You're viewing our updated article page. If you need more time to adjust, you can return to the old layout.

REVIEW article

Front. Neurosci., 03 August 2023

Sec. Neurodevelopment

Volume 17 - 2023 | https://doi.org/10.3389/fnins.2023.1242448

The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM

  • 1. Guangdong Key Laboratory for Genome Stability and Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong, China

  • 2. Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong, China

  • 3. Laboratory of Genome Stability, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany

Article metrics

View details

13

Citations

5,6k

Views

2,8k

Downloads

Abstract

Primary microcephaly (MCPH), is a neurological disorder characterized by small brain size that results in numerous developmental problems, including intellectual disability, motor and speech delays, and seizures. Hitherto, over 30 MCPH causing genes (MCPHs) have been identified. Among these MCPHs, MCPH5, which encodes abnormal spindle-like microcephaly-associated protein (ASPM), is the most frequently mutated gene. ASPM regulates mitotic events, cell proliferation, replication stress response, DNA repair, and tumorigenesis. Moreover, using a data mining approach, we have confirmed that high levels of expression of ASPM correlate with poor prognosis in several types of tumors. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.

1. Introduction

Primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by small brain size primarily due to the reduced cerebral cortex, varying degrees of intellectual disability (Woods et al., 2005; Mahmood et al., 2011; Phan and Holland, 2021; Zaqout and Kaindl, 2021; Gupta, 2023), and several additional neurological problems, such as seizures and epilepsy (Shen et al., 2005), with a prevalence ranging from 1/30,000 to 1/250,000. The development of brain relies on neurogenesis, the process by which neural stem cells proliferate, migrate, and differentiate to form neurons, is fundamental to normal brain development (Stiles and Jernigan, 2010; Isaev et al., 2019; Zhou et al., 2020). Neuron formation begins during embryogenesis and continues throughout life. In mammals, the size of the cerebral cortex is determined by the number of neurons it contains (Borrell and Calegari, 2014). In general, the human adult comprises about 86 billion neurons (Herculano-Houzel, 2012) and brain size range from 975 to 1,499 cm3. Studies have shown that a reduced number of neurons results in primary microcephaly, which is diagnosed when the occipital frontal circumference is smaller than two standard deviations below the mean at birth and/or smaller than three standard deviations below the mean after 1 year of age (Duerinckx et al., 2020).

At least 30 MCPHs (MCPH1–MCPH30) have been mapped to date. Mutations in MCPH5, which encodes the ASPM protein, are the most common cause of MCPH, accounting for around 40% of the patient population (Nicholas et al., 2009). To date, functions in cell division (Fish et al., 2006; Capecchi and Pozner, 2015), neurogenesis (Fujimori et al., 2014; Passemard et al., 2016), genome stability (Fujimori et al., 2008; Xu et al., 2021; Wu et al., 2022), and disease development (Fujimori et al., 2014; Liu et al., 2018) have all been annotated for ASPM. Here, we summarize the neurological and non-neurological functions of ASPM and provide insight into its implications for the diagnosis and treatment of MCPH and cancer.

2. Molecular and cellular characteristics of ASPM

To better understand ASPM functions in health and disease, it is important to delineate the structure and cellular roles of ASPM. As a member of the ASH (ASPM, SPD-2, and Hydin) domain-containing protein family, ASPM is the human homolog of the Drosophila melanogaster abnormal spindle protein (asp). ASPM is encoded by MCPH5 on chromosome 1q31.3, a gene that was originally identified in studies of consanguineous Northern Pakistani families (Jamieson et al., 2000; Pattison et al., 2000; Bond et al., 2002). MCPH5 has 28 exons and at least two alternative splicing isoforms: isoform 1 (full-length, amino acids 1–3,477) and isoform 2 (lacking the largest exon, exon 18, which encodes amino acids 1,356–2,940). Human ASPM protein contains four domains: a microtubule-binding domain (MTBD) at the N-terminal (NT), two calponin homology domains (CH), an isoleucine and glutamine domain (IQ motif), and a species-conserved C-terminal (CT; Figure 1).

Figure 1

Figure 1

Schematic of human ASPM. (A) The 28 exons of the human ASPM gene, including the largest exon, exon 18 (4.7 kb). (B) Schematic showing the known domains of the human ASPM protein: N-terminal microtubule-binding domain (blue); two calponin homology (CH) domains (orange); 81 isoleucine and glutamine (IQ) repeats (pink); and the C-terminal (CT) domain (green).

The MTBD facilitates the localization of ASPM to the spindle pole and mediates an interaction between ASPM and microtubules that is responsible for the dynamic regulation of microtubules during cell division and neurogenesis (Jiang et al., 2017). The CH domains, commonly found in actin-binding proteins, are also thought to be involved in the interactions between ASPM and the actin cytoskeleton or microtubules (van der Voet et al., 2009). The 81 IQ repeats, many of which are organized into a higher-order repeat structure (Kouprina et al., 2005), are implicated in calmodulin binding (van der Voet et al., 2009).

ASPM primarily localizes at the centrosome and the spindle poles during cell division (Tungadi et al., 2017; Sepulveda et al., 2018). It is predicted to be associated with cilia (Schou et al., 2014; Verdier et al., 2016). Studies in U2OS cells have shown expression of ASPM in the nucleus of interphase cells prior to nuclear envelope breakdown (Higgins et al., 2010). During mitosis, ASPM is recruited to the pericentriolar matrix surrounding γ-tubulin at the spindle pole in a microtubule-dependent manner (Kouprina et al., 2005; Higgins et al., 2010; Figure 2). Further studies have shown ASPM localization at the mitotic spindle poles (Kouprina et al., 2005; Bond and Woods, 2006; Fish et al., 2006) and the midbody ring (Paramasivam et al., 2007) in mammals (Bond and Woods, 2006) and rat neuronal progenitors in the embryonic neocortex (Paramasivam et al., 2007).

Figure 2

Figure 2

Schematic showing the cellular localization of ASPM during interphase and mitosis. ASPM signal (red dots) is primarily detected at the centrosome in interphase, while during cell division, ASPM signal is enriched at the spindle poles.

ASPM localization at the centrosome and spindle poles, is primarily known for regulating symmetric cell division, during which a mother cell divides into two identical daughter cells (Kouprina et al., 2005; Neumuller and Knoblich, 2009). The correct orientation of the spindle apparatus is a key determinant of symmetric cell division that ensures the accurate segregation of chromosomes (Fish et al., 2006; Higgins et al., 2010; Gai et al., 2016). In neural stem cells and progenitor cells, symmetric division is essential for the expansion of the progenitor cell pool and the generation of an adequate number of neurons during brain development (Fish et al., 2008; Knoblich, 2008; Neumuller and Knoblich, 2009; Jayaraman et al., 2018). Meanwhile, maintaining a balance of symmetric and asymmetric cell division is critical for normal brain development and tissue homeostasis (Gomez-Lopez et al., 2014; Taverna et al., 2014).

ASPM interacts with the minus ends of microtubules and plays a vital role in spindle assembly and orientation, microtubule-based transport, and cytokinesis (Higgins et al., 2010; Tungadi et al., 2017). In mouse embryonic neuroepithelial cells, loss of ASPM altered neuroepithelial cleavage plane orientation, resulting in deviation of the spindle position and an increase in asymmetric division rather than symmetric division (Fish et al., 2006). In the developing cerebellum, knockout of ASPM in cerebellar granule neuron progenitor cells impaired mitotic progression and altered division pattern orientation (Williams et al., 2015). Interestingly, two truncated forms of ASPM (missing exons 1–7 or 1717 C-terminal amino acids) in mice caused microcephaly, while only the mice lacking the C-terminal domain showed spindle misorientation (Pulvers et al., 2010; Capecchi and Pozner, 2015).

Mechanisms underlying ASPM’s regulation of spindle orientation have been investigated in several studies. For instance, Gai et al. identified an interaction between the cytokinesis regulator citron kinase (CITK), also known as MCPH17, and ASPM. CITK served as a downstream factor of ASPM, modulating spindle orientation in a kinase-dependent manner (Gai et al., 2016), and its localization at the spindle poles was ASPM-dependent. Moreover, overexpression of CITK in ASPM-depleted HeLa cells rescued the misorientation phenotype, demonstrating that these two microcephaly proteins function together to regulate spindle orientation (Gai et al., 2016). In another study, Jiang et al. used X-ray crystallography to identify a complex (ASPM-p60/p80) comprising of ASPM and the p60/p80 subunits of katanin, a microtubule-severing ATPase (Jiang et al., 2017). In Drosophila, ASPM-dependent recruitment of katanin to the microtubules enhanced the minus-end blocking activity of ASPM, which could suppress microtubule minus-end growth, while disruption of the interaction between ASPM and katanin caused impaired spindle orientation and poleward flux (Schoborg et al., 2015). In addition, T Schoborg et al. denmostrated that Asp-CaM (Drosophila melanogaster calmodulin) complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells (Schoborg et al., 2015). These studies revealed the role of ASPM, together with its binding partners, in regulating symmetric cell division by modulating microtubule dynamics and spindle orientation.

3. ASPM in neurogenesis

Neurogenesis is a highly intricate and precise process involving the generation of functional neurons from neural progenitor cells (NPCs; Ming and Song, 2005, 2011). In mammals, two major brain regions are responsible for neurogenesis: the ventricular zone (VZ) and the subventricular zone (SVZ). During the early stage of neocortex development, the embryonic telencephalon wall is formed, consisting of neuroepithelial cells with apicobasal polarity (Woodworth et al., 2012; Jayaraman et al., 2018). These neuroepithelial cells undergo dynamic nuclear migration along the apical-basal axis in coordination with the cell cycle (Fish et al., 2008). Subsequently, they differentiate into multipotent NPCs capable of generating various cell types, including neurons and glial cells. Radial glial cells, which are located in the VZ, generate neurons and maintain self-renewal through multiple rounds of asymmetric divisions (Misson et al., 1988; Noctor et al., 2001). Additionally, radial glial cells can generate intermediate progenitors, which translocate to the SVZ and undergo symmetric proliferation or neurogenic divisions (Noctor et al., 2001; Jayaraman et al., 2018; de Almeida et al., 2023).

3.1. ASPM expression during neurogenesis

In mice, ASPM exhibits high expression levels in the cerebral cortical VZ at embryonic day (E) 14.5, when there are many progenitor cells. Its levels begin to decrease at E16.5 and are greatly reduced by postnatal day (P) 0, when the cortical VZ is fully formed (Bond et al., 2002). After birth, ASPM is also continuously expressed in zones of postnatal neurogenesis and adult tissues such as the dentate gyrus, cerebellar granule neurons, and the SVZ of the rostral migratory stream fated to become olfactory bulb neurons (Bond et al., 2002; Kouprina et al., 2005; Marinaro et al., 2011; Fujimori et al., 2014; Williams et al., 2015). These observations suggest that ASPM is preferentially expressed during cerebral cortical neurogenesis both before and after birth (Bond et al., 2002). Furthermore, the centrosomal localization of ASPM during interphase and mitotic spindle localization during mitosis has been demonstrated in mouse neuroepithelial cells at E12.5 (Kouprina et al., 2005).

The determinats of the cerebral cortex size include neurons number and neuronal migration during neurogenesis. In general, the final number of cortical neurons have a fundamental impact on the size of the mature cerebral cortex (Fernandez et al., 2016). Besides, B Nadarajah. et al. showed the importance of early-generated neurons in the layer formation and cortical connection establishment and elucidatied migration of neurons occurs during the whole period of corticogenesis and along multiple tangential routes to their destinations in the developing cortex, newly generated neurons must migrate to their appropriate locations within the developing brain to integrate into the cortical layers. Indicating the role of neuronal migration in maintaining cortical surface area (Nadarajah and Parnavelas, 2002; Nadarajah et al., 2003). Despite ASPM’s high expression during neurogenesis, its specific function in this context remains poorly understood. Several studies have shown that ASPM expression is required to balance symmetric proliferative division and differentiation in NPCs (Kouprina et al., 2005; Zhong et al., 2005; Fish et al., 2006; Horvath et al., 2006; Fujimori et al., 2014), as well as for neuronal migration (Buchman et al., 2011; Fujimori et al., 2014) and neural stem cell self-renewal (Horvath et al., 2006; Paik et al., 2009). To monitor the long-term fate of ASPM-expressing cells in vivo during neurogenesis, Marinaro et al. generated Aspm-CreERT2/Nestin-GFPflox-TK mice using the Cre-LoxP system. Tamoxifen was injected into mice at E12.7 and E13.2 to activate the thymidine kinase (TK) gene, and ganciclovir was administered from E14.5 until E18.5 to selectively kill ASPM-positive/TK-positive cells. The mice exhibited severe impairments in forebrain development, SVZ cell proliferation, and the laminar organization of the cortex (Marinaro et al., 2011). ASPM is also required for the orientation of dividing progenitors and neuronal migration in mouse neocortex. Knockdown of Aspm in the telencephalic hemisphere of E10.5 or E12.5 mice via endoribonuclease-prepared, short interfering RNAs altered the orientation of the neuroepithelial cleavage plane, causing it to become less perpendicular to the ventricular surface (Fish et al., 2006). In addition, using Aspm−/− mice generated by Cre-loxP-mediated deletion of exons 2 and 3, Fujimori et al. found disruption of cortical layer-specific transcription factor expression (Satb2, Ctip2, Tbr1) in E16.5 embryos and a thinner cortical layer VI in the adult neocortex, suggesting that loss of ASPM impaired neuronal differentiation (Fujimori et al., 2014). The effects of ASPM depletion, namely altered differentiation, premature cell cycle exit, and apoptosis ultimately reduce cerebellar growth (Williams et al., 2015).

