REVIEW article
Front. Cell. Infect. Microbiol.
Sec. Intestinal Microbiome
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1629005
This article is part of the Research TopicMucosal Microbiota Immunomodulation of the Gut-Lung AxisView all 8 articles
Respiratory Diseases and the Gut Microbiota: An Updated Review
Provisionally accepted- Jilin University, Changchun, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The gut microbiota constitutes a vital ecosystem within the human body playing a pivotal role in immune regulation and metabolic homeostasis. Emerging research underscores a sophisticated interplay between the gut and lungs, termed the "gut-lung axis." Gut microbes exert influence over pulmonary immunity and metabolism via immune mediators (e.g., cytokines and interleukins), metabolites (e.g., short-chain fatty acids) and direct microbial translocation. Dysbiosis of the gut microbiota has been implicated in a spectrum of respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), Coronavirus Disease 2019 (COVID-19), lung cancer, idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension (PAH), acute lower respiratory infection (ALRI) and tuberculosis (TB).Although multi-omics technologies have elucidated certain mechanisms underlying the gut-lung axis, numerous pathways remain to be fully delineated. This review synthesizes current knowledge on the role of gut microbiota and their metabolites in respiratory diseases and assesses their therapeutic potential. Future investigations should prioritize strategies to restore and maintain microbial homeostasis, such as dietary modifications, probiotic supplementation and fecal microbiota transplantation to pioneer novel preventive and therapeutic approaches. These summaries of advances in gut microbiology research promise better management and exploration of therapeutic strategies for respiratory diseases
Keywords: Gut Microbiota, Respiratory diseases, Gut-Lung Axis, short-chain fatty acids, faecal microbiota transplantation, Probiotics, Postbiotics, Dietary fibers
Received: 15 May 2025; Accepted: 28 Jul 2025.
Copyright: © 2025 Yu, Yu, Wang, Guo, Wang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Fang Wang, Jilin University, Changchun, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.