ORIGINAL RESEARCH article
Front. Immunol.
Sec. Vaccines and Molecular Therapeutics
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1605984
This article is part of the Research TopicInnovative Vaccine Development Strategies for Parasitic DiseasesView all articles
Study of dense granule proteins in Eimeria spp. identifies a limited repertoire with potential as vaccine candidates
Provisionally accepted- Royal Veterinary College (RVC), London, United Kingdom
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Eimeria species are obligate intracellular parasites that usually replicate in intestinal cells and can cause the disease coccidiosis. Coccidiosis of livestock and poultry incurs significant production losses and compromises animal welfare, with the greatest impact occurring in chicken production.Control of coccidiosis is challenging, requiring good husbandry and effective drug or live vaccine prophylaxis, and there is demand for more scalable and cost-effective vaccines. Proteins secreted from dense granules (GRAs) play crucial roles in intracellular survival in many apicomplexans, but knowledge of these organelles and their secreted proteins in Eimeria is extremely limited. In this study, we observed a reduced GRA protein repertoire encoded in Eimeria spp. genomes compared to Toxoplasma gondii (23 vs. 71) with just 12 orthologues identified in the Eimeria tenella genome. In silico analysis of three of these putative dense granule proteins -EtGRA9, EtGRA12a, and EtGRA12b -revealed the presence of signal peptides in EtGRA9 and EtGRA12b, while none was detected in EtGRA12a. Sequence analysis of E. tenella field isolates revealed a limited number of polymorphisms in the genes encoding these three proteins, suggesting purifying selection possibly related to their functional importance. In contrast, E. maxima showed greater variation, indicating relaxed selective pressure or diversifying selection. When expressed as recombinant proteins all three were recognised by sera from chickens previously infected with E. tenella. Their potential role in parasite intracellular niche formation and close interaction with the host cell makes them promising antigens for vaccine development. To evaluate this potential, EtGRA9 was expressed as a recombinant protein and used to vaccinate chickens prior to E. tenella challenge. Immunisation with recombinant EtGRA9 reduced parasite load in the caeca by 85.7%, comparable to immunisation with recombinant EtAMA1, an antigen previously shown to confer significant protection.
Keywords: Eimeria, dense granule, GRA9, Coccidiosis, Vaccine, Control
Received: 04 Apr 2025; Accepted: 28 Jun 2025.
Copyright: © 2025 Sánchez-Arsuaga, Blake, Tomley and Marugan-Hernandez. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Gonzalo Sánchez-Arsuaga, Royal Veterinary College (RVC), London, United Kingdom
Damer Blake, Royal Veterinary College (RVC), London, United Kingdom
Fiona Tomley, Royal Veterinary College (RVC), London, United Kingdom
Virginia Marugan-Hernandez, Royal Veterinary College (RVC), London, United Kingdom
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.