Due to a production error, there was a mistake in Table 1 as published. Some of the citations in Table 1 did not link to the correct references in the reference list. The corrected Table 1 appears below. The publisher apologizes for this mistake.
Table 1
| Disease | Cell identity | Model | Major finding | Reference |
|---|---|---|---|---|
| T1D | FOXP3- IL-10-producing CD4+ T cells | NOD BDC2.5 TCR-transgenic and NOD/SCID mice | Intestinal FOXP3- IL-10-producing CD4+ T cells can protect from T1D | 76 |
| IL-10-producing CD4+ T cells | NOD and NOD/SCID mice | Combination of rapamycin and IL-10 reduces incidence of diabetes | 77 | |
| GAD65-specific IL-10-producing CD4+ T cells | GAD65-immunized NOD and NOD/SCID mice | Protection from T1D in adoptive transfer experiments | 78 | |
| Antigen-specific IL-10-producing CD4+ T cells | Immunized NOD and NOD/SCID mice | Antigen-containing PLG nanoparticles protect from T1D | 79 | |
| CD49b+LAG-3+ Tr1 cells | Immunized NOD and NOD/SCID mice | IGRP- and 2.5mi/IAg7 nanoparticles expand pre-existing Tr1 cells and protect from T1D | 80 | |
| Islet-specific IL-10-producing CD4+ T cells | Patient PBMCs | Higher frequency in healthy donors | 81 | |
| Islet-specific IL-10-producing CD4+ T cells | Patient PBMCs | Higher frequency in first degree relatives | 82 | |
| Insulin-specific IL-10-producing CD4+ T cells | Patient PBMCs | Higher in patients that have better future glucose control | 83 | |
| IGFR-specific IL-10-producing CD4+ T cells | Patient PBMCs | Higher frequency in juvenile T1D compared to adult T1D | 84 | |
| IL-10-producing CD4+ T cells | Patient PBMCs | Increase in IL-10-producing CD4+ T cells upon anti-CD3 treatment | 85 | |
| Proinsulin-specific IL-10-producing CD4+ T cells | Proinsulin-immunized patient PBMCs | Increase in IL-10 production and decrease in insulin dependency | 86 | |
| IGRP-specific CD49b+LAG-3+ Tr1 cells | IGRP-immunized NSG mice reconstituted with DR4 patient PBMCs | Induction of IGRP-specific CD49b+LAG-3+ Tr1 cells | 80 | |
| MS | OVA-specific IL-10-producing CD4+ T cells | OVA-immunized MSCH-induced EAE mice | OVA-specific protection from EAE development | 87 |
| IL-10-producing CD4+ T cells | MOG-induced EAE mice | IL27-pulsed DCs upregulate IL-10 production by CD4+ T cells for protection from EAE development | 88 | |
| CD49b+LAG-3+ Tr1 cells | MOG-induced EAE mice | Protection from EAE development independently of IL-10 | 89 | |
| IL-10-producing CD4+ T cells | MOG-induced EAE mice | Melatonin induces IL-10-producing CD4+ T cells to protect from EAE development | 65 | |
| CD49b+LAG-3+ Tr1 cells | PLP-induced EAE mice | PLP- and MOG-containing pMHCII nanoparticles protect from EAE development | 80 | |
| IL-10-producing CD4+ T cells | PLP- and MOG-induced EAE | MOG- and AhR-containing NLPs protects from EAE development | 90 | |
| CD46-induced IL-10-producing CD4+ T cells | Patient PBMCs | Lower frequency in MS patients | 91 | |
| CD46-induced IL-10-producing CD4+ T cells | Patient PBMCs | Altered glycosylation of CD46 in MS patients | 57 | |
| SLE | CD46-induced IL-10-producing CD4+ T cells | Patient PBMCs | Lower frequency in SLE patients | 24 |
| IL-10-producing IL7R- CD4+ T cells | Patient PBMCs | Decreased ability in limiting autoantibody production by B cells | 16 | |
| IL-10-producing CXCR5-CXCR3+PD-1high CD4+ T cells | Patient PBMCs | CXCR5-CXCR3+PD-1high CD4+ T cell-derived IL-10 can stimulate autoantibody production | 92 | |
| Arthritis | Collagen type II-specific IL-10-producing CD4+ T cells | Collagen type II-immunized DBA/1 mice | Protection from arthritis development | 93 |
| Psoriasis | CD49b+LAG-3+ Tr1 cells | Patient PBMCs and skin biopsies | Presence of Tr1 cells inversely correlated with disease severity | 94 |
| Celiac disease | Gliadin-specific IL-10-producing CD4+ T cells | Patient intestinal T cells | Gliadin-specific suppression of effector T cells | 44 |
| Gliadin-specific IL-10-producing CD4+ T cells | Patient PBMCs and intestinal T cells | Multi-epitope gliadin extract induces tolerance in celiac disease patients | 95 | |
| IBD | OVA-specific IL-10-producing CD4+ T cells | CD4+CD45RBhigh adoptive transfer mice | Prevention of colitis in recipient mice | 4 |
| IL10-deficient CD4+CD45RBlow T cells | CD4+CD45RBhigh adoptive transfer mice | Protection from colitis is dependent on IL-10 | 96 | |
| IL-10-producing CD4+ T cells | CD4+CD45RBhigh adoptive transfer mice | Prevention of Th17-mediated colitis | 97 | |
| IL-10-producing CD4+ T cells | DSS-induced colitis mouse model | GSK-J4-mediated induction of tolerogenic DCs to promote IL-10 production by CD4+ T cells | 98 | |
| IL-10-producing CD44+CD4+ T cells | TNBS-induced colitis mouse model | MSCs induce expansion of IL-10-producing CD44+CD4+ T cells | 99 | |
| Intestinal IL7R-CCR5+PD-1+ Tr1 cells | Patient intestinal T cells | Decreased IL-10 production | 30 | |
| IL-10-producing OVA-Treg | Patient PBMCs | Amelioration of disease in treated patients | 100 | |
| CD49b+LAG-3+ Tr1 cells | Patient PBMCs and colon biopsies | Decrease of myeloid-derived inflammatory cytokines and production of IL-22 and mucin to promote barrier integrity | 69 |
Overview of the role of Tr1 and IL-10-producing CD4+ T cells in AIDs and IBD.
