1007/s12036-020-09640-z
Bhardwaj, A., Kanbur, S. M., Marconi, M., Rejkuba, M., Singh, H. P., and Ngeow, C.-C. (2017a). A comparative study of multiwavelength theoretical and observed light curves of cepheid variables. MNRAS 466, 2805–2824. doi:10.1093/MNRAS/stw3256
Bhardwaj, A., Macri, L. M., Rejkuba, M., Kanbur, S. M., Ngeow, C.-C., and Singh, H. P. (2017b). Large Magellanic Cloud near-infrared synoptic survey. IV. Leavitt laws for type II cepheid variables. AJ 153, 154. doi:10.3847/1538-3881/aa5e4f
Bhardwaj, A., Rejkuba, M., Minniti, D., Surot, F., Valenti, E., Zoccali, M., et al. (2017c). Galactic bulge population II cepheids in the VVV survey: period-luminosity relations and a distance to the galactic centre. A&A 605, A100. doi:10.1051/0004-6361/201730841
Bhardwaj, A., Kanbur, S. M., Rejkuba, M., Marconi, M., Catelan, M., Ripepi, V., et al. (2022). Near-infrared observations of RR lyrae and Type II cepheid variables in the metal-rich bulge globular cluster NGC 6441. A&A 668, A59. doi:10.1051/0004-6361/202244728
Bhardwaj, A., Riess, A. G., Catanzaro, G., Trentin, E., Ripepi, V., Rejkuba, M., et al. (2023). High-resolution spectroscopic metallicities of Milky Way cepheid standards and their impact on the leavitt law and the hubble constant. ApJL 955, L13. doi:10.3847/2041-8213/acf710
Bhardwaj, A., Ripepi, V., Testa, V., Molinaro, R., Marconi, M., De Somma, G., et al. (2024). Cepheid metallicity in the leavitt law (C-MetaLL) survey. V. New multiband (grizJHKs) Cepheid light curves and period-luminosity relations. A&A 683, A234. doi:10.1051/0004-6361/202348140
Bono, G., and Stellingwerf, R. F. (1994). Pulsation and stability of RR lyrae stars. 1: instability strip. ApJS 93, 233. doi:10.1086/192054
Bono, G., Caputo, F., and Santolamazza, P. (1997). Evolutionary scenario for metal-poor pulsating stars. I. Type II Cepheids. A&A 317, 171–177.
Bono, G., Braga, V. F., Fiorentino, G., Salaris, M., Pietrinferni, A., Castellani, M., et al. (2020). Evolutionary and pulsation properties of Type II cepheids. A&A 644, A96. doi:10.1051/0004-6361/202038191
Bono, G., Braga, V. F., and Pietrinferni, A. (2024). Cepheids as distance indicators and stellar tracers. A&A Rev. 32, 4. doi:10.1007/s00159-024-00153-0
Braga, V. F., Bono, G., Fiorentino, G., Stetson, P. B., Dall’Ora, M., Salaris, M., et al. (2020). Separation between RR lyrae and type II Cepheids and their importance for a distance determination: the case of omega cen. A&A 644, A95. doi:10.1051/0004-6361/202039145
Breuval, L., Anand, G. S., Anderson, R. I., Beaton, R., Bhardwaj, A., Casertano, S., et al. (2025). Converging on the Cepheid metallicity dependence: implications of non-standard gaia parallax recalibration on distance measures. arXiv E-Prints , arXiv:2507.15936doi 994, 111. doi:10.3847/1538-4357/ae0cb9
Cardelli, J. A., Clayton, G. C., and Mathis, J. S. (1989). The relationship between infrared, optical, and ultraviolet extinction. ApJ 345, 245. doi:10.1086/167900
Carson, R., and Stothers, R. (1982). BL HER stars: theoretical models for field variables. ApJ 259, 740–748. doi:10.1086/160210
Castelli, F., Gratton, R. G., and Kurucz, R. L. (1997a). (Erratum) notes on the convection in the ATLAS9 model atmospheres. A&A 324, 432.