In addition to its role in embryogenesis, ASPM is also involved in neurogenesis in adult mouse tissues. For example, in P30 mouse SVZ, descendants of Aspm-positive cells were shown to promote the generation of neurons, astrocytes, and cells of oligodendrocyte lineage (Marinaro et al., 2011). Moreover, cerebral organoid culture in vitro to generate human brain-like organs has advanced research into human brain disease, particularly with regard to neurogenesis in the developing neocortex (Li et al., 2017). For example, using patient-specific induced pluripotent stem cells with a dysfunctional ASPM gene to generate cerebral organoids, Li et al. found loss of luminal structures and neural precursors, consistent with the Aspm−/− mouse phenotype (Li et al., 2017).

Bond et al. firstly reported human ASPM as a determinant of cerebral cortical size, suggesting that brain size is partially modulated by its mitotic spindle activity (Bond et al., 2002). The correlation between ASPM and brain size has been confirmed in multiple species, including humans, mice, zebrafish, and ferret (Bond et al., 2003; Kim et al., 2011; Johnson et al., 2018; Ogi et al., 2018). Individuals with ASPM mutations may have variable levels of delayed development in various areas, such as motor, speech, and language skills, and cognitive abilities (Naseer et al., 2020; Liaci et al., 2021). Therefore, understanding the functions of ASPM in neurogenesis is crucial. Notably, the clinical manifestations of ASPM-related microcephaly can vary among individuals and may be influenced by the specific mutation present. Numerous mutations in the ASPM gene have been identified in MCPH patients (Table 1), some of which have been incorporated into different animal models seeking to investigate the pathological mechanisms of ASPM mutation in microcephaly. Below, we summarize the detailed functions of ASPM in several animal models.

Table 1

Location (exon) cDNA mutation Protein mutation Mutation type Homozygosity References
18 c.6012_6013delTA p. Tyr2004* Nonsense Xu et al. (2022)
18 c.6015_6016delGG p. Arg2005Serfs*48 Frameshift
16 c.3978G > A p.Trp1326* Nonsense Hussain et al. (2022)
17 c.4019delA p.Lys1340Argfs*29 Frameshift Heterozygous Li et al. (2022)
3 c.1789C > T p.Arg597* Nonsense Heterozygous
6 c.2525_2531delGTGATGT p.Ser842fs*9 Frameshift Heterozygous
18 c.6994C > T p.Arg2332* Nonsense Heterozygous
18 c.7782_7783delGA p.Lys2595Serfs*6 Frameshift Heterozygous Nicholas et al. (2009), Passemard et al. (2009), Tan et al. (2014)
18 c. 8214dupT p.Q2739fs Frameshift Heterozygous Zhang et al. (2022)
23 c. 9541C > T p.R3181X Nonsense Heterozygous
18 c.5477_5478del p.Ile1826Serfs*4 Frameshift Homozygous von Wrede et al. (2022)
18 c.5219_5225delGAGGATA p.Arg1740Thrfs*7 Frameshift Homozygous McSherry et al. (2018)
18 c.7792C > T p. Gln2598* Nonsense Homozygous Turkyilmaz and Sager (2022)
18 c.6854_6855del p.(Leu2285GlnfsTer32) Frameshift Naqvi et al. (2022)
25 c.10097_10098delGA p.(Gly3366Glufs*19) Frameshift Homozygous Makhdoom et al. (2022)
18 c.4174C > T p.(Arg1392Ter) Nonsense Homozygous Correia-Costa et al. (2022)
18 c.8862dupA p.V2955Sfs*12 Frameshift Homozygous Bolat et al. (2022)
17 c.4162dupA p.1388 fs*4 Frameshift Homozygous
2 c.646G > T p.E216* Nonsense Homozygous
3 c.1615_1616del p. Glu539ArgfsTer15 Frameshift Heterozygous Tran et al. (2021)
1 c.∗293 T > A p. Leu98Ter Frameshift Heterozygous
17 c.3877_3880delGAGA p.Glu1293Lysfs*10 Frameshift Homozygous Batool et al. (2023)
22 c. 9601C > T p.(Gln3201*) Nonsense Homozygous Makhdoom et al. (2021)
3 c.719_720delCT p.(Ser240Cysfs*16) Frameshift Homozygous
21 c.9492 T > G p.(Tyr3164*) Nonsense Homozygous Muhammad et al. (2009), Kousar et al. (2010), Sajid Hussain et al. (2013)
3 c.727C > T p.(Arg243*) Nonsense Homozygous Rasool et al. (2020)
3 c.1602_1605delTCAA p.(Asn534Lysfs*14) Frameshift Homozygous
3 c.1615_1616delGA p.(Glu539Argfs*15) Frameshift Homozygous
13 c.3193C > T p.(Gln1065*) Nonsense Homozygous
18 c.8718_8721delTTTA p.(Leu2907Argfs*30) Frameshift Homozygous
23 c.9601C > T p.(Gln3201*) Nonsense Homozygous
25 c.9961C > T p.(Gln3321*) Nonsense Homozygous
18 c.6854_6855delTC p.(Leu2285Glnfs*32) Frameshift Heterozygous
25 c.9976_9977dupGT p.(Ser3327 Tyrfs*14) Frameshift Heterozygous
15 c.3741G > A p.(Lys1247=) Substitution Heterozygous
9 c.2738dupT p.Cys914fs Frameshift Homozygous Bazgir et al. (2019)
16 c.3978G > A p.Trp1326* Missense Homozygous Ahmed et al. (2019)
18 c.7782_7783delGA p.(Lys2595Serfs*6) Frameshift Heterozygous
9 c.2936 + 5G > A (IVS9 + 5G > A) Frameshift Homozygous
23 c.9742_9745del p.Lys3248Serfs*13 Frameshift Heterozygous Okamoto et al. (2018)
18 c.7543C > T p.Arg2515Ter Substitution Homozygous Khan et al. (2018)
3 c.1850_1853de p.Thr617Lysfs*30 Frameshift Homozygous Létard et al. (2018)
4 c.1932del p.Phe645Serfs*23 Frameshift Homozygous
4 c.1943_1944insC p.Ile649Asnfs*3 Frameshift Homozygous
9 c.2638G > T p.Glu880* Nonsense Homozygous
intron10 c.2936 + 2 T > C p.? Splicing Homozygous Létard et al. (2018)
13 c.3185_3189del p.Asn1062Argfs*28 Frameshift Homozygous
13 c.3269dup p.Asp1091* Nonsense Homozygous
intron15 c.3741 + 3A > G p.? Splicing Homozygous
18 c.4250_4251del p.Tyr1417* Nonsense Homozygous
18 c.4732C > T p.Arg1578* Nonsense Homozygous
18 c.4806 T > G p.Tyr1602* Nonsense Homozygous
18 c.4992_4996dup p.Arg1667Ilefs*12 Frameshift Homozygous
18 c.5590_5591del p.Leu1864Serfs*2 Frameshift Homozygous
18 c.5886_5887del p.Leu1963Glufs*9 Frameshift Homozygous
18 c.5940del p.Tyr1981Ilefs*13 Frameshift Homozygous
18 c.6513dup p.Val2172Serfs*7 Frameshift Heterozygous
18 c.6568C > T p.Gln2190* Nonsense Heterozygous
18 c.6658C > T p.Gln2220* Nonsense Homozygous
18 c.6919C > T p.Gln2307* Nonsense Homozygous
18 c.6920_6921del p.Gln2307Leufs*10 Frameshift Homozygous
18 c.7744del p.Ile2582Serfs*34 Frameshift Homozygous
18 c.7753G > T p.Glu2585* Nonsense Homozygous
18 c.8599delinsAT p.Gln2867Ilefs*5 Frameshift Homozygous
18 c.8700_8702delinsCC p.Lys2900Asnfs*38 Frameshift Homozygous
18 c.8702del p.His2901Leufs*37 Frameshift Heterozygous
20 c.9069_9075del p.His3023Glnfs*2 Frameshift Homozygous
23 c.9446_9447del p.Arg3149Metfs*17 Frameshift Homozygous
28 c.10369del p.Glu3457Lysfs*13 Frameshift Homozygous
3 c.1386delC p.Tyr462* Nonsense Homozygous Marakhonov et al. (2018)
13 c.3384_3385 p.Lys1129Ter Frameshift Homozygous Bhargav et al. (2017)
3 c.1235_1239delAAGTA p.Lys412Thrfs*5 Frameshift Homozygous Ahmad et al. (2017)
6 c.2420delG p.Gly807Glufs*7 Frameshift Homozygous
13 c.3491_3494delGTAC p.Arg3491Leufs*15 Frameshift Homozygous
17 c.4212G > A p. Trp1404* Nonsense Homozygous
18 c.8098C > T p.Arg2700* Nonsense Homozygous
18 c.6851_6854delTCTC p.Leu2285Argfs*6 Frameshift Heterozygous
18 c.7129C > T p.Gln2377* Nonsense Heterozygous
18 c.5959C > T p.Gln1987* Nonsense Heterozygous
18 c.8508_8509delGA p.Lys2837Metfs*34 Frameshift Homozygous Bond et al. (2003), Gul et al. (2006), Muhammad et al. (2009)
24 c.10013delA p.Asp3338Valfs*2 Nonsense Homozygous Khan et al. (2017)
23 c.9730C > T p.Arg3244* Frameshift Homozygous
17 c.3978G > A p.W1326* Nonsense Homozygous/ Heterozygous Wang et al. (2017)
18 c.4185G > A p.W1395* Nonsense Heterozygous
18 c.6994C > G p. R2332* Nonsense Homozygous
23 c.9557C > G p.S3186* Nonsense Homozygous Bond et al. (2002, 2003), Sajid Hussain et al. (2013)
16 c.3742-1G > C Lys1247Glyfs*9 Splice-site Homozygous Hashmi et al. (2016)
18 c.5149delA p. Ile1717fsx1 Frameshift Heterozygous Choi et al. (2016)
3 c.688delG p.E230Nfs*3 Frameshift Abdel-Hamid et al. (2016)
3 c.1789C > T p.R597* Nonsense
22 c.9541C > T p.R3181* Nonsense
9 c.2936 + 1G > A VS10þ1G > A Splice-site
10 c.3108_3114delTGTGGAT p.V1037Gfs*13 Frameshift
16 c.3979C > T p.R1327* Nonsense
18 c.4612C > T p.R1538* Nonsense
22 c.9541C > T p.R3181* Nonsense
3 c.1959_1961delCAAA p.N653Kfs*14 Frameshift Bond et al. (2003), Tan et al. (2014), Abdel-Hamid et al. (2016)
19 c.9190C > T p.R3064* Nonsense Homozygous Nicholas et al. (2009), Bond et al. (2002), Abdel-Hamid et al. (2016)
24 c.9697C > T p.R3233* Nonsense Homozygous Tan et al. (2014), Muhammad et al. (2009), Abdel-Hamid et al. (2016)
9 c.2967G > A p.W989* Nonsense Homozygous Kraemer et al. (2016)
18 c.8200_8201delAA p.N2734Lfs*16 Frameshift Homozygous
22 c.9539A > C p.Q3180P Missense Homozygous
9 c.2938C > T p.R980* Nonsense Homozygous
18 c.5606_5607insC p.H1870Tfs*26 Frameshift Homozygous
18 c.6750delT p.F2250Lfs*10 Frameshift Heterozygous Nakamura et al. (2015)
13 c.3327 T > G p.Tyr1109* Nonsense Heterozygous Tan et al. (2014)
24 c.9910C > T p.Arg3304* Nonsense Heterozygous
3 c.637del p.Ile213Tyrfs*47 Frameshift Homozygous
18 c.8017C > T p.Gln2673* Nonsense Homozygous
17 c.3853_3854del p.Asp1285Serfs*32 Frameshift Heterozygous
18 c.7308dup p.Val2437Cysfs*14 Frameshift Heterozygous
18 c.5196 T > A p.Cys1732* Nonsense Heterozygous
23 c.9454C > T p.Arg3152* Nonsense Heterozygous
18 c.7612C > T p.Gln2538* Nonsense Homozygous
10 c.2791C > T p.Arg931* Nonsense Homozygous
3 c.803_804del p.Lys268Serfs*4 Frameshift Heterozygous
13 c.3390 + 3_6del Splicing Heterozygous Tan et al. (2014)
1 c.117_118del p.Leu41Glnfs*30 Frameshift Homozygous
18 c.8133_8136del p.Lys2712Leufs*16 Frameshift Heterozygous
22 c.9309_9310del p.Arg3103Serfs*20 Frameshift Heterozygous
18 c.7665del p.Ala2556Leufs*4 Frameshift Heterozygous
18 c.7825C > T p.Gln2609* Nonsense Heterozygous
17 c.3960_3961insA p.Val1321Serfs*29 Frameshift Heterozygous
3 c.1726_1729del p.Lys576Alafs*10 Frameshift Heterozygous
10 c.2936dup p.Arg980Alafs*31 Frameshift Heterozygous
6 c.2419 + 2 T > C p.Leu3035* Splicing Heterozygous
21 c.9104 T > A Nonsense Heterozygous
3 c.1138C > T p.Gln380* Nonsense Homozygous
18 c.8711_8712del p.Gln2904Argfs*15 Frameshift Homozygous
11 c.2968del p.Asp990Thrfs*11 Frameshift Heterozygous
18 c.4728_4729del p.Arg1576Serfs*7 Frameshift Heterozygous
19 c.8903G > A p.Trp2968* Nonsense Homozygous
18 c.7857dup p.Glyn2620Thrfs*17 Frameshift Homozygous
8 c.2571G > A p.Trp857* Nonsense Heterozygous
18 c.8227C > T p.R2743X Nonsense Heterozygous Hu et al. (2014)
18 c.7772_7775delAAAA p.2591 fs Frameshift Heterozygous
18 c.4849C > T R1617X Nonsense Homozygous Papari et al. (2013)
17 c.3979C > T p.Arg1327* Nonsense Homozygous Sajid Hussain et al. (2013)
18 c.6131C > T p.Gln2051* Nonsense Homozygous
14 c.3796G > T p.E1266X Nonsense Heterozygous Nicholas et al. (2009), Ariani et al. (2013)
18 c.7815_7816del p.E2605fs Frameshift Heterozygous
18 c.5188G > T p.Glu1730X Nonsense Homozygous Darvish et al. (2010)
18 c.5584A > C p.Lys1862Gln Missense
21 c.9286C > T p.Arg3096X Nonsense Homozygous
13 c.3229_3230delAA p.Lys1077fs Frameshift
Intron15 c.3741 + 1G > A Truncated protein Splicing
14 c.3505_3506delGT p.Val1169fs Frameshift
21 c.9091C > T p.Arg3031X Nonsense Homozygous
Intron1 c.297 + 1G > C Truncated protein Splicing
14 c.3506_3507delTG p.Val1169fs Frameshift
11 c.3055C > T p.Arg1019X Nonsense Homozygous Muhammad et al. (2009), Nicholas et al. (2009), Darvish et al. (2010)
22 c.9319C > T p.Arg3107X Nonsense Homozygous Muhammad et al. (2009), Passemard et al. (2009), Darvish et al. (2010)
24 c.10060C > T p.Arg3354X Nonsense Halsall et al. (2010)
17 c.3977G > A p.Trp1326X Nonsense
17 c.4184G/A p.Trp1395X Nonsense
18 c.7569_7570delAA p.Gln2523fs Nonsense
3 c.2101C > T p.Q701X Nonsense Homozygous Kousar et al. (2010)
18 c.6686delGAAA p.R2229TfsX9 Frameshift Homozygous Passemard et al. (2009), Kousar et al. (2010)
1 c.77delG p.G26AfsX41 Frameshift Homozygous
5 c.2389C > T p.Arg797X Nonsense Heterozygous Passemard et al. (2009), Saadi et al. (2009)
18 c.7781_7782delAG p.Gln2594fsX6 Frameshift Heterozygous Passemard et al. (2009)
13 c.3477_3481delCGCTA p.A1160fs Frameshift Homozygous Muhammad et al. (2009)
18 c.6732delA p.Y2245fs Frameshift Homozygous
23 c.9677_9678insG p.C3226fs Frameshift Homozygous
22 c.9595A > T p.K3199X Nonsense Homozygous
18 c.8668C > T p.Q2890X Nonsense Homozygous
1 c.74delG p.Arg25fs Nonsense Nicholas et al. (2009)
1 c.297 + 1460_3391-242del21844 Truncated protein Splicing
1 c.440delA p.Lys147fs Frameshift
2 c.577C > T p.Gln193X Nonsense
3 c.1152_1153delAG p.Ser384fs Frameshift Homozygous
3 c.1179delT p.Pro393fs Frameshift
3 c.1366G > T p.Glu456X Nonsense
3 c.1406_1413delATCCTAAA p.Asn469fs Frameshift
3 c.1590delA p.Lys530fs Frameshift
8 c.2761-25A > G Truncated protein Splicing
11 c.3188 T > G p.Leu1063X Nonsense Homozygous
14 c.3710C > G p.Ser1237X Nonsense Homozygous
18 c.4855_4856delTA p.Tyr1619fs Frameshift Homozygous
18 c.7489_7493delTATAT p.Tyr2497fs Frameshift
18 c.7782_7783delGA p.Gln2594fs Frameshift Homozygous
18 c.7859_7860delAG p.Gln2620fs Frameshift
18 c.8130_8131delAA p.Thr2710fs Frameshift
18 c.8378delT p.Met2793fs Frameshift Homozygous
18 c.8844delC p.Ala2948fs Frameshift
3 c.1959_1961delCAAA p.Asn653fs Frameshift Bond et al. (2003), Tan et al. (2014)
18 c.6335_6336delAT p.His2112fs Frameshift Homozygous Trimborn et al. (2004), Nicholas et al. (2009)
18 c.7761 T > G p.Tyr2587X Nonsense Homozygous Nicholas et al. (2009), Bond et al. (2002)
19 c.9178C > T p.Gln3060X Nonsense Homozygous Kumar et al. (2004), Nicholas et al. (2009),Tan et al. (2014)
20 c.9238A > T p.Leu3080X Nonsense Homozygous Nicholas et al. (2009)
23 c.9681delA p.Thr3227fs Frameshift Homozygous
23 c.9745_9746delCT p.Leu3249fs Frameshift Homozygous
23 c.9789 T > A p.Tyr3263X Nonsense Homozygous
1 c.349C > T p.Arg117X Nonsense Homozygous Bond et al. (2002), Kumar et al. (2004)
3 c.719_720delCT p.Ser240fs Frameshift Homozygous Bond et al. (2002, 2003)
3 c.1727_1728delAG p.Lys576fs Frameshift Bond et al. (2003)
4 c.1990C > T p.Gln664X Nonsense Homozygous Bond et al. (2003)
Intron7 c.2936 + 5G > T Removes splice donor site, additional 2 aa then stop Splicing Homozygous Bond et al. (2003)
11 c.3082G > A Removes splice donor site, additional 3 aa then stop Splicing Homozygous Bond et al. (2003)
14 c.3527C > G p.Ser1176X Nonsense Bond et al. (2003)
15 c.3663delG p.Arg1221fs Frameshift Homozygous Bond et al. (2003)
18 c.4581delA p.Gly1527fs Frameshift Homozygous Bond et al. (2003)
18 c.4795C > T p.Arg1599X Nonsense Homozygous Bond et al. (2003), Tan et al. (2014)
18 c.5136C > A p.Tyr1712X Nonsense Homozygous Bond et al. (2003), Gul et al. (2007)
21 c.9159delA p.Lys3053fs Frameshift Homozygous Bond et al. (2002), Bond et al. (2003), Kousar et al. (2010)
24 c.9754delA p.Arg3252fs Frameshift Bond et al. (2003)
Intron25 c.9984 + 1G > T Removes splice donor site, additional 29 novel aa then stop Splicing Homozygous Bond et al. (2003)
16 c.3811C > T p.Arg1271X Nonsense Homozygous Bond et al. (2003), Nicholas et al. (2009), Passemard et al. (2009)
18 c.6189 T > G p.Tyr2063X Nonsense Homozygous Shen et al. (2005), Tan et al. (2014)
19 c.9118_9119insCATT p.Tyr3040fs Frameshift Homozygous Gul et al. (2006)
3 c.1260_1266delTCAAGTC p.Ser420fs Frameshift Homozygous Gul et al. (2006), Kousar et al. (2010)
26 c.10059C > A p.Tyr3353X Nonsense Homozygous Gul et al. (2007)