The original version of this article has been updated.
References
1
Bluestone JA Anderson M . Tolerance in the age of immunotherapy. New Engl J Med (2020) 383:1156–66. doi: 10.1056/nejmra1911109
2
Roncarolo MG Yssel H Touraine J-L Bacchetta R Gebuhrer L de Vries JE et al . Antigen recognition by MHC-incompatible cells of a human mismatched chimera. J Exp Med (1988) 168:2139–51. doi: 10.1084/jem.168.6.2139
3
Bacchetta R Bigler M Touraine J-L Parkman R Tovo P-A Abrams J et al . High levels of interleukin 10 production In vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med (1994) 179:493–502. doi: 10.1084/jem.179.2.493
4
Groux H O’Garra A Bigler M Rouleau M Antonenko S de Vries JE et al . A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature (1997) 389:737–42. doi: 10.1038/39614
5
Bacchetta R Sartirana C Levings MK Bordignon C Narula S Roncarolo MG . Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines. Eur J Immunol (2002) 32:2237–45. doi: 10.1002/1521-4141(200208)32:8<2237::AID-IMMU2237>3.0.CO;2-2
6
de Waal-Malefyt R Haanen J Spits H Roncarolo M-G te Velde A Figdor C et al . Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med (1991) 174:915–24. doi: 10.1084/jem.174.4.915
7
Ding L Linsley PS Huang LY Germain RN Shevach EM . IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol (1993) 151:1224–34.
8
Willems F Marchant A Delville J-P Gerard C Delvaux A Velu T et al . Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocyt es. Eur J Immunol (1994) 24:1007–9. doi: 10.1002/eji.1830240435
9
Chang C-H Furue M Tamaki K . B7-1 expression of langerhans cells is up-regulated by proinflammatory cytokines, and is down-regulated by interferon-y or by int erleukin-10. Eur J Immunol (1995) 25:394–8. doi: 10.1002/eji.1830250213
10
Tree TIM Lawson J Edwards H Skowera A Arif S Roep BO et al . Naturally arising human CD4 T-cells that recognize islet autoantigens and secrete interleukin-10 regulate proinflammatory T-cell responses via linked suppression. Diabetes (2010) 59:1451–60. doi: 10.2337/db09-0503
11
Gruarin P Maglie S de Simone M Häringer B Vasco C Ranzani V et al . Eomesodermin controls a unique differentiation program in human IL-10 and IFN-γ coproducing regulatory T cells. Eur J Immunol (2019) 49:96–111. doi: 10.1002/eji.201847722
12
Magnani CF Alberigo G Bacchetta R Serafini G Andreani M Roncarolo MG et al . Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur J Immunol (2011) 41:1652–62. doi: 10.1002/eji.201041120
13
Meiler F Zumkehr J Klunker S Rückert B Akdis CA Akdis M . In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J Exp Med (2008) 205:2887–98. doi: 10.1084/jem.20080193
14
Chen PP Cepika A Agarwal-hashmi R Saini G Uyeda MJ Louis DM et al . Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients. Sci Transl Med (2021) 13:eabf5264. doi: 10.1126/scitranslmed.abf5264
15
Sumitomo S Nakachi S Okamura T Tsuchida Y Kato R Shoda H et al . Identification of tonsillar CD4+CD25–LAG3+ T cells as naturally occurring IL-10-producing regulatory T cells in human lymphoid tissue. J Autoimmun (2017) 76:75–84. doi: 10.1016/j.jaut.2016.09.005
16
Facciotti F Gagliani N Häringer B Alfen JS Penatti A Maglie S et al . IL-10–producing forkhead box protein 3–negative regulatory T cells inhibit b-cell responses and are involved in systemic lupus erythematosus. J Allergy Clin Immunol (2016) 137:318–321.e5. doi: 10.1016/j.jaci.2015.06.044
17
Roncarolo MG Gregori S Bacchetta R Battaglia M Gagliani N . The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity (2018) 49:1004–19. doi: 10.1016/j.immuni.2018.12.001
18
Sayitoglu EC Freeborn RA Roncarolo MG . The yin and yang of type 1 regulatory T Cells : From discovery to clinical application. Front Immunol (2021) 12:693105. doi: 10.3389/fimmu.2021.693105
19
Qin S Cobbold SP Pope H Elliott J Kioussis D Davies J et al . “Infectious” transplantation tolerance. Science (1993) 259:974–7. doi: 10.1126/science.8094901
20
Altin JA Goodnow CC Cook MC . IL-10 + CTLA-4 + Th2 inhibitory cells form in a Foxp3-independent, IL-2–dependent manner from Th2 effectors during chronic inflammation. J Immunol (2012) 188:5478–88. doi: 10.4049/jimmunol.1102994
21
Cope A le Friec G Cardone J Kemper C . The Th1 life cycle: Molecular control of IFN-γ to IL-10 switching. Trends Immunol (2011) 32:278–86. doi: 10.1016/j.it.2011.03.010
22
Cardone J le Friec G Vantourout P Roberts A Fuchs A Jackson I et al . Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol (2010) 11:862–71. doi: 10.1038/ni.1917
23
Ahlers J Mantei A Lozza L Stäber M Heinrich F Bacher P et al . A Notch/STAT3-driven blimp-1/c-Maf-dependent molecular switch induces IL-10 expression in human CD4+ T cells and is defective in crohn´s disease patients. Mucosal Immunol (2022) 15:1–11. doi: 10.1038/s41385-022-00487-x
24
Tsai Y-G Chien J-W Chiu Y-M Su T-C Chiu P-F Hsiao K-H et al . Lupus nephritis with corticosteroid responsiveness: molecular changes of CD46-mediated type 1 regulatory T cells. Pediatr Res (2021). doi: 10.1038/s41390-021-01882-z