Castelli, F., Gratton, R. G., and Kurucz, R. L. (1997b). Notes on the convection in the ATLAS9 model atmospheres. A&A 318, 841–869.
Cruz Reyes, M., Anderson, R. I., and Das, S. (2025). Variable stars in galactic globular clusters: II. Population II cepheids. A&A 695, A164. doi:10.1051/0004-6361/202453137
Cruz Reyes, M., Anderson, R. I., Johansson, L. N. H., and Medaric, Z. (2024). Variable stars in galactic globular clusters - i. the population of rr lyrae stars. A&A 684, A173. doi:10.1051/0004-6361/202348961
Das, S., Kanbur, S. M., Smolec, R., Bhardwaj, A., Singh, H. P., and Rejkuba, M. (2021). A theoretical framework for BL her stars - I. Effect of metallicity and convection parameters on period-luminosity and period-radius relations. MNRAS 501, 875–891. doi:10.1093/mnras/staa3694
Das, S., Molnár, L., Kanbur, S. M., Joyce, M., Bhardwaj, A., Singh, H. P., et al. (2024). A theoretical framework for BL her stars. II. New period-luminosity relations in gaia passbands. A&A 684, A170. doi:10.1051/0004-6361/202348280
Das, S., Molnár, L., Kovács, G. B., Smolec, R., Joyce, M., Kanbur, S. M., et al. (2025a). A theoretical framework for BL her stars: III. A case study: robust light curve optimization in the Large Magellanic Cloud. A&A 694, A255. doi:10.1051/0004-6361/202452182
Das, S., Molnár, L., Szabó, R., Singh, H. P., Kanbur, S. M., Bhardwaj, A., et al. (2025b). A theoretical framework for BL her stars: IV. New period-luminosity relations in the Rubin-LSST filters. A&A 695, A38. doi:10.1051/0004-6361/202452465
De Somma, G., Marconi, M., Molinaro, R., Ripepi, V., Leccia, S., and Musella, I. (2022). An updated metal-dependent theoretical scenario for classical cepheids. ApJS 262, 25. doi:10.3847/1538-4365/ac7f3b
De Somma, G., Marconi, M., Cassisi, S., and Molinaro, R. (2024). Stellar pulsation and evolution: a combined theoretical renewal and updated models (SPECTRUM). I. Updating radiative opacities for pulsation models of classical cepheid and RR-Lyrae. ApJ 977, 1. doi:10.3847/1538-4357/ad8eb2
Deka, M., Bellinger, E. P., Kanbur, S. M., Deb, S., Bhardwaj, A., Randall, H. R., et al. (2024). Bridging theory and observations in stellar pulsations: the impact of convection and metallicity on the instability strips of classical and type-II cepheids. MNRAS 530, 5099–5119. doi:10.1093/mnras/stae1136
Demers, S., and Harris, W. E. (1974). The instability strip of population 2 cepheids. AJ 79, 627–630. doi:10.1086/111586
Di Criscienzo, M., Caputo, F., Marconi, M., and Cassisi, S. (2007). Synthetic properties of bright metal-poor variables. II. BL hercules stars. A&A 471, 893–900. doi:10.1051/0004-6361:20066541
Dias, B., Barbuy, B., Saviane, I., Held, E. V., Da Costa, G. S., Ortolani, S., et al. (2015). FORS2/VLT survey of Milky Way globular clusters. I. Description of the method for derivation of metal abundances in the optical and application to NGC 6528, NGC 6553, M 71, NGC 6558, NGC 6426, and terzan 8. A&A 573, A13. Astron. Astrophys. 573, A13. doi:10.1051/0004-6361/201423996
Dias, B., Barbuy, B., Saviane, I., Held, E. V., Da Costa, G. S., Ortolani, S., et al. (2016a). FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale. A&A 590, A9. doi:10.1051/0004-6361/201526765
Dias, B., Saviane, I., Barbuy, B., Held, E. V., Da Costa, G., Ortolani, S., et al. (2016b). Globular clusters and the Milky Way connected by chemistry. Messenger 165, 19–21.