Mutations in human ASPM in patients diagnosed with MCPH.

3.2. Animal models for ASPM

To better understand the function of ASPM in the development of the cerebral cortex and other organs, several studies have used different genetic approaches in various species (Drosophila, mice, ferrets, and zebrafish) to edit ASPM, based on human mutations. These studies have uncovered the molecular mechanisms underlying the microcephaly phenotype (Gonzalez et al., 1988, 1990; Bond et al., 2003; Pulvers et al., 2010; Kim et al., 2011; Fujimori et al., 2014; Johnson et al., 2018; Ogi et al., 2018; Mori et al., 2022).

3.2.1. Drosophila

Drosophila, which has a similar neurodevelopment with human, acts as a desirable animal model to study human neurodevelopmental disorders such as microcephaly (Robinson et al., 2020). From centrosome studies in Drosophila, many human microcephaly genes were originally identified including Asp, merry-go-round (mgr) and polo (Ripoll et al., 1985; Gonzalez et al., 1988; Sunkel and Glover, 1988; Singh et al., 2014; Jana et al., 2016; Ramdas Nair et al., 2016). Drosophila syncytial embryos and larvae with Asp mutants exhibited high mitotic index (MI) and notable presence of hyperploid and polyploid cells (Ripoll et al., 1985; Gonzalez et al., 1990). Lately, Asp was been found as a microtubule-binding protein that localizes to the mitotic spindle polar and maintain the spindle stability in Drosophila (Saunders et al., 1997; Gonzalez et al., 1998; do Carmo Avides and Glover, 1999). Downregulation of Asp by siRNA in S2 cells caused increased mitotic index, loss of spindle pole focus and detached centrosomes (Morales-Mulia and Scholey, 2005). Furthermore, Schoborg et al. and Goshima et al. found the activity of Asp is regulated by calmodulin (CaM), interaction of both is required for focused spindle pole and centrosome detachment (Goshima et al., 2007; Schoborg et al., 2015). To analyze the Asp function in neural development, Rujano et al. characterized a Asp mutant (2,396–2,402 bp missing) with a premature stop codon at amino acid 721 and found defects in the brain size and neuroepithelium morphogenesis (Rujano et al., 2013).

3.2.2. Mice

In mouse embryonic stem (ES) cells, gene trapping is an efficient method of genome mutagenesis that can help to elucidate the roles of genes in specific biological pathways (Friedel and Soriano, 2010). Utilizing this technique, scientists generated mice with various ASPM truncations from gene trap ES cells: AJ0069 (AspmGt(AJ0069)Wtsi), in which ASPM was truncated between exons 25 and 26 of ASPM; AA0137 (AspmGt(AA0137)Wtsi), in which ASPM was truncated between exons 7 and 8; and ASPM SA/SA mice, in which ASPM was truncated between exons 6 and 7 (Pulvers et al., 2010; Williams et al., 2015). Among the mutated mice, both AspmGt(AJ0069)Wtsi and AspmGt(AA0137)Wtsi-hom (homozygotes) showed reduced brain weight in P0.5 day neonates and 8- to 12-week-old adults, while ASPM SA/SA mice showed reduced brain and cerebellar weight at P30W. The microcephaly phenotype in AspmGt(AA0137)Wtsi-hom mice was rescued by expression of human ASPM, indicating the specific role of ASPM mutation in microcephaly.

Two studies using similar strategies to generate CAG-driven Cre-loxP conditional Aspm knockout mice showed decreased fractional anisotropy (FA) values which is mostly used to quantify white matter integrity in the cortex and the changes of FA were closely correlated with neuropathology, including abnormal neurite outgrowth and differentiation, white matter at P5W, reduced brain size in the neocortex, thinner cortical layer VI, and significantly reduced testis weight at P12W, compared with Aspm+/+ mice (Fujimori et al., 2014; Ogi et al., 2018). In addition, in mouse embryos, Martínez et al. recently used CRISPR-Cas9 technology to insert a stop codon into exon 3 of Aspm, which partially reduced ASPM levels at the centrosome and caused mild microcephaly, with decreased brain weight and volume at P30 (González-Martínez et al., 2021).

Notably, in addition to microcephaly, mice carrying Aspm mutations showed decreased fertility, with reductions in testicular size, oocyte number, ovarian weight, pregnancy rate, and offspring number. In addition, in female conditional Aspm knockouts, ovary size was reduced, and there were lower numbers of developing follicles during postnatal maturation and aging, suggesting the crucial role of ASPM in ovarian development (Pulvers et al., 2010; Mori et al., 2022).

It is worth noting, however, that some studies have shown a milder form of microcephaly in mutated mice, compared with that observed in human microcephaly patients. This reduced severity may be due to differences in brain size, gyrification, and progenitor divisions in mice and humans (Pulvers et al., 2010; Johnson et al., 2018).

3.2.3. Ferret

Due to the limited effect of Aspm mutations in mice and the considerable differences between mouse and human brains, some studies have used the ferret as an alternative model animal. Ferrets have a larger, gyrified cortex and greater NPC diversity than mice, and ferret ASPM shares a greater level of homology with the human ASPM (Fietz et al., 2010). Johnson et al. generated Aspm knockout ferrets by carrying out genome editing to target exon 15 with a mutation identified in a previous study (Bond et al., 2003; Johnson et al., 2018). Aspm knockout ferrets showed robust microcephaly, with a reduction in brain weight of around 25–40%. This reduction reflected the loss of cortical units caused by the premature translocation of ventricular radial glial cells to the outer SVZ (Johnson et al., 2018). These findings suggested that ASPM controls the progress of cortical expansion, thus ensuring normal brain development.

