ORIGINAL RESEARCH article
Front. Cell. Infect. Microbiol.
Sec. Veterinary and Zoonotic Infection
Volume 15 - 2025 | doi: 10.3389/fcimb.2025.1653170
This article is part of the Research TopicUnveiling Host-Pathogen Interactions: Insights into Animal Cellular Immunity and Novel Diagnostics - Volume IIView all 15 articles
Construction of an EGFP-Embedded Porcine Reproductive and Respiratory Syndrome Virus Infectious Clone and Antiviral Drug Screening
Provisionally accepted- Northeast Agricultural University, Harbin, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen posed a serious threat to the global swine industry. In this study, a BAC-based reverse genetics platform was established using a highly pathogenic PRRSV (HP-PRRSV) strain. Three recombinant reporter viruses were constructed by inserting the enhanced green fluorescent protein (EGFP) gene into three different intergenic regions of the complete PRRSV-L251 genome. Immunofluorescence assays combined with viral growth kinetics and reporter gene stability assessments indicated that rL251-ORF4-5a-EGFP maintained relatively stable expression during serial passage, and viral titers at 72 hours post-infection (hpi) were comparable to the parental virus. Subsequently, we identified four candidate compounds with potential anti-PRRSV activity using rPRRSV-L251-ORF4-5a-EGFP, indicating that this platform can be used as a visual assessment tool for antiviral drug screening. This study demonstrated that the ORF4-5a interval region is a feasible and promising site for exogenous gene insertion, and provided a robust technical platform for PRRSV vaccine development and pathogenesis studies.
Keywords: PPPSV1, BAC2, EGFP3, antiviral drug screening4, reverse genetics system5
Received: 24 Jun 2025; Accepted: 26 Jul 2025.
Copyright: © 2025 Liu, Fu, Yukun, Liu, Benjin, Lingzhi, Wei, Xiumei and Cui. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Yang Wei, Northeast Agricultural University, Harbin, China
Dong Xiumei, Northeast Agricultural University, Harbin, China
Jin Cui, Northeast Agricultural University, Harbin, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.