ORIGINAL RESEARCH article
Front. Endocrinol.
Sec. Cancer Endocrinology
Volume 16 - 2025 | doi: 10.3389/fendo.2025.1610534
This article is part of the Research TopicImpact of Dietary Factors on Human Gut Microbiota and Gastrointestinal EndocrinologyView all articles
The Impact of Altered Gut Microbiota and Lipid Metabolism on the Progression of Endometrial Cancer in Overweight Populations
Provisionally accepted- 1甘肃中医药大学, 兰州市, China
- 2Department of Neonatology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, Gansu Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Endometrial cancer (EC) is one of the common malignant tumors among women, and in recent years, the role of gut microbiota in tumorigenesis has been increasingly gaining attention.Existing research has shown that the gut microbiome, establishes axis connections with multiple extra-intestinal organs. However, whether gut microbes affect the process of endometrial carcinogenesis through metabolic pathways and the specific mechanisms by which they promote the development of EC remain unclear. This study aims to explore the impact of overweight-mediated gut microbiota on the initiation or progression of EC and to assess its relationship with metabolites, thereby providing new insights for early diagnosis and treatment.In this study, we analyzed gut microbiota differences among normal-weight, overweight EC patients, and healthy controls using 16S rRNA sequencing. Liquid chromatography-mass spectrometry (LC-MS) and KEGG analysis identified group-specific metabolites and pathways, while Spearman correlation analysis revealed associations between microbiota and metabolites.Results: This study revealed that in the ECMO group, the genus Megamonas exhibited the highest abundance and significant intergroup differences (H=13.46, P<0.05). Additionally, the Bacillota/Bacteroidota ratio (B/B ratio) gradually increased in the CN, ECMN, ECMO group. LEfSe analysis identified Megamonas and Amedibacillus as potential biomarkers for the ECMO group. Serum metabolomics of overweight EC patients highlighted lipid metabolism-related metabolites with the most specific expression. KEGG enrichment analysis of differential metabolites highlighted that the Glycerophospholipid metabolism and Purine metabolism pathways were notably significant in both the ECMN and ECMO groups.The study found significantly elevated abundance of Megamonas in the gut microbiota of overweight EC patients, which may promote EC progression by degrading inositol to enhance lipid absorption. This reveals the role of gut microbiota in EC pathogenesis through lipid metabolism regulation, providing a theoretical basis for microbiota-based diagnostic and therapeutic strategies.
Keywords: overweight1, endometrial cancer2, Gut Microbiota3, Gut microbial ecosystem4, Lipid metabolism5
Received: 12 Apr 2025; Accepted: 15 Jul 2025.
Copyright: © 2025 Chen, Peng, shao and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Zhenzhen Wu, Department of Neonatology, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, 730046, Gansu Province, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.