3.2.4. Zebrafish

In zebrafish, Kim et al. knocked down aspm by using morpholino antisense oligonucleotides (MO) to target the exon 11 splice donor site, thereby blocking translation (Kim et al., 2011). In the mutated zebrafish, brain size was reduced at 35 h post-fertilization, and the cells showed mitotic arrest followed by apoptotic cell death (Kim et al., 2011). These findings underscore the importance of ASPM in regulating brain development across different species and highlight the correlation between mitotic function and early brain development.

Overall, these findings support the notion that ASPM plays a significant role in neurogenesis by maintaining the pool of NPCs and regulating their differentiation. It has been suggested that positive selection of ASPM may have contributed to the evolutionary expansion of the human brain (Gonzalez et al., 1988, 1990; Mori et al., 2022).

4. ASPM regulates genome stability

While the growth inhibition in cerebellar and medulloblastoma has been confirmed in ASPM knockout animal models, an increase of DNA damage and apoptosis was also noted (Williams et al., 2015). This suggested that ASPM may have functions in maintaining genome stability and cell survival.

4.1. ASPM in DNA replication

DNA replication is an essential cellular event that favors cell growth and proliferation. Increasing numbers of studies have shown that defects in DNA replication initiation and replication stress cause cortical malformations such as microcephaly (Bicknell et al., 2011; de Munnik et al., 2012; Jackson et al., 2014; Reynolds et al., 2017; Jayaraman et al., 2018). Some microcephaly genes are also involved in DNA replication. For example, the microcephaly gene DONSON encodes a replication fork protein that maintains genome stability by stabilizing stalled forks and activating replication checkpoints (Reynolds et al., 2017). Several bioinformatic methods have indicated that ASPM, along with its upstream regulator trophinin-associated protein (TROAP) and downstream factor cell division cycle 20 (CDC20), may regulate cell replication during the S and G2 cell cycle phases; however, details of the mechanism involved remain unknown (Liu et al., 2022). Recently, a study carried out by our group in HeLa cells uncovered the function of ASPM in maintaining genome stability in response to replication stress (Wu et al., 2022). We identified potential ASPM interaction partners from mass spectrum data, including several DNA replication factors, such as mini-chromosome maintenance protein 5 (MCM5), replication factor complex (RFC1-5), and replication protein A (RPA1, RPA2). Nonetheless, in ASPM knockout cells, we did not observe any differences in replication speed or percentages of cells in S phase, suggesting that ASPM is dispensable for normal replication. By contrast, following replication stress induced by hydroxyurea or aphidicolin, ASPM stabilized replication forks and antagonized the degradation of nascent DNA strands mediated by meiotic recombination 11 (MRE11) nuclease. Loss of ASPM also resulted in reduced activation of the ATR-CHK1 signaling pathway (Wu et al., 2022). This work provides new insights to enhance our understanding of the pathogenesis of ASPM loss in diseases such as microcephaly and cancer.

4.2. ASPM in DNA damage response

Diseases such as neurodevelopmental disorders, neurodegenerative disorders, aging-related conditions, and cancer are commonly caused by gene alterations arising from DNA damage, replication errors, chromosomal segregation defects, and other factors. Genomic DNA is constantly threatened by endogenous or exogenous factors, and efficient DNA damage repair is crucial for maintaining genome stability. Impairment of DNA damage repair leads to genetic alterations and can also cause microcephaly if it occurs during neural development (O'Driscoll and Jeggo, 2008; Zhou et al., 2013; Shiwaku and Okazawa, 2015; Wei et al., 2016; Martins et al., 2022). In Drosophila, DNA double-strand breaks caused by ionizing radiation (IR) treatment reportedly induced microcephaly by promoting the premature differentiation of neural stem cells and neuroblasts, without affecting apoptotic cell death (Barazzuol et al., 2017; Wagle and Song, 2020). Loss of ASPM also increased DNA damage in cerebellar granule neuron progenitors in mice (Williams et al., 2015), while ASPM expression was downregulated in IR-treated human cells (embryonic lung fibroblasts, HeLa, and MCF7), mouse embryonic brain cells, and neurospheres (Fujimori et al., 2008). The latter finding could explain the mechanism of microcephaly formation caused by IR (Fujimori et al., 2008). Moreover, ASPM loss sensitized glioblastoma cells (U87MG), cervical cancer cells (HeLa), and normal human fibroblasts (AG1521) to X-irradiation, H2O2, camptothecin, and increased chromosomal aberrations arising from impaired DNA repair (Kato et al., 2011). This sensitization may result from reduced levels of breast cancer type 1 susceptibility protein (BRCA1), a key factor involved in homologous recombination repair, but the precise mechanism is yet to be determined (Zhong et al., 2005). Recently, we demonstrated that ASPM is recruited to DNA damage sites, where it protects BRCA1 from degradation by antagonizing ubiquitination mediated by HECT domain and RCC1-Like domain-containing protein 2 (HERC2, an E3 ligase; Xu et al., 2021). By promoting efficient homologous recombination, ASPM maintained chromosome stability following X-ray-induced damage. However, further research is needed to enhance our understanding of the role of ASPM-related DNA repair in neurological disorders such as microcephaly.

4.3. ASPM in cancer

Cancer is a severe disease characterized by high rates of cell proliferation and continuous cell division. As an essential gene involved in regulating cell division, ASPM also contributes to cancer development. Wnt/β-catenin signaling, which is important for cell proliferation, organogenesis, tissue homeostasis, and embryonic development, is frequently activated in cancer cells (Schunk et al., 2021; Yu et al., 2021). Recently, studies demonstrated that ASPM interacts with and stabilizes disheveled-3 (Dvl-3), a cardinal upstream regulator of the Wnt signaling pathway. This interaction increases Wnt-induced β-catenin transcriptional activity, promoting proliferation, stemness properties, and tumorigenicity in prostate cancer cells, anaplastic thyroid cancer cells, and glioblastoma cells (Pai et al., 2019; Chen et al., 2020; Jiang et al., 2022). In addition, in a rapidly tumorigenic medulloblastoma mouse model, Aspm knockout significantly slowed medulloblastoma growth and increased DNA damage, suggesting that ASPM promotes tumorigenesis (Williams et al., 2015).

Based on The Cancer Genome Atlas database,1 comparison of tumor and normal tissues shows the upregulation of ASPM expression in many tumors (Figure 3A). Genomic analysis has also identified multiple ASPM mutations (Table 2) in tumors.2 Meanwhile, high levels of ASPM expression correlate with poor prognosis in various types of cancer (Figure 3B), including bladder cancer (Chen et al., 2019, 2021; Gao et al., 2020; Liu et al., 2023), prostate cancer (Xie et al., 2017; Pai et al., 2019; Xu et al., 2019), breast cancer (Shubbar et al., 2013; Tang et al., 2019; Wei et al., 2021; Alam et al., 2022; Wang et al., 2022), triple-negative breast cancer (Alam et al., 2022), esophageal cancer (ESCA; Xu et al., 2021), hepatocellular carcinoma (Lin et al., 2008; Li and Xu, 2020; Yang et al., 2021; Hu et al., 2022; Li et al., 2022; Qiao et al., 2022; Tan et al., 2022; Hasan et al., 2023; Hossen et al., 2023), glioblastoma (Visnyei et al., 2011; Qin et al., 2023), epithelial ovarian cancer (Brüning-Richardson et al., 2011; Alsiary et al., 2014; Wu et al., 2022), osteosarcoma (Liu et al., 2021), endometrial carcinoma (Liu et al., 2020; Zhang et al., 2022), malignant pleural mesothelioma (Zhang et al., 2020), cervical squamous cell carcinoma (Wen et al., 2020), lung adenocarcinoma (Feng et al., 2021; Hou et al., 2022; Tang et al., 2022; Yin et al., 2022; Zhang et al., 2022), anaplastic thyroid carcinoma (Fang et al., 2023), cutaneous squamous cell carcinoma (Su et al., 2022), human sarcomas (Tu et al., 2022), pancreatic ductal adenocarcinoma (Shi et al., 2022), anaplastic thyroid cancer (Jiang et al., 2022), and diffuse large B-cell lymphoma (Wu et al., 2021). Furthermore, analysis of The Comparative Toxicogenomics Database revealed ASPM as a hub gene in adenoid cystic carcinoma (Liu et al., 2023) and mucinous gastric carcinoma (Li et al., 2023). Thus, a huge amount of evidence points to a positive correlation between ASPM and cancer. Nonetheless, despite the function of ASPM in cell division, mechanistic details relating to its role in tumorigenesis require further investigation. A deeper understanding of the connection between ASPM and cancers will be critical to aid diagnosis and facilitate the development of therapeutic targets for tumorigenesis.

Figure 3

Figure 3

High levels of ASPM expression are associated with poor prognosis in various cancers based on The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases. (A) Bar plot of ASPM gene expression profiles for tumor samples and normal tissues. ACC, adrenocortical carcinoma; BLCA, bladder urothelial Carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL, cholangio carcinoma; COAD, colon adenocarcinoma; DLBC, diffuse large B-cell lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma. (B) High levels of ASPM expression in different types of cancers are correlated with poor prognosis. Survival analysis was performed online (http://gepia.cancer-pku.cn) to analyze correlations between ASPM levels and overall survival in cancers.

Table 2

Type of mutation Mutation site Location (exon) Predicted protein effect Primary Histology (Histology subtype 1) References
Coding silent c.5961A > G, p.Q1987= 18 Substitution Lymphoid neoplasm (diffuse large B cell lymphoma) Morin et al. (2016)
Missense c.10338G > C, p.K3446N 26 Substitution Glioma (astrocytoma Grade IV)
Coding silent c.7185C > T, p.F2395= 18 Substitution Carcinoma (adenocarcinoma) Dong et al. (2018)
Missense c.5656C > T, p.R1886C 18 Substitution Carcinoma (basal cell carcinoma); malignant melanoma (NS); malignant melanoma (nodular); carcinoma (signet ring adenocarcinoma) Sharpe et al. (2015), Bonilla et al. (2016), Hayward et al. (2017), Lau et al. (2018), Rabbie et al. (2021)
Missense c.7939C > A, p.L2647I 18 Substitution Lymphoid neoplasm (diffuse large B cell lymphoma); hematopoietic neoplasm (acute myeloid leukemia); carcinoma (adenocarcinoma) Morin et al. (2016)
Frameshift c.5149del, p.I1717* 18 Deletion Carcinoma (adenocarcinoma); carcinoma (serous carcinoma); Cancer Genome Atlas (2012), Jones et al. (2012), Liu et al. (2014), Mouradov et al. (2014), Chen et al. (2015), Gingras et al. (2016)
Missense c.7684A > G, p.S2562G 18 Substitution Carcinoma (adenocarcinoma); carcinoma (hepatocellular carcinoma); hematopoietic neoplasm (acute myeloid leukemia)
Missense c.4495C > T, p.R1499W 18 Substitution Carcinoma (adenocarcinoma); carcinoma (endometrioid carcinoma); malignant melanoma (NS) Mouradov et al. (2014), Xicola et al. (2018)
Nonsense c.4732C > T, p.R1578* 18 Substitution Carcinoma (endometrioid carcinoma); carcinoma (adenocarcinoma); malignant melanoma (NS); malignant melanoma (in situ melanotic neoplasm) Rabbie et al. (2021)
Coding silent c.7674C > T, p.I2558= 18 Substitution Carcinoma (adenocarcinoma); carcinoma (hepatocellular carcinoma); hematopoietic neoplasm (acute myeloid leukemia)
Missense c.2929C > T, p.R977C 9 Substitution Glioma (astrocytoma Grade IV); carcinoma (adenocarcinoma) Giannakis et al. (2016), Nomura et al. (2017)
Coding silent c.2307A > C, p.A769= 5 Substitution Glioma (astrocytoma Grade IV)
Missense c.5639C > T, p.S1880F 18 Substitution Carcinoma (basal cell carcinoma); malignant melanoma (NS) Bonilla et al. (2016), Hayward et al. (2017)
Coding silent c.4449A > G, p.K1483= 18 Substitution Carcinoma (adenocarcinoma); carcinoma (hepatocellular carcinoma); hematopoietic neoplasm (acute myeloid leukemia)
Missense c.4213C > T, p.R1405C 17 Substitution Lymphoid neoplasm (plasma cell myeloma); carcinoma (adenocarcinoma) Giannakis et al. (2014), Giannakis et al. (2016), McMillan et al. (2018), Tessoulin et al. (2018)
Nonsense c.9319C > T, p.R3107* 21 Substitution Carcinoma (basal cell carcinoma); malignant melanoma (NS); carcinoma (endometrioid carcinoma) Sharpe et al. (2015), Hayward et al. (2017)
Coding silent c.3138G > A, p.R1046= 10 Substitution Carcinoma (adenocarcinoma)
Nonsense c.9592C > T, p.R3198C 22 Substitution Carcinoma (adenocarcinoma); malignant melanoma (NS) Kumar et al. (2016)
Nonsense c.6232C > T, p.R2078* 18 Substitution Carcinoma (squamous cell carcinoma); carcinoma (endometrioid carcinoma) Gao et al. (2014)
Missense c.3155C > T, p.A1052V 10 Substitution Carcinoma (adenocarcinoma); carcinoma (endometrioid carcinoma); malignant melanoma (NS) Krauthammer et al. (2015), Giannakis et al. (2016)
Missense c.2824C > T, p.R942C 8 Substitution Carcinoma (adenocarcinoma); carcinoma (clear cell renal cell carcinoma); malignant melanoma (NS) Giannakis et al. (2016), Hayward et al. (2017)
Missense c.2822C > T, p.S941F 8 Substitution Malignant melanoma (NS) Sanborn et al. (2015)
Missense c.4214G > A, p.R1405H 17 Substitution Lymphoid neoplasm (acute lymphoblastic B cell leukemia); malignant melanoma (NS); carcinoma (squamous cell carcinoma) Krauthammer et al. (2015), Hedberg et al. (2016), Li et al. (2017, 2020)
Missense c.2752G > A, p.E918K 8 Substitution Carcinoma (adenocarcinoma); carcinoma (endometrioid carcinoma); carcinoma (nasopharyngeal carcinoma) Seshagiri et al. (2012), Liu et al. (2018)
Coding silent c.1731C > T, p.S577= 3 Substitution Carcinoma (adenocarcinoma); carcinoma (small cell carcinoma) Peifer et al. (2012), Mouradov et al. (2014), George et al. (2015)
Frameshift c.5039del, p.N1680Mfs*4 18 Deletion Carcinoma (adenocarcinoma); carcinoma (NS) Liu et al. (2014)
Nonsense c.9730C > T, p.R3244* 23 Substitution Glioma (astrocytoma grade IV); carcinoma (ductal carcinoma); malignant melanoma (NS) Krauthammer et al. (2012)
Missense c.1607A > G, p.K536R 3 Substitution Adenoma (tubulovillous) Saito et al. (2018)
Missense c.5185C > T, p.R1729W 18 Substitution Carcinoma (adenocarcinoma); Ccrcinoid-endocrine tumor (NS); malignant melanoma (NS) Hintzsche et al. (2017), McMillan et al. (2018), Newell et al. (2019)
Nonsense c.9454C > T, p.R3152* 21 Substitution Glioma (astrocytoma grade IV); carcinoma (adenocarcinoma); carcinoma (endometrioid carcinoma)
Missense c.3463 T > G, p.Y1155D 13 Substitution Carcinoma (adenocarcinoma); carcinoma (NS) Abaan et al. (2013), Mouradov et al. (2014)
Missense c.7598C > T, p.S2533F 18 Substitution Carcinoma (squamous cell carcinoma); carcinoma (basal cell carcinoma) Bonilla et al. (2016)
Nonsense c.7324C > T, p.R2442* 18 Substitution Carcinoma (adenocarcinoma); malignant melanoma (NS) Giannakis et al. (2016), Hayward et al. (2017)
Missense c.6978G > A, p.M2326I 18 Substitution Carcinoma (squamous cell carcinoma); carcinoma (NS) Zhang et al. (2015), Cheng et al. (2016)