Ferguson, J. W., Alexander, D. R., Allard, F., Barman, T., Bodnarik, J. G., Hauschildt, P. H., et al. (2005). Low-temperature opacities. ApJ 623, 585–596. doi:10.1086/428642
Gaia Collaboration, , Vallenari, A., Brown, A. G. A., Prusti, T., de Bruijne, J. H. J., Arenou, F., et al. (2023). Gaia data release 3 - summary of the content and survey properties. Gaia data release 3 - summary of the content and survey properties AA 674, A1. doi:10.1051/0004-6361/202243940
Gingold, R. A. (1976). The evolutionary status of population II cepheids. ApJ 204, 116–130. doi:10.1086/154156
Gonzalez, G. (1994). A study of the UV-Bright stars in omega CEN and the Type II Cepheid ST PUP. PASP 106, 201. doi:10.1086/133370
Gratton, R. G., Bragaglia, A., Carretta, E., Clementini, G., Desidera, S., Grundahl, F., et al. (2003). Distances and ages of NGC 6397, NGC 6752 and 47 Tuc. A&A 408, 529–543. doi:10.1051/0004-6361:20031003
Gray, D. F. (2005). The Observation and Analysis of Stellar Photospheres. Cambridge, Unted Kingdom: Cambridge University Press. doi:10.1017/CBO9781316036570
Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S., and Finkbeiner, D. (2019). A 3D dust map based on gaia, Pan-STARRS 1, and 2MASS. ApJ 887, 93. doi:10.3847/1538-4357/ab5362
Groenewegen, M. A. T., and Jurkovic, M. I. (2017a). Luminosities and infrared excess in Type II and anomalous Cepheids in the large and small magellanic clouds. A&A 603, A70. doi:10.1051/0004-6361/201730687
Groenewegen, M. A. T., and Jurkovic, M. I. (2017b). The period-luminosity and period-radius relations of Type II and anomalous Cepheids in the large and small magellanic clouds. A&A 604, A29. doi:10.1051/0004-6361/201730946
Harris, W. E. (1996). A catalog of parameters for globular clusters in the Milky Way. AJ 112, 1487. doi:10.1086/118116
Harris, W. E. (2010). A catalog of parameters for globular clusters in the Milky Way. arXiv e-prints arXiv:1012.3224. doi:10.48550/arXiv.1012.3224
Hodapp, K. W., Chini, R., Reipurth, B., Murphy, M., Lemke, R., Watermann, R., et al. (2010). Commissioning of the infrared imaging survey (IRIS) system. Ground-based and airborne instrumentation for astronomy III, eds. I. S. McLean, S. K. Ramsay, and H. Takami 7735 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 77351A. doi:10.1117/12.856288
Hubble, E., and Humason, M. L. (1931). The velocity-distance relation among extra-galactic nebulae. ApJ 74, 43. doi:10.1086/143323
Jermyn, A. S., Bauer, E. B., Schwab, J., Farmer, R., Ball, W. H., Bellinger, E. P., et al. (2023). Modules for experiments in stellar astrophysics (MESA): time-dependent convection, energy conservation, automatic differentiation, and infrastructure. ApJS 265, 15. doi:10.3847/1538-4365/acae8d
Joy, A. H. (1949). Spectra of the brighter variables in globular clusters. ApJ 110, 105. doi:10.1086/145190
Kiss, L. L., Derekas, A., Szabó, G. M., Bedding, T. R., and Szabados, L. (2007). Defining the instability strip of pulsating post-AGB binary stars from ASAS and NSVS photometry. MNRAS 375, 1338–1348. doi:10.1111/j.1365-2966.2006.11387.x
Kodric, M., Riffeser, A., Hopp, U., Goessl, C., Seitz, S., Bender, R., et al. (2018). Cepheids in M31: the PAndromeda cepheid sample. AJ 156, 130. doi:10.3847/1538-3881/aad40f