25
Gabrysova L Nicolson KS Streeter HB Verhagen J Sabatos-Peyton CA Morgan DJ et al . Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells. J Exp Med (2009) 206:1755–67. doi: 10.1084/jem20082118
26
Uyeda MJ Freeborn RA Cieniewicz B Romano R Chen PP Liu JM et al . BHLHE40 regulates IL-10 and IFN-γ production in T cells but does not interfere with human type 1 regulatory T cell differentiation. Front Immunol (2021) 12:683680. doi: 10.3389/fimmu.2021.683680
27
Gagliani N Magnani CF Huber S Gianolini ME Pala M Licona-Limon P et al . Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med (2013) 19:739–46. doi: 10.1038/nm.3179
28
Häringer B Lozza L Steckel B Geginat J . Identification and characterization of IL-10/IFN-γ-producing effector-like T cells with regulatory function in human blood. J Exp Med (2009) 206:1009–17. doi: 10.1084/jem.20082238
29
Okamura T Fujio K Shibuya M Sumitomo S Shoda H Sakaguchi S et al . CD4+CD25-LAG3+ regulatory T cells controlled by the transcription factor egr-2. Proc Natl Acad Sci (2009) 106:13974–9. doi: 10.1073/pnas.0906872106
30
Alfen JS Larghi P Facciotti F Gagliani N Bosotti R Paroni M et al . Intestinal IFN-γ–producing type 1 regulatory T cells coexpress CCR5 and programmed cell death protein 1 and downregulate IL-10 in the inflamed guts of patients with inflammatory bowel disease. J Allergy Clin Immunol (2018) 142:1537–1547.e8. doi: 10.1016/j.jaci.2017.12.984
31
Brockmann L Soukou S Steglich B Czarnewski P Zhao L Wende S et al . Molecular and functional heterogeneity of IL-10-producing CD4 + T cells. Nat Commun (2018) 9:5457. doi: 10.1038/s41467-018-07581-4
32
Bauché D Joyce-Shaikh B Jain R Grein J Ku KS Blumenschein WM et al . LAG3 + regulatory T cells restrain interleukin-23-Producing CX3CR1 + gut-resident macrophages during group 3 innate lymphoid cell-driven colitis. Immunity (2018) 49:342–352.e5. doi: 10.1016/j.immuni.2018.07.007
33
Banerjee H Nieves-rosado H Kulkarni A Delgoffe GM Ferris RL Kane LP et al . Expression of Tim-3 drives phenotypic and functional changes in treg cells in secondary lymphoid organs and the tumor microenvironment. CellReports (2021) 36:109699. doi: 10.1016/j.celrep.2021.109699
34
Apetoh L Quintana FJ Pot C Joller N Xiao S Kumar D et al . The aryl hydrocarbon receptor interacts with c-maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat Immunol (2010) 11:854–61. doi: 10.1038/ni.1912
35
Zhang H Madi A Yosef N Chihara N Awasthi A Pot C et al . An IL-27-Driven transcriptional network identifies regulators of IL-10 expression across T helper cell subsets. Cell Rep (2020) 33:108433. doi: 10.1016/j.celrep.2020.108433
36
Gandhi R Kumar D Burns EJ Nadeau M Dake B Laroni A et al . Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells. Nat Immunol (2010) 11:846–53. doi: 10.1038/ni.1915
37
Tousa S Semitekolou M Morianos I Banos A Trochoutsou AI Brodie TM et al . Activin-a co-opts IRF4 and AhR signaling to induce human regulatory T cells that restrain asthmatic responses. Proc Natl Acad Sci U.S.A. (2017) 114:2891–900. doi: 10.1073/pnas.1616942114
38
Roessner PM Llaó Cid L Lupar E Roider T Bordas M Schifflers C et al . EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia (2021) 35:2311–24. doi: 10.1038/s41375-021-01136-1
39
Bonnal RJP Rossetti G Lugli E de Simone M Gruarin P Brummelman J et al . Clonally expanded EOMES+ Tr1-like cells in primary and metastatic tumors are associated with disease progression. Nat Immunol (2021) 22:735–45. doi: 10.1038/s41590-021-00930-4
40
Baron U Floess S Wieczorek G Baumann K Grützkau A Dong J et al . DNA Demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur J Immunol (2007) 37:2378–89. doi: 10.1002/eji.200737594
41
Bevington SL Ng STH Britton GJ Keane P Wraith DC Cockerill PN . Chromatin priming renders T cell tolerance-associated genes sensitive to activation below the signaling threshold for immune response genes. Cell Rep (2020) 31:107748. doi: 10.1016/j.celrep.2020.107748
42
Yadava K Medina CO Ishak H Gurevich I Kuipers H Shamskhou EA et al . Natural tr1-like cells do not confer long-term tolerogenic memory. Elife (2019) 8:e44821. doi: 10.7554/eLife.44821
43
Omokanye A Ong LC Lebrero-Fernandez C Bernasconi V Schön K Strömberg A et al . Clonotypic analysis of protective influenza M2e-specific lung resident Th17 memory cells reveals extensive functional diversity. Mucosal Immunol (2022) 15:717–29. doi: 10.1038/s41385-022-00497-9
44
Gianfrani C Levings MK Sartirana C Mazzarella G Barba G Zanzi D et al . Gliadin-specific type 1 regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J Immunol (2006) 177:4178–86. doi: 10.4049/jimmunol.177.6.4178
45
Veldman C Höhne A Dieckmann D Schuler G Hertl M . Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol (2004) 172:6468–75. doi: 10.4049/jimmunol.172.10.6468
46