ASPM mutations in multiple cancers.

NS = non-specific.

5. Conclusion

In this review, we provided a comprehensive overview of the pathogenic mechanisms underlying microcephaly and cancer caused by ASPM mutations. We highlighted the functional aspects of ASPM mutations in relation to the symmetric cell division, proliferation, differentiation, and self-renewal of neural stem/progenitor cells, as well as in genomic stability and disease pathogenesis. Loss or mutation of ASPM leads to abnormal mitotic events in Drosophila, mouse, ferret, and human cultured cells. This is likely due to the abnormal activity of the spindle assembly checkpoint or mitotic slippage. ASPM, together with several interacting partners, including MCPH proteins (CITK, MCPH2; Paramasivam et al., 2007; Gai et al., 2016; Jayaraman et al., 2016), katanin (Jiang et al., 2017), calmodulin (van der Voet et al., 2009), cyclin E (Capecchi and Pozner, 2015), FOXO (Paik et al., 2009), and UBE3A (Singhmar and Kumar, 2011), contributes to normal mitotic progression and neurogenesis. In addition to these functionally confirmed partners, numerous potential interactors have been identified in mass spectrometry data from NCBI database.3 These include proteins involved in DNA repair [TP53 (Liu et al., 2020), MTOR (Hein et al., 2015)], microtubule formation [Aurora A (Adhikari et al., 2020)], cell cycle regulation [CDC16 (Huttlin et al., 2017, 2021), CEP78 (Hein et al., 2015), MYC (Heidelberger et al., 2018)], transcription [CREB3 (Huttlin et al., 2021), FOXJ1 (Huttlin et al., 2017, 2021), T53INP1 (Huttlin et al., 2017)], protein degradation [CUL3 (Bennett et al., 2010; Kouranti et al., 2022), HERC2 (Galligan et al., 2015)], protein chaperoning [DNAJB7 (Huttlin et al., 2021), DNAJB8 (Huttlin et al., 2021)], apoptosis [MYC (Heidelberger et al., 2018)], cell proliferation [NPM1 (Fasci et al., 2018)], kinetochore organization [Ndc80 (Hutchins et al., 2010)], and ciliary motility [ODAD1 (Huttlin et al., 2021)]. This array of binding partners offers new insight into the potential functions of ASPM. However, elucidating the mechanisms underlying the cooperation of ASPM with these factors in microcephaly and other diseases will require further investigation.

Mouse models have been widely used to study the function of ASPM, and research has revealed that ASPM mutations are found not only in microcephaly but also in other diseases and disorders. Indeed, it has been discovered that mice with Aspm mutations also exhibit reductions in sperm count and motility, as well as major defects in the male and female germlines (Pulvers et al., 2010). These findings highlight the complexity of ASPM function. In addition to the mechanisms mentioned above, our group has uncovered potential mechanisms involving ASPM in DNA repair and the DNA replication response, thus advancing our understanding of ASPM from alternative perspectives (Xu et al., 2021; Wu et al., 2022).

Overall, the pathogenic mechanisms of microcephaly are complex, with more than 30 known disease-causing genes identified (Xu et al., 2020; Phan and Holland, 2021; Zaqout and Kaindl, 2021; Razuvaeva et al., 2023) and, as a result, an increasingly broad range of research directions. The analysis of such heterogeneous disorders will facilitate a better understanding of human brain development and evolution. Moreover, refining and revising our understanding of the significant contributions of ASPM to brain development and other diseases, including cancer, will provide guidance for the diagnosis and treatment of this rare heterogeneous disease.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC); grants (32090031, 31761133012, and 31530016) and Shenzhen Science and Technology Innovation Commission projects grants (JCYJ20220818095616035 and JCYJ201805073000163).

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Statements

Author contributions

XX are responsible for the conception of this review and finalized the content of the manuscript. XW and ZL wrote the manuscript draft. XW, ZL, Z-QW, and XX scientifically edited the manuscript. All authors contributed to the article and approved the submitted version.

Acknowledgments

The authors would like to thank all members of the Xu laboratory for their help and useful discussions.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  • 1

    Abaan O. D. Polley E. C. Davis S. R. Zhu Y. J. Bilke S. Walker R. L. et al . (2013). The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res.73, 43724382. doi: 10.1158/0008-5472.CAN-12-3342

  • 2

    Abdel-Hamid M. S. Ismail M. F. Darwish H. A. Effat L. K. Zaki M. S. Abdel-Salam G. M. H. (2016). Molecular and phenotypic spectrum of ASPM-related primary microcephaly: identification of eight novel mutations. Am. J. Med. Genet. A170, 21332140. doi: 10.1002/ajmg.a.37724

  • 3

    Adhikari B. Bozilovic J. Diebold M. Schwarz J. D. Hofstetter J. Schröder M. et al . (2020). PROTAC-mediated degradation reveals a non-catalytic function of AURORA-A kinase. Nat. Chem. Biol.16, 11791188. doi: 10.1038/s41589-020-00652-y

  • 4

    Ahmad I. Baig S. M. Abdulkareem A. R. Hussain M. S. Sur I. Toliat M. R. et al . (2017). Genetic heterogeneity in Pakistani microcephaly families revisited. Clin. Genet.92, 6268. doi: 10.1111/cge.12955

  • 5

    Ahmed J. Windpassinger C. Salim M. Wiener M. Petek E. Schaflinger E. et al . (2019). Genetic study of Khyber-Pukhtunkhwa resident Pakistani families presenting primary microcephaly with intellectual disability. J. Pak. Med. Assoc.69, 11816. doi: 10.5455/JPMA.300681

  • 6

    Alam M. S. Rahaman M. M. Sultana A. Wang G. Mollah M. N. H. (2022). Statistics and network-based approaches to identify molecular mechanisms that drive the progression of breast cancer. Comput. Biol. Med.145:105508. doi: 10.1016/j.compbiomed.2022.105508

  • 7

    Alam M. S. Sultana A. Wang G. Haque Mollah M. N. (2022). Gene expression profile analysis to discover molecular signatures for early diagnosis and therapies of triple-negative breast cancer. Front. Mol. Biosci.9:1049741. doi: 10.3389/fmolb.2022.1049741

  • 8

    Alsiary R. Brüning-Richardson A. Bond J. Morrison E. E. Wilkinson N. Bell S. M. (2014). Deregulation of Microcephalin and ASPM Expression Are Correlated with Epithelial Ovarian Cancer Progression. PLoS One9:e97059. doi: 10.1371/journal.pone.0097059

  • 9

    Ariani F. Mari F. Amitrano S. di Marco C. Artuso R. Scala E. et al . (2013). Exome sequencing overrides formal genetics: ASPM mutations in a case study of apparent X-linked microcephalic intellectual deficit. Clin. Genet.83, 288290. doi: 10.1111/j.1399-0004.2012.01901.x

  • 10

    Barazzuol L. Ju L. Jeggo P. A. (2017). A coordinated DNA damage response promotes adult quiescent neural stem cell activation. PLoS Biol.15:e2001264. doi: 10.1371/journal.pbio.2001264

  • 11

    Batool T. Irshad S. Mahmood K. (2023). Novel pathogenic mutation mapping of ASPM gene in consanguineous Pakistani families with primary microcephaly. Braz. J. Biol.83:e246040. doi: 10.1590/1519-6984.246040

  • 12

    Bazgir A. Agha Gholizadeh M. Sarvar F. Pakzad Z. (2019). A novel frameshift mutation in abnormal spindle-like microcephaly (ASPM) gene in an Iranian patient with primary microcephaly: a case report. Iran. J. Public Health48, 20742078. doi: 10.18502/ijph.v48i11.3528 PMID:

  • 13

    Bennett E. J. Rush J. Gygi S. P. Harper J. W. (2010). Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cells143, 951965. doi: 10.1016/j.cell.2010.11.017

  • 14

    Bhargav D. S. Sreedevi N. Swapna N. Vivek S. Kovvali S. (2017). Whole exome sequencing identifies a novel homozygous frameshift mutation in the ASPM gene, which causes microcephaly 5, primary, autosomal recessive. F1000Res.6:2163. doi: 10.12688/f1000research.12102.1

  • 15

    Bicknell L. S. Bongers E. M. H. F. Leitch A. Brown S. Schoots J. Harley M. E. et al . (2011). Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat. Genet.43, 356359. doi: 10.1038/ng.775

  • 16

    Bolat H. Sağer S. G. Türkyılmaz A. Çebi A. H. Akın Y. Onay H. et al . (2022). Autosomal recessive primary microcephaly (MCPH) and novel pathogenic variants in ASPM and WDR62 genes. Mol. Syndromol.13, 363369. doi: 10.1159/000524391

  • 17

    Bond J. Roberts E. Mochida G. H. Hampshire D. J. Scott S. Askham J. M. et al . (2002). ASPM is a major determinant of cerebral cortical size. Nat. Genet.32, 316320. doi: 10.1038/ng995

  • 18

    Bond J. Scott S. Hampshire D. J. Springell K. Corry P. Abramowicz M. J. et al . (2003). Protein-truncating mutations in ASPM cause variable reduction in brain size. Am. J. Hum. Genet.73, 11701177. doi: 10.1086/379085

  • 19

    Bond J. Woods C. G. (2006). Cytoskeletal genes regulating brain size. Curr. Opin. Cell Biol.18, 95101. doi: 10.1016/j.ceb.2005.11.004

  • 20

    Bonilla X. Parmentier L. King B. Bezrukov F. Kaya G. Zoete V. et al . (2016). Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet.48, 398406. doi: 10.1038/ng.3525

  • 21

    Borrell V. Calegari F. (2014). Mechanisms of brain evolution: regulation of neural progenitor cell diversity and cell cycle length. Neurosci. Res.86, 1424. doi: 10.1016/j.neures.2014.04.004

  • 22

    Brüning-Richardson A. Bond J. Alsiary R. Richardson J. Cairns D. A. McCormack L. et al . (2011). ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br. J. Cancer104, 16021610. doi: 10.1038/bjc.2011.117

  • 23

    Buchman J. J. Durak O. Tsai L. H. (2011). ASPM regulates Wnt signaling pathway activity in the developing brain. Genes Dev.25, 19091914. doi: 10.1101/gad.16830211