Kovacs, G., and Buchler, J. R. (1988). Regular and irregular nonlinear pulsation in population II Cepheid models. ApJ 334, 971. doi:10.1086/166890
Kovács, G. B., Nuspl, J., and Szabó, R. (2023). Calibration of the convective parameters in stellar pulsation hydrocodes. MNRAS 521, 4878–4895. doi:10.1093/mnras/stad884
Kovács, G. B., Nuspl, J., and Szabó, R. (2024). Temperature-dependent convective parameters for RRc 1D models. MNRAS 527, L1–L6. doi:10.1093/mnrasl/slad131
Kudritzki, R.-P., Urbaneja, M. A., Bresolin, F., Przybilla, N., Gieren, W., Pietrzy´nski, G., et al. (2008). Quantitative spectroscopy of 24 a supergiants in the sculptor galaxy NGC 300: flux-weighted gravity-luminosity relationship, metallicity, and metallicity gradient. ApJ 681, 269–289. doi:10.1086/588647
Lejeune, T., Cuisinier, F., and Buser, R. (1998). A standard stellar library for evolutionary synthesis. II. The M dwarf extension. A&AS 130, 65–75. doi:10.1051/aas:1998405
Lengen, B., Anderson, R. I., Cruz Reyes, M., and Viviani, G. (Forthcoming 2025). A joint 1% calibration of the RR Lyrae and type-II Cepheid leavitt laws yields homogeneous distances to 93 galactic globular clusters. arXiv E-Prints. doi:10.48550/arXiv.2509.16331
Lindegren, L., Klioner, S. A., Hernández, J., Bombrun, A., Ramos-Lerate, M., Steidelmüller, H., et al. (2021). Gaia early data release 3. The astrometric solution. A&A 649, A2. doi:10.1051/0004-6361/202039709
Maas, T., Giridhar, S., and Lambert, D. L. (2007). The chemical compositions of the type II cepheids-the BL herculis and W virginis variables. ApJ 666, 378–392. doi:10.1086/520081
Madore, B. F. (1982). The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. Astrophys. J. 253, 575–579. doi:10.1086/159659
Majaess, D. J. (2010). RR Lyrae and type II cepheid variables adhere to a common distance relation. J. Am. Assoc. Var. Star Observers (JAAVSO) 38, 100.
Majaess, D., Turner, D., and Lane, D. (2009). Type II cepheids as extragalactic distance candles, 59, 403–418. doi:10.48550/arXiv.0909.0181
Marconi, M., Molinaro, R., Ripepi, V., De Somma, G., Sicignano, T., Deka, M., et al. (2025). New theoretical predictions on Type II cepheids: towards a self consistent Pop. II distance scale. arXiv E-Prints, arXiv:2509.13552. doi:10.48550/arXiv.2509.13552
Matsunaga, N., Fukushi, H., Nakada, Y., Tanabé, T., Feast, M. W., Menzies, J. W., et al. (2006). The period-luminosity relation for type II Cepheids in globular clusters. MNRAS 370, 1979–1990. doi:10.1111/j.1365-2966.2006.10620.x
Matsunaga, N., Feast, M. W., and Menzies, J. W. (2009). Period-luminosity relations for type II Cepheids and their application. MNRAS 397, 933–942. doi:10.1111/j.1365-2966.2009.14992.x
Matsunaga, N., Feast, M. W., and Soszyński, I. (2011). Period-luminosity relations of type II Cepheids in the magellanic clouds. MNRAS 413, 223–234. doi:10.1111/j.1365-2966.2010.18126.x
McNamara, D. H. (1995). Period-luminosity relations of population II cepheids. AJ 109, 2134. doi:10.1086/117438
Nagashima, C., Nagayama, T., Nakajima, Y., Tamura, M., Sugitani, K., Nagata, T., et al. (1999). “Development of SIRIUS — a simultaneous-color InfraRed imager for unbiased survey,” in Star formation 1999. Editor T. Nakamoto 397–398.