Li D Romain G Flamar AL Duluc D Dullaers M Li XH et al . Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med (2012) 209:109–21. doi: 10.1084/jem.20110399
47
Kim JE Sharma A Sharma G Lee SY Shin HS Rudra D et al . Lactobacillus pentosus modulates immune response by inducing IL-10 producing Tr1 cells. Immune Netw (2019) 19:e39. doi: 10.4110/in.2019.19.e39
48
Maquet C Baiwir J Loos P Rodriguez-Rodriguez L Javaux J Sandor R et al . Ly6Chi monocytes balance regulatory and cytotoxic CD4 T cell responses to control virus-induced immunopathology. Sci Immunol (2022) 7:eabn3240. doi: 10.1126/sciimmunol.abn3240
49
Gregori S Tomasoni D Pacciani V Scirpoli M Battaglia M Magnani CF et al . Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood (2010) 116:935–44. doi: 10.1182/blood-2011-08-377416
50
Mfarrej B Jofra T Morsiani C Gagliani N Fousteri G Battaglia M . Key role of macrophages in tolerance induction via T regulatory type 1 (Tr1) cells. Clin Exp Immunol (2020) 201:222–30. doi: 10.1111/cei.13440
51
Wakkach A Cottrez F Groux H . Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J Immunol (2001) 167:3107–13. doi: 10.4049/jimmunol.167.6.3107
52
Sutavani RV Bradley RG Ramage JM Jackson AM Durrant LG Spendlove I . CD55 costimulation induces differentiation of a discrete T regulatory type 1 cell population with a stable phenotype. J Immunol (2013) 191:5895–903. doi: 10.4049/jimmunol.1301458
53
Ito T Yang M Wang YH Lande R Gregorio J Perng OA et al . Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med (2007) 204:105–15. doi: 10.1084/jem.20061660
54
Ding Q Lu L Wang B Zhou Y Jiang Y Zhou X et al . B7H1-ig fusion protein activates the CD4 + IFN-γ receptor + type 1 T regulatory subset through IFN-γ-Secreting Th1 cells. J Immunol (2006) 177:3606–14. doi: 10.4049/jimmunol.177.6.3606
55
Kemper C Chan AC Green JM Brett KA Murphy KM Atkinson JP . Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature (2003) 421:388–92. doi: 10.1038/nature01315
56
le Friec G Sheppard D Whiteman P Karsten CM Shamoun SAT Laing A et al . The CD46-Jagged1 interaction is critical for human T h 1 immunity. Nat Immunol (2012) 13:1213–21. doi: 10.1038/ni.2454
57
Choileain SN Hay J Thomas J Williams A Vermeren MM Benezech C et al . TCR-stimulated changes in cell surface CD46 expression generate type 1 regulatory T cells. Sci Signal (2017) 10:1–13. doi: 10.1126/scisignal.aah6163
58
Brockmann L Gagliani N Steglich B Giannou AD Kempski J Pelczar P et al . IL-10 receptor signaling is essential for TR1 cell function In vivo. J Immunol (2017) 198:1130–41. doi: 10.4049/jimmunol.1601045
59
Levings MK Sangregorio R Galbiati F Squadrone S de Waal Malefyt R Roncarolo M-G . IFN-α and IL-10 induce the differentiation of human type 1 T regulatory cells. J Immunol (2001) 166:5530–9. doi: 10.4049/jimmunol.166.9.5530
60
Zhang P Lee JS Gartlan KH Schuster IS Comerford I Varelias A et al . Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci Immunol (2017) 2:eaah7152. doi: 10.1126/sciimmunol.aah7152
61
Awasthi A Carrier Y Peron JPS Bettelli E Kamanaka M Flavell RA et al . A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol (2007) 8:1380–9. doi: 10.1038/ni1541
62
Pot C Jin H Awasthi A Liu SM Lai C-Y Madan R et al . Cutting edge: IL-27 induces the transcription factor c-maf, cytokine IL-21, and the costimulatory receptor ICOS that coordinately act together to promote differentiation of IL-10-Producing Tr1 cells. J Immunol (2009) 183:797–801. doi: 10.4049/jimmunol.0901233
63
Sumida TS Dulberg S Schupp JC Lincoln MR Stillwell HA Axisa P et al . Type I interferon transcriptional network regulates expression of coinhibitory receptors in human T cells. Nat Immunol (2022) 23:632–42. doi: 10.1038/s41590-022-01152-y
64
Bacchetta R Gregori S Serafini G Sartirana C Schulz U Zino E et al . Molecular and functional characterization of allogantigen specific anergic T cells suitable for cell therapy. Haematologica (2010) 95:2134–43. doi: 10.3324/haematol.2010.025825
65
Farez MF Mascanfroni ID Méndez-Huergo SP Yeste A Murugaiyan G Garo LP et al . Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell (2015) 162:1338–52. doi: 10.1016/j.cell.2015.08.025
66
Seki A Rutz S . Optimized RNP transfection for highly efficient CRISPR / Cas9-mediated gene knockout in primary T cells. J Exp Med (2018) 215:985–97. doi: 10.1084/jem.20171626
67
Shifrut E Carnevale J Tobin V Roth TL Woo JM Bui CT et al . Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell (2018) 175:1958–1971.e15. doi: 10.1016/j.cell.2018.10.024
68
Schmidt R Steinhart Z Layeghi M Freimer JW Nguyen VQ Blaeschke F et al . CRISPR activation and interference screens in primary human T cells decode cytokine regulation. Science (2022) 375:eabj4008. doi: 10.1126/science.abj4008
69
Cook L Stahl M Han X Nazli A MacDonald KN Wong MQ et al . Suppressive and gut-reparative functions of human type 1 T regulatory cells. Gastroenterology (2019) 157:1584–98. doi: 10.1053/j.gastro.2019.09.002