  • 24

    Cancer Genome Atlas N. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature487, 330337. doi: 10.1038/nature11252

  • 25

    Capecchi M. R. Pozner A. (2015). ASPM regulates symmetric stem cell division by tuning cyclin E ubiquitination. Nat. Commun.6:8763. doi: 10.1038/ncomms9763

  • 26

    Chen Q. Hu J. Deng J. Fu B. Guo J. (2019). Bioinformatics analysis identified key molecular changes in bladder Cancer development and recurrence. Biomed. Res. Int.2019:3917982. doi: 10.1155/2019/3917982

  • 27

    Chen X. Huang L. Yang Y. Chen S. Sun J. Ma C. et al . (2020). ASPM promotes glioblastoma growth by regulating G1 restriction point progression and Wnt-beta-catenin signaling. Aging (Albany NY)12, 224241. doi: 10.18632/aging.102612

  • 28

    Chen K. Xing J. Yu W. Xia Y. Zhang Y. Cheng F. et al . (2021). Identification and validation of hub genes associated with bladder Cancer by integrated bioinformatics and experimental assays. Front. Oncol.11:782981. doi: 10.3389/fonc.2021.782981

  • 29

    Chen K. Yang D. Li X. Sun B. Song F. Cao W. et al . (2015). Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. Proc. Natl. Acad. Sci. U. S. A.112, 11071112. doi: 10.1073/pnas.1422640112

  • 30

    Cheng C. Cui H. Zhang L. Jia Z. Song B. Wang F. et al . (2016). Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma. Gigascience5:1. doi: 10.1186/s13742-015-0107-0

  • 31

    Choi E. J. Kim M. S. Yoo N. J. Lee S. H. (2016). Frameshift mutation of ASPM gene in colorectal cancers with regional heterogeneity. Pathol. Oncol. Res.22, 877879. doi: 10.1007/s12253-016-0108-z

  • 32

    Correia-Costa G. R. dos Santos A. M. de Leeuw N. Rigatto S. Z. P. Belangero V. M. S. Steiner C. E. et al . (2022). Dual molecular diagnoses of recessive disorders in a child from consanguineous parents. Genes13, 2377. doi: 10.3390/genes13122377

  • 33

    Darvish H. Esmaeeli-Nieh S. Monajemi G. B. Mohseni M. Ghasemi-Firouzabadi S. Abedini S. S. et al . (2010). A clinical and molecular genetic study of 112 Iranian families with primary microcephaly. J. Med. Genet.47, 823828. doi: 10.1136/jmg.2009.076398

  • 34

    de Almeida M. M. A. Goodkey K. Voronova A. (2023). Regulation of microglia function by neural stem cells. Front. Cell. Neurosci.17:1130205. doi: 10.3389/fncel.2023.1130205

  • 35

    de Munnik S. A. Bicknell L. S. Aftimos S. al-Aama J. Y. van Bever Y. Bober M. B. et al . (2012). Meier-Gorlin syndrome genotype-phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis. Eur. J. Hum. Genet.20, 598606. doi: 10.1038/ejhg.2011.269

  • 36

    do Carmo Avides M. Glover D. M. (1999). Abnormal spindle protein, asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science283, 17331735. doi: 10.1126/science.283.5408.1733

  • 37

    Dong L. Q. Shi Y. Ma L. J. Yang L. X. Wang X. Y. Zhang S. et al . (2018). Spatial and temporal clonal evolution of intrahepatic cholangiocarcinoma. J. Hepatol.69, 8998. doi: 10.1016/j.jhep.2018.02.029

  • 38

    Duerinckx S. Jacquemin V. Drunat S. Vial Y. Passemard S. Perazzolo C. et al . (2020). Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. Hum. Mutat.41, 512524. doi: 10.1002/humu.23948

  • 39

    Fang Q. Li Q. Qi Y. Pan Z. Feng T. Xin W. (2023). ASPM promotes migration and invasion of anaplastic thyroid carcinoma by stabilizing KIF11. Cell Biol. Int.47, 12091221. doi: 10.1002/cbin.12012

  • 40

    Fasci D. van Ingen H. Scheltema R. A. Heck A. J. R. (2018). Histone interaction landscapes visualized by crosslinking mass spectrometry in intact cell nuclei. Mol. Cell. Proteomics17, 20182033. doi: 10.1074/mcp.RA118.000924

  • 41

    Feng Z. Zhang J. Zheng Y. Liu J. Duan T. Tian T. (2021). Overexpression of abnormal spindle-like microcephaly-associated (ASPM) increases tumor aggressiveness and predicts poor outcome in patients with lung adenocarcinoma. Transl. Cancer Res.10, 983997. doi: 10.21037/tcr-20-2570

  • 42

    Fernandez V. Llinares-Benadero C. Borrell V. (2016). Cerebral cortex expansion and folding: what have we learned?EMBO J.35, 10211044. doi: 10.15252/embj.201593701

  • 43

    Fietz S. A. Kelava I. Vogt J. Wilsch-Bräuninger M. Stenzel D. Fish J. L. et al . (2010). OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci.13, 690699. doi: 10.1038/nn.2553

  • 44

    Fish J. L. Dehay C. Kennedy H. Huttner W. B. (2008). Making bigger brains-the evolution of neural-progenitor-cell division. J. Cell Sci.121, 27832793. doi: 10.1242/jcs.023465

  • 45

    Fish J. L. Kosodo Y. Enard W. Pääbo S. Huttner W. B. (2006). Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. U. S. A.103, 1043810443. doi: 10.1073/pnas.0604066103

  • 46

    Friedel R. H. Soriano P. (2010). Gene trap mutagenesis in the mouse. Methods Enzymol.477, 243269. doi: 10.1016/S0076-6879(10)77013-0

  • 47

    Fujimori A. Itoh K. Goto S. Hirakawa H. Wang B. Kokubo T. et al . (2014). Disruption of Aspm causes microcephaly with abnormal neuronal differentiation. Brain Dev.36, 661669. doi: 10.1016/j.braindev.2013.10.006

  • 48

    Fujimori A. Yaoi T. Ogi H. Wang B. Suetomi K. Sekine E. et al . (2008). Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans. Biochem. Biophys. Res. Commun.369, 953957. doi: 10.1016/j.bbrc.2008.02.149

  • 49

    Gai M. Bianchi F. T. Vagnoni C. Vernì F. Bonaccorsi S. Pasquero S. et al . (2016). ASPM and CITK regulate spindle orientation by affecting the dynamics of astral microtubules. EMBO Rep.17, 13961409. doi: 10.15252/embr.201541823

  • 50

    Galligan J. T. Martinez-Noël G. Arndt V. Hayes S. Chittenden T. W. Harper J. W. et al . (2015). Proteomic analysis and identification of cellular interactors of the giant ubiquitin ligase HERC2. J. Proteome Res.14, 953966. doi: 10.1021/pr501005v

  • 51

    Gao Y. B. Chen Z. L. Li J. G. Hu X. D. Shi X. J. Sun Z. M. et al . (2014). Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet.46, 10971102. doi: 10.1038/ng.3076

  • 52

    Gao Z. Y. Yu F. Jia H. X. Ye Z. Yao S. J. (2020). ASPM predicts poor prognosis and regulates cell proliferation in bladder cancer. Kaohsiung J. Med. Sci.36, 10211029. doi: 10.1002/kjm2.12284

  • 53

    George J. Lim J. S. Jang S. J. Cun Y. Ozretić L. Kong G. et al . (2015). Comprehensive genomic profiles of small cell lung cancer. Nature524, 4753. doi: 10.1038/nature14664

  • 54

    Giannakis M. Hodis E. Jasmine Mu X. Yamauchi M. Rosenbluh J. Cibulskis K. et al . (2014). RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet.46, 12641266. doi: 10.1038/ng.3127

  • 55

    Giannakis M. Mu X. J. Shukla S. A. Qian Z. R. Cohen O. Nishihara R. et al . (2016). Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep.15, 857865. doi: 10.1016/j.celrep.2016.03.075

  • 56

    Gingras M. C. Covington K. R. Chang D. K. Donehower L. A. Gill A. J. Ittmann M. M. et al . (2016). Ampullary Cancers Harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation. Cell Rep.14, 907919. doi: 10.1016/j.celrep.2015.12.005

  • 57

    Gomez-Lopez S. Lerner R. G. Petritsch C. (2014). Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell. Mol. Life Sci.71, 575597. doi: 10.1007/s00018-013-1386-1

  • 58

    Gonzalez C. Casal J. Ripoll P. (1988). Functional monopolar spindles caused by mutation in mgr, a cell division gene of Drosophila melanogaster. J. Cell Sci.89, 3947. doi: 10.1242/jcs.89.1.39

  • 59

    Gonzalez C. Saunders R. D. C. Casal J. Molina I. Carmena M. Ripoll P. et al . (1990). Mutations at the asp locus of Drosophila Lead to multiple free centrosomes in syncytial embryos, but restrict centrosome duplication in larval neuroblasts. J. Cell Sci.96, 605616. doi: 10.1242/jcs.96.4.605

  • 60

    Gonzalez C. Sunkel C. E. Glover D. M. (1998). Interactions between mgr, asp, and polo: asp function modulated by polo and needed to maintain the poles of monopolar and bipolar spindles. Chromosoma107, 452460. doi: 10.1007/s004120050329

  • 61

    González-Martínez J. Cwetsch A. W. Martínez-Alonso D. López-Sainz L. R. Almagro J. Melati A. et al . (2021). Deficient adaptation to centrosome duplication defects in neural progenitors causes microcephaly and subcortical heterotopias. JCI. Insight6, e146364. doi: 10.1172/jci.insight.146364

  • 62

    Goshima G. Wollman R. Goodwin S. S. Zhang N. Scholey J. M. Vale R. D. et al . (2007). Genes required for mitotic spindle assembly in Drosophila S2 cells. Science316, 417421. doi: 10.1126/science.1141314

  • 63

    Gul A. Hassan M. J. Mahmood S. Chen W. Rahmani S. Naseer M. I. et al . (2006). Genetic studies of autosomal recessive primary microcephaly in 33 Pakistani families: novel sequence variants in ASPM gene. Neurogenetics7, 105110. doi: 10.1007/s10048-006-0042-4

  • 64

    Gul A. Tariq M. Khan M. N. Hassan M. J. Ali G. Ahmad W. (2007). Novel protein-truncating mutations in the ASPM gene in families with autosomal recessive primary microcephaly. J. Neurogenet.21, 153163. doi: 10.1080/01677060701508594

  • 65

    Gupta N. (2023). Deciphering intellectual disability. Indian J. Pediatr.90, 160167. doi: 10.1007/s12098-022-04345-3

  • 66

    Halsall S. Nicholas A. K. Thornton G. Martin H. Geoffrey Woods C. (2010). Critical consequences of finding three pathogenic mutations in an individual with recessive disease. J. Med. Genet.47, 769770. doi: 10.1136/jmg.2010.079277

  • 67

    Hasan M. A. M. Maniruzzaman M. Shin J. (2023). Differentially expressed discriminative genes and significant meta-hub genes based key genes identification for hepatocellular carcinoma using statistical machine learning. Sci. Rep.13:3771. doi: 10.1038/s41598-023-30851-1

  • 68

    Hashmi J. A. al-Harbi K. M. Ramzan K. Albalawi A. M. Mehmood A. Samman M. I. et al . (2016). A novel splice-site mutation in the ASPM gene underlies autosomal recessive primary microcephaly. Ann. Saudi Med.36, 391396. doi: 10.5144/0256-4947.2016.391

  • 69

    Hayward N. K. Wilmott J. S. Waddell N. Johansson P. A. Field M. A. Nones K. et al . (2017). Whole-genome landscapes of major melanoma subtypes. Nature545, 175180. doi: 10.1038/nature22071

  • 70

    Hedberg M. L. Goh G. Chiosea S. I. Bauman J. E. Freilino M. L. Zeng Y. et al . (2016). Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J. Clin. Invest.126:1606. doi: 10.1172/JCI86862

  • 71

    Heidelberger J. B. Voigt A. Borisova M. E. Petrosino G. Ruf S. Wagner S. A. et al . (2018). Proteomic profiling of VCP substrates links VCP to K6-linked ubiquitylation and c-Myc function. EMBO Rep.19, e44754. doi: 10.15252/embr.201744754

  • 72

    Hein M. Y. Hubner N. C. Poser I. Cox J. Nagaraj N. Toyoda Y. et al . (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cells163, 712723. doi: 10.1016/j.cell.2015.09.053

  • 73

    Herculano-Houzel S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl. Acad. Sci. U. S. A.109, 1066110668. doi: 10.1073/pnas.1201895109

  • 74

    Higgins J. Midgley C. Bergh A. M. Bell S. M. Askham J. M. Roberts E. et al . (2010). Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biol.11:85. doi: 10.1186/1471-2121-11-85

  • 75

    Hintzsche J. D. Gorden N. T. Amato C. M. Kim J. Wuensch K. E. Robinson S. E. et al . (2017). Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma. Melanoma Res.27, 189199. doi: 10.1097/CMR.0000000000000345

  • 76

    Horvath S. Zhang B. Carlson M. Lu K. V. Zhu S. Felciano R. M. et al . (2006). Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc. Natl. Acad. Sci. U. S. A.103, 1740217407. doi: 10.1073/pnas.0608396103