Nagayama, T., Nagashima, C., Nakajima, Y., Nagata, T., Sato, S., Nakaya, H., et al. (2003). “SIRIUS: a near infrared simultaneous three-band camera. In instrument design and performance for Optical/Infrared Ground-based telescopes,” in 4841 of society of photo-optical instrumentation engineers (SPIE) conference series . Editors M. Iye, and A. F. M. Moorwood 459–464. doi:10.1117/12.460770
Narloch, W., Hajdu, G., Pietrzyński, G., Wielgórski, P., Smolec, R., Gieren, W., et al. (2025). Period–luminosity relations for galactic Type II Cepheids in the sloan bands. A&A 697, A30. doi:10.1051/0004-6361/202553733
Nemec, J. M., Nemec, A. F. L., and Lutz, T. E. (1994). Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars. AJ 108, 222. doi:10.1086/117062
Ngeow, C.-C., Bhardwaj, A., Henderson, J.-Y., Graham, M. J., Laher, R. R., Medford, M. S., et al. (2022). Zwicky transient facility and globular clusters: the period-luminosity and period-wesenheit relations for type II cepheids. AJ 164, 154. doi:10.3847/1538-3881/ac87a4
O’Donnell, J. E. (1994). R[SUB]nu[/SUB]-dependent optical and near-ultraviolet extinction. ApJ 422, 158. doi:10.1086/173713
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., and Timmes, F. (2011). Modules for experiments in stellar astrophysics (MESA). ApJS 192, 3. doi:10.1088/0067-0049/192/1/3
Paxton, B., Cantiello, M., Arras, P., Bildsten, L., Brown, E. F., Dotter, A., et al. (2013). Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. ApJS 208, 4. doi:10.1088/0067-0049/208/1/4
Paxton, B., Marchant, P., Schwab, J., Bauer, E. B., Bildsten, L., Cantiello, M., et al. (2015). Modules for experiments in stellar astrophysics (MESA): Binaries, pulsations, and explosions. ApJS 220, 15. doi:10.1088/0067-0049/220/1/15
Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., et al. (2018). Modules for experiments in stellar astrophysics: Convective boundaries, element diffusion, and massive star explosions. ApJS 234, 34. doi:10.3847/1538-4365/aaa5a8
Paxton, B., Smolec, R., Schwab, J., Gautschy, A., Bildsten, L., Cantiello, M., et al. (2019). Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. ApJS 243, 10. doi:10.3847/1538-4365/ab2241
Planck, C., Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., et al. (2020). Planck 2018 results - vi. cosmological parameters. A&A 641, A6. doi:10.1051/0004-6361/201833910
Pritzl, B. J., Smith, H. A., Catelan, M., and Sweigart, A. V. (2002). Variable stars in the unusual, metal-rich globular cluster NGC 6388. AJ 124, 949–976. doi:10.1086/341381
Ramolla, M., Westhues, C., Hackstein, M., Haas, M., Hodapp, K., Lemke, R., et al. (2016). A green observatory in the Chilean atacama desert. In Modeling, systems engineering, and project management for astronomy VI, eds. G. Z. Angeli, and P. Dierickx 9911 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 99112M. doi:10.1117/12.2234018
Riess, A. G., Macri, L., Casertano, S., Sosey, M., Lampeitl, H., Ferguson, H. C., et al. (2009). A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. ApJ 699, 539–563. doi:10.1088/0004-637X/699/1/539
Riess, A. G., Yuan, W., Macri, L. M., Scolnic, D., Brout, D., Casertano, S., et al. (2022). A comprehensive measurement of the local value of the hubble constant with 1 km s−1 Mpc−1 uncertainty from the hubble space telescope and the SH0ES team. ApJ 934, L7. doi:10.3847/2041-8213/ac5c5b