70
Liu JM-H Chen P Uyeda MJ Cieniewicz B Sayitoglu EC Thomas BC et al . Pre-clinical development and molecular characterization of an engineered type 1 regulatory T-cell product suitable for immunotherapy. Cytotherapy (2021) 23:10174–1028. doi: 10.1016/j.jcyt.2021.05.010
71
Amodio G Mugione A Sanchez AM Viganò P Candiani M Somigliana E et al . HLA-G expressing DC-10 and CD4+ T cells accumulate in human decidua during pregnancy. Hum Immunol (2013) 74:406–11. doi: 10.1016/j.humimm.2012.11.031
72
Salvany-Celades M van der Zwan A Benner M Setrajcic-Dragos V Bougleux Gomes HA Iyer V et al . Three types of functional regulatory T cells control T cell responses at the human maternal-fetal interface. Cell Rep (2019) 27:2537–47. doi: 10.1016/j.celrep.2019.04.109
73
Kühn R Löhler J Rennick D Rajewsky K Müller W . Interleukin-10-deficient mice develop chronic enterocolitis. Cell (1993) 75:263–74. doi: 10.1016/0092-8674(93)80068-P
74
Yudoh K Matsuno H Nakazawa F Yonezawa T Kimura T . Reduced expression of the regulatory CD4+ T cell subset is related to Th1/Th2 balance and disease severity in rheumatoid arthritis. Arthritis Rheum (2000) 43:617–27. doi: 10.1002/1529-0131(200003)43:3<617::AID-ANR19>3.0.CO;2-B
75
Wang L Wang F-S Gershwin ME . Human autoimmune diseases: a comprehensive update. J Intern Med (2015) 278:369–95. doi: 10.1111/joim.12395
76
Yu H Gagliani N Ishigame H Huber S Zhu S Esplugues E et al . Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proc Natl Acad Sci (2017) 114:10443–8. doi: 10.1073/pnas.1705599114
77
Battaglia M Stabilini A Draghici E Migliavacca B Gregori S Bonifacio E et al . Induction of tolerance in type 1 diabetes via both CD4+CD25+ T regulatory cells and T regulatory type 1 cells. Diabetes (2006) 55:1571–80. doi: 10.2337/db05-1576
78
Chen C Lee W-H Yun P Snow P Liu C-P . Induction of autoantigen-specific Th2 and Tr1 regulatory T cells and modulation of autoimmune diabetes. J Immunol (2003) 171:733–44. doi: 10.4049/jimmunol.171.2.733
79
Prasad S Neef T Xu D Podojil JR Getts DR Shea LD et al . Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. J Autoimmun (2018) 89:112–24. doi: 10.1016/j.jaut.2017.12.010
80
Clemente-Casares X Blanco J Ambalavanan P Yamanouchi J Singha S Fandos C et al . Expanding antigen-specific regulatory networks to treat autoimmunity. Nature (2016) 530:434–40. doi: 10.1038/nature16962
81
Arif S Tree TI Astill TP Tremble JM Bishop AJ Dayan CM et al . Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest (2004) 113:451–63. doi: 10.1172/JCI19585
82
Petrich de Marquesini LG Fu J Connor KJ Bishop AJ McLintock NE Pope C et al . IFN-γ and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia (2010) 53:1451–60. doi: 10.1007/s00125-010-1739-3
83
Sanda S Roep BO von Herrath M . Islet antigen specific IL-10+ immune responses but not CD4+CD25+FoxP3+ cells at diagnosis predict glycemic control in type 1 diabetes. Clin Immunol (2008) 127:138–43. doi: 10.1016/j.clim.2007.12.003
84
Chujo D Nguyen T-S Foucat E Blankenship D Banchereau J Nepom GT et al . Adult-onset type 1 diabetes patients display decreased IGRP-specific Tr1 cells in blood. Clin Immunol (2015) 161:270–7. doi: 10.1016/j.clim.2015.08.014
85
Herold KC Burton JB Francois F Poumian-Ruiz E Glandt M Bluestone JA . Activation of human T cells by FcR nonbinding anti-CD3 mAb, hOKT3γ1(Ala-ala). J Clin Invest (2003) 111:409–18. doi: 10.1172/JCI16090
86
Alhadj Ali M Liu Y-F Arif S Tatovic D Shariff H Gibson VB et al . Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Sci Transl Med (2017) 9:eaaf7779. doi: 10.1126/scitranslmed.aaf7779
87
Barrat FJ Cua DJ Boonstra A Richards DF Crain C Savelkoul HF et al . In vitro generation of interleukin 10–producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)– and Th2-inducing cytokines. J Exp Med (2002) 195:603–16. doi: 10.1084/jem.20011629
88
Mascanfroni ID Yeste A Vieira SM Burns EJ Patel B Sloma I et al . IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol (2013) 14:1054–63. doi: 10.1038/ni.2695
89
Raverdeau M Christofi M Malara A Wilk MM Misiak A Kuffova L et al . Retinoic acid-induced autoantigen-specific type 1 regulatory T cells suppress autoimmunity. EMBO Rep (2019) 20:e47121. doi: 10.15252/embr.201847121
90
Kenison JE Jhaveri A Li Z Khadse N Tjon E Tezza S et al . Tolerogenic nanoparticles suppress central nervous system inflammation. Proc Natl Acad Sci (2020) 117:32017–28. doi: 10.1073/pnas.2016451117
91
Astier AL Meiffren G Freeman S Hafler DA . Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest (2006) 116:3252–7. doi: 10.1172/JCI29251
92
Caielli S Veiga DT Balasubramanian P Athale S Domic B Murat E et al . A CD4+ T cell population expanded in lupus blood provides b cell help through interleukin-10 and succinate. Nat Med (2019) 25:75–81. doi: 10.1038/s41591-018-0254-9
93
