Your new experience awaits. Try the new design now and help us make it even better

REVIEW article

Front. Immunol.

Sec. Inflammation

Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1605797

This article is part of the Research TopicExploring Immunometabolism: Metabolic Pathway and Immune Response in SepsisView all 7 articles

Alveolar Epithelial Cells in bacterial Sepsis-Associated acute lung injury: Mechanisms and Therapeutic Strategies

Provisionally accepted
Guiyang  JiaGuiyang JiaErqin  SongErqin SongZhiyou  ZhengZhiyou ZhengMinjiang  QianMinjiang QianGuoyue  LiuGuoyue Liu*
  • Department of Critical Care Medicine, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China

The final, formatted version of the article will be published soon.

Sepsis-Associated acute lung injury (ALI) and its progression to acute respiratory distress syndrome (ARDS) are clinically prevalent critical conditions with high morbidity and mortality. As a vital component of lung tissue, alveolar epithelial cells (AECs) play a crucial role in maintaining pulmonary homeostasis and are deeply involved in the pathophysiological processes of bacterial Sepsis-Associated ALI. This review systematically summarizes the pathophysiological changes in AECs during bacterial sepsis, focusing on oxidative stress, programmed cell death, and disruption of the epithelial barrier. It further explores the inflammatory responses triggered by both Gram-positive and Gram-negative bacteria, as well as the interactions between AECs and immune cells, shedding light on how these processes contribute to the inflammatory response during bacterial sepsis. It elaborates on the regulatory mechanisms of key molecular pathways, including Nuclear factor kappa-B (NF-κB), Nuclear Factor Erythroid 2-related Factor 2 (NRF2), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), and Toll-like receptor (TLR), in AEC dysfunction and inflammatory responses. Furthermore, therapeutic strategies for AEC injury are comprehensively analyzed from multiple perspectives, such as AEC repair and regeneration, modulation of inflammatory responses, restoration of barrier function, and exosome-based therapies. Although these approaches show promising results in preclinical studies, their clinical translation faces significant challenges. This review underscores the need for further research into the complex mechanisms of AEC injury in bacterial sepsis and advocates for the development of more targeted interventions to improve patient outcomes.

Keywords: Alveolar epithelial cells, Bacterial Sepsis-Associated Acute Lung Injury, pathophysiology, mechanisms, treatment progress

Received: 04 Apr 2025; Accepted: 17 Jul 2025.

Copyright: © 2025 Jia, Song, Zheng, Qian and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Guoyue Liu, Department of Critical Care Medicine, Second Affiliated Hospital of Zunyi Medical University, Zunyi, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.