Riess, A. G., Scolnic, D., Anand, G. S., Breuval, L., Casertano, S., Macri, L. M., et al. (2024). JWST validates HST distance measurements: selection of supernova subsample explains differences in JWST estimates of local H0. ApJ 977, 120. doi:10.3847/1538-4357/ad8c21
Riess, A. G., Li, S., Anand, G. S., Yuan, W., Breuval, L., Casertano, S., et al. (Forthcoming 2025). “The perfect host: JWST cepheid observations in a background-free SN Ia host confirm no bias in hubble-constant measurements,” arXiv E-Prints. doi:10.48550/arXiv.2509.01667
Ripepi, V., Clementini, G., Molinaro, R., Leccia, S., Plachy, E., Molnár, L., et al. (2023). Gaia data release 3. Specific processing and validation of all sky RR Lyrae and Cepheid stars: the Cepheid sample. A&A 674, A17. doi:10.1051/0004-6361/202243990
Ripepi, V., Molinaro, R., Musella, I., Marconi, M., Leccia, S., Eyer, I., et al. (2019). Reclassification of Cepheids in the Gaia Data Release 2. Period-luminosity and period-Wesenheit relations in the Gaia passbands. Astronomy and Astrophysics 625, A14. doi:10.1051/0004-6361/201834506
Ripepi, V., Trentin, E., Catanzaro, G., Marconi, M., Bhardwaj, A., Clementini, G., et al. (Forthcoming 2025). Cepheid Metallicity in the leavitt law (C–MetaLL) survey: VII. Metallicity dependence of period-wesenheit relations based on a homogeneous spectroscopic sample. arXiv E-Prints. doi:10.48550/arXiv.2508.17447
Rodrigo, C., and Solano, E. (2020). “The SVO filter profile service,” in XIV.0 scientific meeting (virtual) of the Spanish astronomical society, 182.
Rodrigo, C., Solano, E., and Bayo, A. (2012). SVO filter profile service version 1.0. IVOA Work. Draft 15 Oct., 2012. doi:10.5479/ADS/bib/2012ivoa.rept.1015R
Sandage, A., and Tammann, G. A. (2006). Absolute magnitude calibrations of population I and II cepheids and other pulsating variables in the instability strip of the hertzsprung-russell diagram. ARA&A 44, 93–140. doi:10.1146/annurev.astro.43.072103.150612
Schlafly, E. F., and Finkbeiner, D. P. (2011). Measuring reddening with sloan digital sky survey stellar spectra and recalibrating SFD. ApJ 737, 103. doi:10.1088/0004-637X/737/2/103
Schlegel, D. J., Finkbeiner, D. P., and Davis, M. (1998). Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. ApJ 500, 525–553. doi:10.1086/305772
Sicignano, T., Ripepi, V., Marconi, M., Molinaro, R., Bhardwaj, A., Cioni, M. R. L., et al. (2024). The VMC survey. L. Type II cepheids in the Magellanic clouds: Period-Luminosity relations in the near-infrared bands. A&A 685, A41. doi:10.1051/0004-6361/202348650
Smolec, R. (2016). Survey of non-linear hydrodynamic models of type-II cepheids. MNRAS 456, 3475–3493. doi:10.1093/mnras/stv2868
Smolec, R., and Moskalik, P. (2008). Convective hydrocodes for radial stellar pulsation. Physical and numerical formulation. AcA 58, 193–232.
Soszyński, I., Udalski, A., Szymański, M. K., Kubiak, M., Pietrzyński, G., Wyrzykowski, Ł., et al. (2008). The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. II.Type II cepheids and anomalous cepheids in the Large Magellanic Cloud. AcA 58, 293.
Soszyński, I., Udalski, A., Pietrukowicz, P., Szymański, M. K., Kubiak, M., Pietrzyński, G., et al. (2011). The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. XIV. Classical and TypeII cepheids in the galactic bulge. AcA 61, 285–301.
