REVIEW article
Front. Cell. Infect. Microbiol.
Sec. Clinical and Diagnostic Microbiology and Immunology
This article is part of the Research TopicInvestigating lung biology, metabolism, and host susceptibility in mycobacterial infectionsView all 3 articles
Reprogramming the Host: Mycobacterium tuberculosis as a Silent Architect of the Immuno-Tumoral
Provisionally accepted- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Pulmonary tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of infectious disease-related mortality worldwide. In parallel, lung cancer represents the most lethal neoplasm, with high mortality rates globally. Emerging studies suggest that chronic Mtb infection may contribute to the development of lung cancer, particularly adenocarcinoma. Several biological mechanisms support this hypothesis. Chronic inflammation from tuberculosis creates a microenvironment enriched in proinflammatory cytokines, reactive oxygen species (ROS), and growth factors that favor cell proliferation, genomic instability, angiogenesis, and immune evasion, which are considered classic hallmarks of cancer. Additionally, both protein and non-protein virulence factors of Mtb have been shown to interfere with critical cellular signaling pathways related to tumor cell survival and invasion. Clinically, multiple observational studies and meta-analyses report an increased incidence of lung cancer among individuals with a history of tuberculosis, especially when both conditions coexist in the same pulmonary regions. Specific mutations, including EGFR, have been identified in patients with prior tuberculosis, influencing both prognosis and therapeutic response. Nevertheless, key questions remain regarding the causal nature of this association, the role of Mtb strains, and the molecular factors such as epigenetic modifications or the lung microbiome. This review proposes that infection with Mtb could function as a carcinogenic agent. Further in vitro experiments, cellular models, and clinical investigations are urgently needed to support potential reclassification of this pathogen by international agencies such as the IARC.
Keywords: Mycobacterium tuberculosis, lung cancer, chronic inflammation, Carcinogenesis, immune-tumoral
Received: 02 Sep 2025; Accepted: 27 Oct 2025.
Copyright: © 2025 Chavez-Dominguez, Torres, Acevedo-Domínguez, Ibarra-Inocente and Carranza. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Claudia Carranza, carranza.salazar.claudia@gmail.com
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