Asnagli H Martire D Belmonte N Quentin J Bastian H Boucard-Jourdin M et al . Type 1 regulatory T cells specific for collagen type II as an efficient cell-based therapy in arthritis. Arthritis Res Ther (2014) 16:R115. doi: 10.1186/ar4567
94
Kim J Lee J Gonzalez J Fuentes-Duculan J Garcet S Krueger JG . Proportion of CD4+CD49b+LAG-3+ type 1 regulatory T cells in the blood of psoriasis patients inversely correlates with psoriasis area and severity index. J Invest Dermatol (2018) 138:2669–72. doi: 10.1016/j.jid.2018.05.021
95
Kelly CP Murray JA Leffler DA Getts DR Bledsoe AC Smithson G et al . TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: A randomized, double-blind, placebo-controlled study. Gastroenterology (2021) 161:66–80.e8. doi: 10.1053/j.gastro.2021.03.014
96
Asseman C Mauze S Leach MW Coffman RL Powrie F . An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med (1999) 190:995–1004. doi: 10.1084/jem.190.7.995
97
Huber S Gagliani N Esplugues E O’Connor W Huber FJ Chaudhry A et al . Th17 cells express interleukin-10 receptor and are controlled by Foxp3– and Foxp3+ regulatory CD4+ T cells in an interleukin-10-Dependent manner. Immunity (2011) 34:554–65. doi: 10.1016/j.immuni.2011.01.020
98
Doñas C Neira J Osorio-Barrios F Carrasco M Fernández D Prado C et al . The demethylase inhibitor GSK-J4 limits inflammatory colitis by promoting de novo synthesis of retinoic acid in dendritic cells. Sci Rep (2021) 11:1342. doi: 10.1038/s41598-020-79122-3
99
Qi L Wu J Zhu S Wang X Lv X Liu C et al . Mesenchymal stem cells alleviate inflammatory bowel disease Via Tr1 cells. Stem Cell Rev Rep (2022) 18:2444–57. doi: 10.1007/s12015-022-10353-9
100
Desreumaux P Foussat A Allez M Beaugerie L Hébuterne X Bouhnik Y et al . Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory crohn’s disease. Gastroenterology (2012) 143:1207–1217.e2. doi: 10.1053/j.gastro.2012.07.116
101
Chatenoud L Ferran C Bach J-F . The anti-CD3-Induced syndrome: A consequence of massive In vivo cell activation. In: Fleischer B, Sjögren HO (eds) Superantigens. Current Topics in Microbiology and Immunology. (Berlin, Heidelberg: Springer) 174. (1991), 121–34. doi: 10.1007/978-3-642-50998-8_9
102
Jamison BL Neef T Goodspeed A Bradley B Baker RL Miller SD et al . Nanoparticles containing an insulin–ChgA hybrid peptide protect from transfer of autoimmune diabetes by shifting the balance between effector T cells and regulatory T cells. J Immunol (2019) 203:48–57. doi: 10.4049/jimmunol.1900127
103
Getts DR Martin AJ McCarthy DP Terry RL Hunter ZN Yap WT et al . Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol (2012) 30:1217–24. doi: 10.1038/nbt.2434
104
Alatab S Sepanlou SG Ikuta K Vahedi H Bisignano C Safiri S et al . The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol (2020) 5:17–30. doi: 10.1016/S2468-1253(19)30333-4
105
Uhlig HH Coombes J Mottet C Izcue A Thompson C Fanger A et al . Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J Immunol (2006) 177:5852–60. doi: 10.4049/jimmunol.177.9.5852
106
Kamanaka M Kim ST Wan YY Sutterwala FS Lara-Tejero M Galán JE et al . Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity (2006) 25:941–52. doi: 10.1016/j.immuni.2006.09.013
107
Maynard CL Harrington LE Janowski KM Oliver JR Zindl CL Rudensky AY et al . Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3– precursor cells in the absence of interleukin 10. Nat Immunol (2007) 8:931–41. doi: 10.1038/ni1504
108
Himmel ME Yao Y Orban PC Steiner TS Levings MK . Regulatory T-cell therapy for inflammatory bowel disease: More questions than answers. Immunology (2012) 136:115–22. doi: 10.1111/j.1365-2567.2012.03572.x
109
Asseman C Read S Powrie F . Colitogenic Th1 cells are present in the antigen-experienced T cell pool in normal mice: Control by CD4 + regulatory T cells and IL-10. J Immunol (2003) 171:971–8. doi: 10.4049/jimmunol.171.2.971
110
Rubtsov YP Rasmussen JP Chi EY Fontenot J Castelli L Ye X et al . Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity (2008) 28:546–58. doi: 10.1016/j.immuni.2008.02.017
111
Roers A Siewe L Strittmatter E Deckert M Schlüter D Stenzel W et al . T Cell–specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J Exp Med (2004) 200:1289–97. doi: 10.1084/jem.20041789
112
Chaudhry A Samstein RM Treuting P Liang Y Pils MC Heinrich J-M et al . Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity (2011) 34:566–78. doi: 10.1016/j.immuni.2011.03.018
113
McGuirk P McCann C Mills KHG . Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: A novel strategy for evasion of protective T helper type 1 responses by bordetella pertussis. J Exp Med (2002) 195:221–31. doi: 10.1084/jem.20011288
114
Jofra T di Fonte R Galvani G Kuka M Iannacone M Battaglia M et al . Tr1 cell immunotherapy promotes transplant tolerance via de novo Tr1 cell induction in mice and is safe and effective during acute viral infection. Eur J Immunol (2018) 48:1389–99. doi: 10.1002/eji.201747316
115