  • 77

    Hossen M. A. Reza M. S. Harun-Or-Roshid M. Islam M. A. Siddika M. A. MNH M. (2023). Identification of drug targets and agents associated with hepatocellular carcinoma through integrated bioinformatics analysis. Curr. Cancer Drug Targets23, 547563. doi: 10.2174/1568009623666230214100159

  • 78

    Hou S. Xu H. Liu S. Yang B. Li L. Zhao H. et al . (2022). Integrated bioinformatics analysis identifies a new Stemness index-related survival model for prognostic prediction in lung adenocarcinoma. Front. Genet.13:860268. doi: 10.3389/fgene.2022.860268

  • 79

    Hu H. Suckow V. Musante L. Roggenkamp V. Kraemer N. Ropers H. H. et al . (2014). Previously reported new type of autosomal recessive primary microcephaly is caused by compound heterozygous ASPM gene mutations. Cell Cycle13, 16501651. doi: 10.4161/cc.28706

  • 80

    Hu X. Zhou J. Zhang Y. Zeng Y. Jie G. Wang S. et al . (2022). Identifying potential prognosis markers in hepatocellular carcinoma via integrated bioinformatics analysis and biological experiments. Front. Genet.13:942454. doi: 10.3389/fgene.2022.942454

  • 81

    Hussain S. Nawaz A. Hamid M. Ullah W. Khan I. N. Afshan M. et al . (2022). Mutation screening of multiple Pakistani MCPH families revealed novel and recurrent protein-truncating mutations of ASPM. Biotechnol. Appl. Biochem.69, 22962303. doi: 10.1002/bab.2286

  • 82

    Hutchins J. R. Toyoda Y. Hegemann B. Poser I. Hériché J. K. Sykora M. M. et al . (2010). Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science328, 593599. doi: 10.1126/science.1181348

  • 83

    Huttlin E. L. Bruckner R. J. Navarrete-Perea J. Cannon J. R. Baltier K. Gebreab F. et al . (2021). Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cells184, 30223040.e28. doi: 10.1016/j.cell.2021.04.011

  • 84

    Huttlin E. L. Bruckner R. J. Paulo J. A. Cannon J. R. Ting L. Baltier K. et al . (2017). Architecture of the human interactome defines protein communities and disease networks. Nature545, 505509. doi: 10.1038/nature22366

  • 85

    Isaev N. K. Stelmashook E. V. Genrikhs E. E. (2019). Neurogenesis and brain aging. Rev. Neurosci.30, 573580. doi: 10.1515/revneuro-2018-0084

  • 86

    Jackson A. P. Laskey R. A. Coleman N. (2014). Replication proteins and human disease. Cold Spring Harb. Perspect. Biol.6:a013060. doi: 10.1101/cshperspect.a013060

  • 87

    Jamieson C. R. Fryns J. P. Jacobs J. Matthijs G. Abramowicz M. J. (2000). Primary autosomal recessive microcephaly: MCPH5 maps to 1q25-q32. Am. J. Hum. Genet.67, 15751577. doi: 10.1086/316909

  • 88

    Jana S. C. Bettencourt-Dias M. Durand B. Megraw T. L. (2016). Drosophila melanogaster as a model for basal body research. Cilia5:22. doi: 10.1186/s13630-016-0041-5

  • 89

    Jayaraman D. Bae B. I. Walsh C. A. (2018). The genetics of primary microcephaly. Annu. Rev. Genomics Hum. Genet.19, 177200. doi: 10.1146/annurev-genom-083117-021441

  • 90

    Jayaraman D. Kodani A. Gonzalez D. M. Mancias J. D. Mochida G. H. Vagnoni C. et al . (2016). Microcephaly proteins Wdr62 and Aspm define a mother centriole complex regulating centriole biogenesis, apical complex, and cell fate. Neuron92, 813828. doi: 10.1016/j.neuron.2016.09.056

  • 91

    Jiang K. Rezabkova L. Hua S. Liu Q. Capitani G. Altelaar A. F. M. et al . (2017). Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat. Cell Biol.19, 480492. doi: 10.1038/ncb3511

  • 92

    Jiang L. Zhang S. An N. Chai G. Ye C. (2022). ASPM promotes the progression of anaplastic thyroid carcinomas by regulating the Wnt/beta-catenin signaling pathway. Int. J. Endocrinol.2022:5316102. doi: 10.1155/2022/5316102

  • 93

    Johnson M. B. Sun X. Kodani A. Borges-Monroy R. Girskis K. M. Ryu S. C. et al . (2018). Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size. Nature556, 370375. doi: 10.1038/s41586-018-0035-0

  • 94

    Jones S. Wang T. L. Kurman R. J. Nakayama K. Velculescu V. E. Vogelstein B. et al . (2012). Low-grade serous carcinomas of the ovary contain very few point mutations. J. Pathol.226, 413420. doi: 10.1002/path.3967

  • 95

    Kato T. A. Okayasu R. Jeggo P. A. Fujimori A. (2011). ASPM influences DNA double-strand break repair and represents a potential target for radiotherapy. Int. J. Radiat. Biol.87, 11891195. doi: 10.3109/09553002.2011.624152

  • 96

    Khan A. Wang R. Han S. Ahmad W. Zhang X. (2018). Identification of a novel nonsense ASPM mutation in a large consanguineous Pakistani family using targeted next-generation sequencing. Genet. Test. Mol. Biomark.22, 159164. doi: 10.1089/gtmb.2017.0229

  • 97

    Khan M. A. Windpassinger C. Ali M. Z. Zubair M. Gul H. Abbas S. et al . (2017). Molecular genetic analysis of consanguineous families with primary microcephaly identified pathogenic variants in the ASPM gene. J. Genet.96, 383387. doi: 10.1007/s12041-017-0759-x

  • 98

    Kim H. T. Lee M. S. Choi J. H. Jung J. Y. Ahn D. G. Yeo S. Y. et al . (2011). The microcephaly gene aspm is involved in brain development in zebrafish. Biochem. Biophys. Res. Commun.409, 640644. doi: 10.1016/j.bbrc.2011.05.056

  • 99

    Knoblich J. A. (2008). Mechanisms of asymmetric stem cell division. Cells132, 583597. doi: 10.1016/j.cell.2008.02.007

  • 100

    Kouprina N. Pavlicek A. Collins N. K. Nakano M. Noskov V. N. Ohzeki J. I. et al . (2005). The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Hum. Mol. Genet.14, 21552165. doi: 10.1093/hmg/ddi220

  • 101

    Kouranti I. Abdel Khalek W. Mazurkiewicz S. Loisel-Ferreira I. Gautreau A. M. Pintard L. et al . (2022). Cullin 3 exon 9 deletion in familial hyperkalemic hypertension impairs Cullin3-ring-E3 ligase (CRL3) dynamic regulation and cycling. Int. J. Mol. Sci.23:5151. doi: 10.3390/ijms23095151

  • 102

    Kousar R. Nawaz H. Khurshid M. Ali G. Khan S. U. Mir H. et al . (2010). Mutation analysis of the ASPM gene in 18 Pakistani families with autosomal recessive primary microcephaly. J. Child Neurol.25, 715720. doi: 10.1177/0883073809346850

  • 103

    Kraemer N. Picker-Minh S. Abbasi A. A. Fröhler S. Ninnemann O. Khan M. N. et al . (2016). Genetic causes of MCPH in consanguineous Pakistani families. Clin. Genet.89, 744745. doi: 10.1111/cge.12685

  • 104

    Krauthammer M. Kong Y. Bacchiocchi A. Evans P. Pornputtapong N. Wu C. et al . (2015). Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat. Genet.47, 9961002. doi: 10.1038/ng.3361

  • 105

    Krauthammer M. Kong Y. Ha B. H. Evans P. Bacchiocchi A. McCusker J. P. et al . (2012). Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat. Genet.44, 10061014. doi: 10.1038/ng.2359

  • 106

    Kumar A. Blanton S. H. Babu M. Markandaya M. Girimaji S. C. (2004). Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations. Clin. Genet.66, 341348. doi: 10.1111/j.1399-0004.2004.00304.x

  • 107

    Kumar A. Coleman I. Morrissey C. Zhang X. True L. D. Gulati R. et al . (2016). Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med.22, 369378. doi: 10.1038/nm.4053

  • 108

    Lau W. M. Teng E. Huang K. K. Tan J. W. das K. Zang Z. et al . (2018). Acquired resistance to FGFR inhibitor in diffuse-type gastric Cancer through an AKT-independent PKC-mediated phosphorylation of GSK3beta. Mol. Cancer Ther.17, 232242. doi: 10.1158/1535-7163.MCT-17-0367

  • 109

    Létard P. Drunat S. Vial Y. Duerinckx S. Ernault A. Amram D. et al . (2018). Autosomal recessive primary microcephaly due to ASPM mutations: an update. Hum. Mutat.39, 319332. doi: 10.1002/humu.23381

  • 110

    Li B. Brady S. W. Ma X. Shen S. Zhang Y. Li Y. et al . (2020). Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood135, 4155. doi: 10.1182/blood.2019002220

  • 111

    Li Y. Y. Chung G. T. Y. Lui V. W. Y. To K. F. Ma B. B. Y. Chow C. et al . (2017). Exome and genome sequencing of nasopharynx cancer identifies NF-kappaB pathway activating mutations. Nat. Commun.8:14121. doi: 10.1038/ncomms14121

  • 112

    Li Y. Li J. He T. Song Y. Wu J. Wang B. (2022). Significance of identifying key genes involved in HBV-related hepatocellular carcinoma for primary care surveillance of patients with cirrhosis. Genes (Basel)13:2331. doi: 10.3390/genes13122331

  • 113

    Li D. Li X. Li S. Qi M. Sun X. Hu G. (2023). Relationship between the deep features of the full-scan pathological map of mucinous gastric carcinoma and related genes based on deep learning. Heliyon9:e14374. doi: 10.1016/j.heliyon.2023.e14374

  • 114

    Li M. Luo J. Yang Q. Chen F. Chen J. Qin J. et al . (2022). Novel and recurrent ASPM mutations of founder effect in Chinese population. Brain Dev.44, 540545. doi: 10.1016/j.braindev.2022.04.007

  • 115

    Li R. Sun L. Fang A. Li P. Wu Q. Wang X. (2017). Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell8, 823833. doi: 10.1007/s13238-017-0479-2

  • 116

    Li C. Xu J. (2020). Identification of potentially therapeutic target genes of hepatocellular carcinoma. Int. J. Environ. Res. Public Health17:1053. doi: 10.3390/ijerph17031053

  • 117

    Liaci C. Camera M. Caslini G. Rando S. Contino S. Romano V. et al . (2021). Neuronal cytoskeleton in intellectual disability: from systems biology and modeling to therapeutic opportunities. Int. J. Mol. Sci.22, 6167. doi: 10.3390/ijms22116167

  • 118

    Lin S. Y. Pan H. W. Liu S. H. Jeng Y. M. Hu F. C. Peng S. Y. et al . (2008). ASPM is a novel marker for vascular invasion, early recurrence, and poor prognosis of hepatocellular carcinoma. Clin. Cancer Res.14, 48144820. doi: 10.1158/1078-0432.CCR-07-5262

  • 119

    Liu J. Feng M. Li S. Y. Nie S. Wang H. Wu S. et al . (2020). Identification of molecular markers associated with the progression and prognosis of endometrial cancer: a bioinformatic study. Cancer Cell Int.20:59. doi: 10.1186/s12935-020-1140-3

  • 120

    Liu J. Guan D. Dong M. Yang J. Wei H. Liang Q. et al . (2020). UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination. Nat. Cell Biol.22, 10561063. doi: 10.1038/s41556-020-0559-z

  • 121

    Liu J. McCleland M. Stawiski E. W. Gnad F. Mayba O. Haverty P. M. et al . (2014). Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat. Commun.5:3830. doi: 10.1038/ncomms4830

  • 122

    Liu B. Su J. Fan B. Ni X. Jin T. (2023). High expression of KIF20A in bladder cancer as a potential prognostic target for poor survival of renal cell carcinoma. Medicine (Baltimore)102:e32667. doi: 10.1097/MD.0000000000032667

  • 123

    Liu Z. Yang C. Li X. Luo W. Roy B. Xiong T. et al . (2018). The landscape of somatic mutation in sporadic Chinese colorectal cancer. Oncotarget9, 2741227422. doi: 10.18632/oncotarget.25287

  • 124

    Liu H. Zhou Q. Xu X. du Y. Wu J. (2022). ASPM and TROAP gene expression as potential malignant tumor markers. Ann. Transl. Med.10:586. doi: 10.21037/atm-22-1112

  • 125

    Liu D. Zhou R. Zhou A. (2021). Identification of key biomarkers and functional pathways in osteosarcomas with lung metastasis: evidence from bioinformatics analysis. Medicine (Baltimore)100:e24471. doi: 10.1097/MD.0000000000024471

  • 126

    Mahmood S. Ahmad W. Hassan M. J. (2011). Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J. Rare Dis.6:39. doi: 10.1186/1750-1172-6-39

