ORIGINAL RESEARCH article
Front. Microbiol.
Sec. Systems Microbiology
Volume 16 - 2025 | doi: 10.3389/fmicb.2025.1585700
This article is part of the Research TopicInvestigating the Role of Microorganisms in Ecosystems and Their Interactions with the Humans, Animals, Plants, and Environment InterfaceView all 8 articles
Root Zone Microbial Communities of Artemisia ordosica Krasch. at Different Successional Stages in Mu Us Sandy Land: A Metagenomic Perspective with Culturomics Insights
Provisionally accepted- 1College of Biological Sciences and Technology, Beijing Forestry University, Beijing Forestry University, Beijing, China
- 2National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China, Beijing, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Phytoremediation offers a promising strategy for addressing the global challenge of land desertification. In the Mu Us Sandy Land of China, Artemisia ordosica Krasch.has emerged as a key species for desertification control. Its root-associated microbial communities may enhance the plant's adaptability to sandy, nutrient-poor environments. Despite their ecological significance, comprehensive investigations of these microbial communities remain limited. In this study, microbial communities in the root zone (i.e., rhizosphere soil, non-rhizosphere soil, and root endosphere) of A. ordosica were analyzed via high-throughput sequencing and different isolation approaches across successional stages (moving dunes, semi-fixed dunes, and fixed dunes) in the Mu Us Sandy Land of northern China. Metagenomic analysis revealed that microbial diversity was significantly higher in the rhizosphere and non-rhizosphere soils than in the root endosphere; moving dunes exhibited lower diversity than semi-fixed and fixed dunes. Meanwhile, distinct microbial community structures across successional stages were revealed by principal coordinates analysis (PCoA), demonstrating substantial differences between the root endosphere and other zones. Environmental factors, including nitrate nitrogen (NO3⁻-N), organic matter (OM), available potassium (AK), and total potassium (TK), significantly influenced microbial community composition. Moreover, dominant genera such as Arthrobacter and Paraphoma were identified, potentially contributing to A. ordosica growth. From a culturomics perspective, 93 bacterial isolates were obtained using conventional plate streak and colony pick methods, with Firmicutes (37.63%) and Bacillus (23.66%) identified as the dominant taxa. In parallel, 14 fungal strains were isolated, primarily belonging to Penicillium (35.71%) and Aspergillus (21.43%), both of which are well-documented for their stress tolerance in arid ecosystems. A high-throughput cultivation and identification method, tailored to recover rare and slow-growing bacteria, was employed and successfully broadened the cultured diversity to include Proteobacteria (46.43%) and representatives of the rarely cultivated Deinococcus-Thermus phylum. This study provides metagenomic with culturomics insights into the microbial communities associated with A. ordosica, enhancing the understanding of plant-microbe interactions in sandy land ecosystems.
Keywords: Artemisia ordosica Krasch., root zone microbiota, high-throughput sequencing, Successional stages, land phytoremediation
Received: 01 Mar 2025; Accepted: 22 Apr 2025.
Copyright: © 2025 朱, Han, Yao, Yu, Zhao and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Xiangwei He, College of Biological Sciences and Technology, Beijing Forestry University, Beijing Forestry University, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.