Eliasson DG Omokanye A Schön K Wenzel UA Bernasconi V Bemark M et al . M2e-tetramer-specific memory CD4 T cells are broadly protective against influenza infection. Mucosal Immunol (2018) 11:273–89. doi: 10.1038/mi.2017.14
116
Antunes I Kassiotis G . Suppression of innate immune pathology by regulatory T cells during influenza a virus infection of immunodeficient mice. J Virol (2010) 84:12564–75. doi: 10.1128/jvi.01559-10
117
Brincks EL Roberts AD Cookenham T Kohlmeier JE Blackman MA David L . Antigen-specific memory regulatory CD4 + Foxp3 + T cells control memory responses to influenza virus infection. J Immunol (2013) 190:3438–46. doi: 10.4049/jimmunol.1203140
118
Moser EK Hufford MM Braciale TJ . Late engagement of CD86 after influenza virus clearance promotes recovery in a FoxP3 + regulatory T cell dependent manner. PloS Pathog (2014) 10:e1004315. doi: 10.1371/journal.ppat.1004315
119
Rogers MC Lamens KD Shafagati N Johnson M Oury TD Joyce S et al . CD4 + regulatory T cells exert differential functions during early and late stages of the immune response to respiratory viruses. J Immunol (2018) 201:1253–66. doi: 10.4049/jimmunol.1800096
120
Lu C Zanker D Lock P Jiang X Deng J Duan M et al . Memory regulatory T cells home to the lung and control influenza a virus infection. Immunol Cell Biol (2019) 97:774–86. doi: 10.1111/imcb.12271
121
Doetze A Satoguina J Burchard G Rau T Loliger C Fleischer B et al . Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by T(h)3/T(r)1-type cytokines IL-10 and transforming growth factor-beta but not by a T(h)1 to T(h)2 shift. Int Immunol (2000) 12:623–30.
122
Koch K Koch N Sandaradura De Silva U Jung N Schulze Zur Wiesch J Fatkenheuer G et al . Increased frequency of CD49b/LAG-3+ type 1 regulatory T cells in HIV-infected individuals. AIDS Res Hum Retroviruses (2015) 31:1238–46. doi: 10.1089/aid.2014.0356
123
Moreira Genaro L de Oliveira Coser L da Silva Justo Junior A Furquim de Castro L Felício Barreto AK Rizzato AE et al . Association between IL-27 and Tr1 cells in severe form of paracoccidioidomycosis. Cytokine (2020) 127:154962. doi: 10.1016/j.cyto.2019.154962
124
MacDonald AJ Duffy M Brady MT McKiernan S Hall W Hegarty J et al . CD4 T helper type 1 and regulatory T cells induced against the same epitopes on the core protein in hepatitis c virus-infected persons. J Infect Dis (2002) 185:720–7. doi: 10.1086/339340
125
Brady MT MacDonald AJ Rowan AG Mills KHG . Hepatitis c virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes. Eur J Immunol (2003) 33:3448–57. doi: 10.1002/eji.200324251
126
Carpentier A Conti F Stenard F Aoudjehane L Miroux C Podevin P et al . Increased expression of regulatory Tr1 cells in recurrent hepatitis c after liver transplantation. Am J Transplant (2009) 9:2102–12. doi: 10.1111/j.1600-6143.2009.02743.x
127
Fabien S Olivier M Khaldoun G Vivian V Lynda A Laurissa O et al . CD49b, a major marker of regulatory T-cells type 1, predicts the response to antiviral therapy of recurrent hepatitis c after liver transplantation. BioMed Res Int (2014) 2014:290878. doi: 10.1155/2014/290878
128
Utsumi M Takaki A Umeda Y Koike K Napier SC Watanabe N et al . Frequency of regulatory T-cell and hepatitis c viral antigen-specific immune response in recurrent hepatitis c after liver transplantation. Transpl Immunol (2014) 31:33–41. doi: 10.1016/j.trim.2014.05.006
129
Ghazal K Morales O Barjon C Dahlqvist G Aoudjehane L Ouaguia L et al . Early high levels of regulatory T cells and T helper 1 may predict the progression of recurrent hepatitis c after liver transplantation. Clin Res Hepatol Gastroenterol (2019) 43:273–81. doi: 10.1016/j.clinre.2018.10.005
130
Langhorne J Ndungu FM Sponaas AM Marsh K . Immunity to malaria: More questions than answers. Nat Immunol (2008) 9:725–32. doi: 10.1038/ni.f.205
131
Rodriguez-Barraquer I Arinaitwe E Jagannathan P Kamya MR Rosenthal PJ Rek J et al . Quantification of anti-parasite and anti-disease immunity to malaria as a function of age and exposure. Elife (2018) 7:e35832. doi: 10.7554/eLife.35832
132
Jagannathan P Eccles-James I Bowen K Nankya F Auma A Wamala S et al . IFNγ/IL-10 Co-producing cells dominate the CD4 response to malaria in highly exposed children. PloS Pathog (2014) 10:e1003864. doi: 10.1371/journal.ppat.1003864
133
Freitas do Rosário AP Lamb T Spence P Stephens R Lang A Roers A et al . IL-27 promotes IL-10 production by effector Th1 CD4 + T cells: A critical mechanism for protection from severe immunopathology during malaria infection. J Immunol (2012) 188:1178–90. doi: 10.4049/jimmunol.1102755
134
Loevenich K Ueffing K Abel S Hose M Matuschewski K Westendorf AM et al . DC-Derived IL-10 modulates pro-inflammatory cytokine production and promotes induction of CD4+IL-10+ regulatory T cells during plasmodium yoelii infection. Front Immunol (2017) 8:152. doi: 10.3389/fimmu.2017.00152
135