Soszyński, I., Udalski, A., Szymański, M. K., Pietrukowicz, P., Mróz, P., Skowron, J., et al. (2014). Over 38000 RR lyrae stars in the OGLE galactic bulge fields. AcA 64, 177–196.
Soszyński, I., Udalski, A., Szymański, M. K., Wyrzykowski, Ł., Ulaczyk, K., Poleski, R., et al. (2017). The OGLE collection of variable stars. Classical, type II, and anomalous cepheids toward the galactic center. AcA 67, 297–316.
Soszyński, I., Udalski, A., Szymański, M. K., Wyrzykowski, Ł., Ulaczyk, K., Poleski, R., et al. (2018). The OGLE collection of variable stars. Type II cepheids in the magellanic system. AcA 68, 89–109.
Soszyński, I., Smolec, R., Udalski, A., and Pietrukowicz, P. (2019). Type II cepheids pulsating in the first overtone from the OGLE survey. ApJ 873, 43. doi:10.3847/1538-4357/ab04ab
Stellingwerf, R. F. (1982a). Convection in pulsating stars. I - nonlinear hydrodynamics. II - RR Lyrae convection and stability. ApJ 262, 330–338. doi:10.1086/160425
Stellingwerf, R. F. (1982b). Convection in pulsating stars - part two - rr-lyrae convection and stability. ApJ 262, 339–343. doi:10.1086/160426
Vásquez, S., Saviane, I., Held, E. V., Da Costa, G. S., Dias, B., Gullieuszik, M., et al. (2018). Homogeneous metallicities and radial velocities for galactic globular clusters. II. New CaT metallicities for 28 distant and reddened globular clusters. A&A 619, A13. doi:10.1051/0004-6361/201833525
Verde, L., Treu, T., and Riess, A. G. (2019). Tensions between the early and late universe. Nat. Astron. 3, 891–895. doi:10.1038/s41550-019-0902-0
Vinko, J., Remage Evans, N., Kiss, L. L., and Szabados, L. (1998). Spectroscopic survey of field Type II cepheids. MNRAS 296, 824–838. doi:10.1046/j.1365-8711.1998.01389.x
Wallerstein, G. (2002). The cepheids of population II and related stars. PASP 114, 689–699. doi:10.1086/341698
Wallerstein, G., and Cox, A. N. (1984). The population II Cepheids. PASP 96, 677–691. doi:10.1086/131406
Wielgórski, P., Pietrzyński, G., Pilecki, B., Gieren, W., Zgirski, B., Górski, M., et al. (2022). An absolute calibration of the near-infrared period-luminosity relations of type II cepheids in the Milky Way and in the Large Magellanic Cloud. ApJ 927, 89. doi:10.3847/1538-4357/ac470c
Wielgórski, P., Pietrzyński, G., Gieren, W., Zgirski, B., Górski, M., Storm, J., et al. (2024). Projection factor and radii of Type II cepheids: BL her stars. A&A 689, A241. doi:10.1051/0004-6361/202450182
Yacob, A. M., Berdinkov, L. N., and Pastukhova, E. N. (2025). A study on the evolutionary period changes of short-period type II cepheids. Ap&SS 370, 28. doi:10.1007/s10509-025-04418-7
Keywords: Cepheid, Population II, period-luminosity relation, variable, stars, low mass stars, cosmic distance scale
Citation: Das S, Bhardwaj A and Marconi M (2026) Type II Cepheids: period-luminosity-metallicity relations for the Population II distance scale. Front. Astron. Space Sci. 12:1718800. doi: 10.3389/fspas.2025.1718800
Received: 04 October 2025; Accepted: 18 November 2025;
Published: 05 January 2026.
Edited by:
Tiago Campante, Instituto de Astrofísica e Ciências do Espaço (IA), PortugalReviewed by:
Piotr Wielgorski, Polish Academy of Sciences, PolandCopyright © 2026 Das, Bhardwaj and Marconi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Susmita Das, c3VzbWl0YS5kYXNAaXVjYWEuaW4=