ORIGINAL RESEARCH article
Front. Immunol.
Sec. Comparative Immunology
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1611481
Integrated Transcriptomic and Microbiomic Analyses Reveal Mechanisms of Decapod iridescent virus 1 (DIV1) Resistance in Macrobrachium rosenbergii
Provisionally accepted- 1Xianghu Laboratory, Hangzhou, China
- 2Nanjing Agricultural University, Nanjing, Jiangsu Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Selective breeding for DIV1-resistant Macrobrachium rosenbergii is an effective strategy to mitigate aquaculture losses; however, the underlying resistance mechanisms remain poorly understood. In this study, approximately 2,300 prawns from 46 families were subjected to a DIV1 challenge test. Based on survival rate, viral load, histopathological observations, and viral gene detection in the transcriptome, one resistant family (R27-1) and one susceptible family (S2-2) were identified. Hepatopancreas transcriptomic (RNA-Seq) and gut microbiome analyses were conducted on samples at 0, 24, and 48 hours post-infection (hpi) from both families. A total of 144, 68, and 1,170 differentially expressed genes (DEGs) were identified at the respective timepoints. Three DEGs-including one corresponding to an uncharacterized lncRNA, an esterase E4-like protein, and a CUB-serine protease-were consistently differentially expressed at all timepoints. Transcriptomic data suggest that Melanogenesis, energy metabolism, and Steroid hormone biosynthesis pathways are associated with DIV1 resistance. Notable DEGs included hemocyanin, cytochrome P450, alkaline phosphatase-like, Friend leukemia integration 1 transcription factor-like, cytochrome P450 9e2-like, interferon regulatory factor 4-like, dual specificity protein phosphatase 10-like, trypsin II-P29-like, and cytochrome c oxidase subunit III. In addition, the potential probiotic Enterococcus casseliflavus (relative abundance: 0.51% vs 0.03%) was more abundant in the resistant family, whereas Lactococcus garvieae (RA: 20.18% vs 70%) was enriched in the susceptible one. These findings highlight the combined contribution of host transcriptomic responses and gut microbial communities to DIV1 resistance. To the best of our knowledge, this is the first study to integrate transcriptomic and microbiomic analyses for investigating DIV1 resistance in M. rosenbergii. These findings provide novel insights into the host-pathogen interaction and offer valuable targets for selective breeding of DIV1-resistant M. rosenbergii in aquaculture.
Keywords: Decapod iridescent virus 1, Macrobrachium rosenbergii, Transcriptome, gut microbiome, Disease Resistance
Received: 14 Apr 2025; Accepted: 06 May 2025.
Copyright: © 2025 Hao, Jie, Lu, Ye, Meng, Liu, Yan, Zheng, Dong and Gu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Zhimin Gu, Xianghu Laboratory, Hangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.