Abel S Lückheide N Westendorf AM Geffers R Roers A Müller W et al . Strong impact of CD4+ Foxp3+ regulatory T cells and limited effect of T cell-derived IL-10 on pathogen clearance during plasmodium yoelii infection. J Immunol (2012) 188:5467–77. doi: 10.4049/jimmunol.1102223
136
Couper KN Blount DG Wilson MS Hafalla JC Belkaid Y Kamanaka M et al . IL-10 from CD4+CD25-Foxp3-CD127 - adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PloS Pathog (2008) 4:e1000004. doi: 10.1371/journal.ppat.1000004
137
Lönnberg T Svensson V James KR Fernandez-Ruiz D Sebina I Montandon R et al . Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci Immunol (2017) 2:eaal2192. doi: 10.1126/sciimmunol.aal2192
138
Soon MSF Lee HJ Engel JA Straube J Thomas BS Pernold CPS et al . Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nat Immunol (2020) 21:1597–610. doi: 10.1038/s41590-020-0800-8
139
Neumann C Scheffold A Rutz S . Functions and regulation of T cell-derived interleukin-10. Semin Immunol (2019) 44:101344. doi: 10.1016/j.smim.2019.101344
140
Boyle MJ Jagannathan P Bowen K McIntyre TI Vance HM Farrington LA et al . The development of plasmodium falciparum-specific IL10 CD4 T cells and protection from malaria in children in an area of high malaria transmission. Front Immunol (2017) 8:1329. doi: 10.3389/fimmu.2017.01329
141
Mackroth MS Abel A Steeg C Schulze zur Wiesch J Jacobs T . Acute malaria induces PD1+CTLA4+ effector T cells with cell-extrinsic suppressor function. PloS Pathog (2016) 12:1–24. doi: 10.1371/journal.ppat.1005909
142
Brandi J Lehmann C Kaminski LC Schulze zur Wiesch J Addo M Ramharter M et al . T Cells expressing multiple co-inhibitory molecules in acute malaria are not exhausted but exert a suppressive function in mice. Eur J Immunol (2022) 52:312–27. doi: 10.1002/eji.202149424
143
Brandi J Riehn M Hadjilaou A Jacobs T . Increased expression of multiple Co-inhibitory molecules on malaria-induced CD8+ T cells are associated with increased function instead of exhaustion. Front Immunol (2022) 13:878320. doi: 10.3389/fimmu.2022.878320
144
Christoffersson G von Herrath M . Regulatory immune mechanisms beyond regulatory T cells. Trends Immunol (2019) 40:482–91. doi: 10.1016/j.it.2019.04.005
145
Passerini L di Nunzio S Gregori S Gambineri E Cecconi M Seidel MG et al . Functional type 1 regulatory T cells develop regardless of FOXP3 mutations in patients with IPEX syndrome. Eur J Immunol (2011) 41:1120–31. doi: 10.1002/eji.201040909
146
Narula M Lakshmanan U Borna S Schulze JJ Holmes TH Harre N et al . Epigenetic and immunological indicators of IPEX disease in subjects with FOXP3 gene mutation. J Allergy Clin Immunol (2022). doi: 10.1016/j.jaci.2022.09.013
147
Lio CWJ Hsieh CS . Becoming self-aware: The thymic education of regulatory T cells. Curr Opin Immunol (2011) 23:213–9. doi: 10.1016/j.coi.2010.11.010
148
Akdis M Verhagen J Taylor A Karamloo F Karagiannidis C Crameri R et al . Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med (2004) 199:1567–75. doi: 10.1084/jem.20032058
149
Pacciani V Gregori S Chini L Corrente S Chianca M Moschese V et al . Induction of anergic allergen-specific suppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. J Allergy Clin Immunol (2010) 125:727–36. doi: 10.1016/j.jaci.2009.12.004
150
Pellerin L Jenks JA Chinthrajah S Dominguez T Block W Zhou X et al . Peanut-specific type 1 regulatory T cells induced in vitro from allergic subjects are functionally impaired. J Allergy Clin Immunol (2018) 141:202–213.e8. doi: 10.1016/j.jaci.2017.05.045
151
Foussat A Cottrez F Brun V Fournier N Breittmayer J-P Groux H . A comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J Immunol (2003) 171:5018–26. doi: 10.4049/jimmunol.171.10.5018
152
Feunou P Poulin L Habran C le Moine A Goldman M Braun MY . CD4+ CD25+ and CD4+ CD25– T cells act respectively as inducer and effector T suppressor cells in superantigen-induced tolerance. J Immunol (2003) 171:3475–84. doi: 10.4049/jimmunol.171.7.3475
153
Grundström S Cederbom L Sundstedt A Scheipers P Ivars F . Superantigen-induced regulatory T cells display different suppressive functions in the presence or absence of natural CD4+ CD25+ regulatory T cells In vivo. J Immunol (2003) 170:5008–17. doi: 10.4049/jimmunol.170.10.5008
Summary
Keywords
type 1 regulatory T (Tr1) cells, immunological tolerance, autoimmunity, inflammatory bowel disease, infectious disease
Citation
Frontiers Production Office (2023) Erratum: Type 1 regulatory T cell-mediated tolerance in health and disease. Front. Immunol. 13:1125497. doi: 10.3389/fimmu.2022.1125497
Received
16 December 2022
Accepted
16 December 2022
Published
24 January 2023
Approved by
Frontiers Editorial Office, Frontiers Media SA, Switzerland
Volume
13 - 2022
Updates
Copyright
© 2023 Frontiers Production Office.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Frontiers Production Office, production.office@frontiersin.org
This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.