ORIGINAL RESEARCH article

Front. Cell Dev. Biol.

Sec. Molecular and Cellular Pathology

Volume 13 - 2025 | doi: 10.3389/fcell.2025.1603958

This article is part of the Research TopicArtificial Intelligence Applications in Chronic Ocular Diseases, Volume IIView all 37 articles

A Machine Learning Model for Predicting Anatomical Response to Anti-VEGF Therapy in Diabetic Macular Edema

Provisionally accepted
  • 1Fujian Provincial Hospital, Fuzhou, Fujian Province, China
  • 2Fujian Medical University, Fuzhou, China
  • 3China Medical University, Shenyang, Liaoning Province, China

The final, formatted version of the article will be published soon.

To develop a machine learning model to predict anatomical response to anti-VEGF therapy in patients with diabetic macular edema (DME).This retrospective study included patients with DME who underwent intravitreal anti-VEGF treatment between January 2023 and February 2025. Baseline data included optical coherence tomography (OCT) features and blood-based metabolic and hematologic markers. The primary outcome was defined as a ≥20% reduction in central retinal thickness (CRT) post-treatment. Feature selection was performed using univariate logistic regression and LASSO regression. Five machine learning algorithms-logistic regression, decision tree, multilayer perceptron, random forest, and support vector machine-were trained and validated. Model performance was evaluated using accuracy, sensitivity, specificity, Area Under the Receiver Operating Characteristic Curve (AUC), and decision curve analysis. The best-performing model was further interpreted using SHAP analysis, and a nomogram was constructed for clinical application.Among the 37 baseline variables, five key predictors were identified: preoperative CRT >400 μm, presence of retinal edema, presence of subretinal fluid (SRF), disorganization of the inner retinal layers (DRIL), and ellipsoid zone (EZ) integrity. The logistic regression model achieved the best performance with an accuracy of 0.83, sensitivity of 0.85, specificity of 0.79, and an AUC of 0.90 (95% CI: 0.81-0.99). SHAP analysis revealed that preoperative retinal edema, DRIL, SRF, and CRT had the strongest positive contributions, while intact EZ was a negative predictor of CRT reduction. A nomogram was developed to facilitate individualized clinical decision-making.We successfully developed a predictive model for anatomical response to anti-VEGF therapy in DME patients. The model identified key features associated with treatment outcomes, providing a valuable tool for personalized therapeutic planning. Further validation in multicenter cohorts is warranted to confirm generalizability and enhance model robustness.

Keywords: diabetic macular edema, anti-vegf, predictive model, nomogram, Diabetic Retinopathy

Received: 01 Apr 2025; Accepted: 23 May 2025.

Copyright: © 2025 Lu, Xiao, Zhang, Wang, Chen, Wang, Ye, Lou and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Li Li, Fujian Provincial Hospital, Fuzhou, 350001, Fujian Province, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.