  • 127

    Makhdoom E. U. H. Anwar H. Baig S. M. Hussain G. (2022). Whole exome sequencing identifies a novel mutation in ASPM and ultra-rare mutation in CDK5RAP2 causing primary microcephaly in consanguineous Pakistani families. Pak. J. Med. Sci.38, 8489. doi: 10.12669/pjms.38.1.4464

  • 128

    Makhdoom E. U. H. Waseem S. S. Iqbal M. Abdullah U. Hussain G. Asif M. et al . (2021). Modifier genes in microcephaly: a report on WDR62, CEP63, RAD50 and PCNT variants exacerbating disease caused by Biallelic mutations of ASPM and CENPJ. Genes (Basel)12, 731. doi: 10.3390/genes12050731

  • 129

    Marakhonov A. V. Konovalov F. A. Makaov A. K. Vasilyeva T. A. Kadyshev V. V. Galkina V. A. et al . (2018). Primary microcephaly case from the Karachay-Cherkess Republic poses an additional support for microcephaly and Seckel syndrome spectrum disorders. BMC Med. Genet.11:8. doi: 10.1186/s12920-018-0326-1

  • 130

    Marinaro C. Butti E. Bergamaschi A. Papale A. Furlan R. Comi G. et al . (2011). In vivo fate analysis reveals the multipotent and self-renewal features of embryonic AspM expressing cells. PLoS One6:e19419. doi: 10.1371/journal.pone.0019419

  • 131

    Martins S. Erichsen L. Datsi A. Wruck W. Goering W. Chatzantonaki E. et al . (2022). Impaired p53-mediated DNA damage response contributes to microcephaly in Nijmegen breakage syndrome patient-derived cerebral organoids. Cells11:802. doi: 10.3390/cells11050802

  • 132

    McMillan E. A. Ryu M. J. Diep C. H. Mendiratta S. Clemenceau J. R. Vaden R. M. et al . (2018). Chemistry-first approach for nomination of personalized treatment in lung Cancer. Cells173, 864878.e29. doi: 10.1016/j.cell.2018.03.028

  • 133

    McSherry M. Masih K. E. Elcioglu N. H. Celik P. Balci O. Cengiz F. B. et al . (2018). Identification of candidate gene FAM183A and novel pathogenic variants in known genes: high genetic heterogeneity for autosomal recessive intellectual disability. PLoS One13:e0208324. doi: 10.1371/journal.pone.0208324

  • 134

    Ming G. L. Song H. (2005). Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci.28, 223250. doi: 10.1146/annurev.neuro.28.051804.101459

  • 135

    Ming G. L. Song H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron70, 687702. doi: 10.1016/j.neuron.2011.05.001

  • 136

    Misson J. P. Edwards M. A. Yamamoto M. Caviness V. S. Jr. (1988). Mitotic cycling of radial glial cells of the fetal murine cerebral wall: a combined autoradiographic and immunohistochemical study. Brain Res.38, 183190. doi: 10.1016/0165-3806(88)90043-0

  • 137

    Morales-Mulia S. Scholey J. M. (2005). Spindle pole organization in Drosophila S2 cells by dynein, abnormal spindle protein (Asp), and KLP10A. Mol. Biol. Cell16, 31763186. doi: 10.1091/mbc.e04-12-1110

  • 138

    Mori M. Tando S. Ogi H. Tonosaki M. Yaoi T. Fujimori A. et al . (2022). Loss of abnormal spindle-like, microcephaly-associated (Aspm) disrupts female folliculogenesis in mice during maturation and aging. Reprod. Biol.22:100673. doi: 10.1016/j.repbio.2022.100673

  • 139

    Morin R. D. Assouline S. Alcaide M. Mohajeri A. Johnston R. L. Chong L. et al . (2016). Genetic landscapes of relapsed and refractory diffuse large B-cell lymphomas. Clin. Cancer Res.22, 22902300. doi: 10.1158/1078-0432.CCR-15-2123

  • 140

    Mouradov D. Sloggett C. Jorissen R. N. Love C. G. Li S. Burgess A. W. et al . (2014). Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res.74, 32383247. doi: 10.1158/0008-5472.CAN-14-0013

  • 141

    Muhammad F. Mahmood Baig S. Hansen L. Sajid Hussain M. Anjum Inayat I. Aslam M. et al . (2009). Compound heterozygous ASPM mutations in Pakistani MCPH families. Am. J. Med. Genet. A149A, 926930. doi: 10.1002/ajmg.a.32749

  • 142

    Nadarajah B. Alifragis P. Wong R. O. Parnavelas J. G. (2003). Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb. Cortex13, 607611. doi: 10.1093/cercor/13.6.607

  • 143

    Nadarajah B. Parnavelas J. G. (2002). Modes of neuronal migration in the developing cerebral cortex. Nat. Rev. Neurosci.3, 423432. doi: 10.1038/nrn845

  • 144

    Nakamura K. Inui T. Miya F. Kanemura Y. Okamoto N. Saitoh S. et al . (2015). Primary microcephaly with anterior predominant pachygyria caused by novel compound heterozygous mutations in ASPM. Pediatr. Neurol.52, e7e8. doi: 10.1016/j.pediatrneurol.2015.01.019

  • 145

    Naqvi S. F. Shabbir R. M. K. Tolun A. Basit S. Malik S. (2022). A Two-Base pair deletion in IQ repeats in ASPM underlies microcephaly in a Pakistani family. Genet. Test. Mol. Biomark.26, 3742. doi: 10.1089/gtmb.2021.0231

  • 146

    Naseer M. I. Abdulkareem A. A. Muthaffar O. Y. Sogaty S. Alkhatabi H. Almaghrabi S. et al . (2020). Whole exome sequencing identifies three novel mutations in the ASPM gene from Saudi families leading to primary microcephaly. Front. Pediatr.8:627122. doi: 10.3389/fped.2020.627122

  • 147

    Neumuller R. A. Knoblich J. A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev.23, 26752699. doi: 10.1101/gad.1850809

  • 148

    Newell F. Kong Y. Wilmott J. S. Johansson P. A. Ferguson P. M. Cui C. et al . (2019). Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat. Commun.10:3163. doi: 10.1038/s41467-019-11107-x

  • 149

    Nicholas A. K. Swanson E. A. Cox J. J. Karbani G. Malik S. Springell K. et al . (2009). The molecular landscape of ASPM mutations in primary microcephaly. J. Med. Genet.46, 249253. doi: 10.1136/jmg.2008.062380

  • 150

    Noctor S. C. Flint A. C. Weissman T. A. Dammerman R. S. Kriegstein A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. Nature409, 714720. doi: 10.1038/35055553

  • 151

    Nomura M. Mukasa A. Nagae G. Yamamoto S. Tatsuno K. Ueda H. et al . (2017). Distinct molecular profile of diffuse cerebellar gliomas. Acta Neuropathol.134, 941956. doi: 10.1007/s00401-017-1771-1

  • 152

    O'Driscoll M. Jeggo P. A. (2008). The role of the DNA damage response pathways in brain development and microcephaly: insight from human disorders. DNA Repair (Amst)7, 10391050. doi: 10.1016/j.dnarep.2008.03.018

  • 153

    Ogi H. Nitta N. Tando S. Fujimori A. Aoki I. Fushiki S. et al . (2018). Longitudinal diffusion tensor imaging revealed nerve Fiber alterations in Aspm mutated microcephaly model mice. Neuroscience371, 325336. doi: 10.1016/j.neuroscience.2017.12.012

  • 154

    Okamoto N. Kohmoto T. Naruto T. Masuda K. Imoto I. (2018). Primary microcephaly caused by novel compound heterozygous mutations in ASPM. Hum. Genome Var.5:18015. doi: 10.1038/hgv.2018.15

  • 155

    Pai V. C. Hsu C. C. Chan T. S. Liao W. Y. Chuu C. P. Chen W. Y. et al . (2019). ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-beta-catenin signaling. Oncogene38, 13401353. doi: 10.1038/s41388-018-0497-4

  • 156

    Paik J. H. Ding Z. Narurkar R. Ramkissoon S. Muller F. Kamoun W. S. et al . (2009). FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell5, 540553. doi: 10.1016/j.stem.2009.09.013

  • 157

    Papari E. Bastami M. Farhadi A. Abedini S. S. Hosseini M. Bahman I. et al . (2013). Investigation of primary microcephaly in Bushehr province of Iran: novel STIL and ASPM mutations. Clin. Genet.83, 488490. doi: 10.1111/j.1399-0004.2012.01949.x

  • 158

    Paramasivam M. Chang Y. J. LoTurco J. J. (2007). ASPM and citron kinase co-localize to the midbody ring during cytokinesis. Cell Cycle6, 16051612. doi: 10.4161/cc.6.13.4356

  • 159

    Passemard S. Titomanlio L. Elmaleh M. Afenjar A. Alessandri J. L. Andria G. et al . (2009). Expanding the clinical and neuroradiologic phenotype of primary microcephaly due to ASPM mutations. Neurology73, 962969. doi: 10.1212/WNL.0b013e3181b8799a

  • 160

    Passemard S. Verloes A. Billette de Villemeur T. Boespflug-Tanguy O. Hernandez K. Laurent M. et al . (2016). Abnormal spindle-like microcephaly-associated (ASPM) mutations strongly disrupt neocortical structure but spare the hippocampus and long-term memory. Cortex74, 158176. doi: 10.1016/j.cortex.2015.10.010

  • 161

    Pattison L. Crow Y. J. Deeble V. J. Jackson A. P. Jafri H. Rashid Y. et al . (2000). A fifth locus for primary autosomal recessive microcephaly maps to chromosome 1q31. Am. J. Hum. Genet.67, 15781580. doi: 10.1086/316910

  • 162

    Peifer M. Fernández-Cuesta L. Sos M. L. George J. Seidel D. Kasper L. H. et al . (2012). Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet.44, 11041110. doi: 10.1038/ng.2396

  • 163

    Phan T. P. Holland A. J. (2021). Time is of the essence: the molecular mechanisms of primary microcephaly. Genes Dev.35, 15511578. doi: 10.1101/gad.348866.121

  • 164

    Pulvers J. N. Bryk J. Fish J. L. Wilsch-Bräuninger M. Arai Y. Schreier D. et al . (2010). Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline. Proc. Natl. Acad. Sci. U. S. A.107, 1659516600. doi: 10.1073/pnas.1010494107

  • 165

    Qiao Y. Yuan F. Wang X. Hu J. Mao Y. Zhao Z. (2022). Identification and validation of real hub genes in hepatocellular carcinoma based on weighted gene co-expression network analysis. Cancer Biomark.35, 227243. doi: 10.3233/CBM-220151

  • 166

    Qin S. Yuan Y. Liu H. Pu Y. Chen K. Wu Y. et al . (2023). Identification and characterization of sex-dependent gene expression profile in glioblastoma. Neuropathology43, 7283. doi: 10.1111/neup.12845

  • 167

    Rabbie R. Ferguson P. Wong K. Couturier D. L. Moran U. Turner C. et al . (2021). The mutational landscape of melanoma brain metastases presenting as the first visceral site of recurrence. Br. J. Cancer124, 156160. doi: 10.1038/s41416-020-01090-2

  • 168

    Ramdas Nair A. Singh P. Salvador Garcia D. Rodriguez-Crespo D. Egger B. Cabernard C. (2016). The microcephaly-associated protein Wdr62/CG7337 is required to maintain centrosome asymmetry in Drosophila neuroblasts. Cell Rep.14, 11001113. doi: 10.1016/j.celrep.2015.12.097

  • 169

    Rasool S. Baig J. M. Moawia A. Ahmad I. Iqbal M. Waseem S. S. et al . (2020). An update of pathogenic variants in ASPM, WDR62, CDK5RAP2, STIL, CENPJ, and CEP135 underlying autosomal recessive primary microcephaly in 32 consanguineous families from Pakistan. Mol. Genet. Genomic Med.8:e1408. doi: 10.1002/mgg3.1408

  • 170

    Razuvaeva A. V. Graziadio L. Palumbo V. Pavlova G. A. Popova J. V. Pindyurin A. V. et al . (2023). The multiple mitotic roles of the ASPM orthologous proteins: insight into the etiology of ASPM-dependent microcephaly. Cells12:922. doi: 10.3390/cells12060922

  • 171

    Reynolds J. J. Bicknell L. S. Carroll P. Higgs M. R. Shaheen R. Murray J. E. et al . (2017). Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism. Nat. Genet.49, 537549. doi: 10.1038/ng.3790

  • 172

    Ripoll P. Pimpinelli S. Valdivia M. M. Avila J. (1985). A cell division mutant of Drosophila with a functionally abnormal spindle. Cells41, 907912. doi: 10.1016/S0092-8674(85)80071-4

  • 173

    Robinson B. V. Faundez V. Lerit D. A. (2020). Understanding microcephaly through the study of centrosome regulation in Drosophila neural stem cells. Biochem. Soc. Trans.48, 21012115. doi: 10.1042/BST20200261

  • 174

    Rujano M. A. Sanchez-Pulido L. Pennetier C. le Dez G. Basto R. (2013). The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat. Cell Biol.15, 12941306. doi: 10.1038/ncb2858

  • 175

    Saadi A. Borck G. Boddaert N. Chekkour M. C. Imessaoudene B. Munnich A. et al . (2009). Compound heterozygous ASPM mutations associated with microcephaly and simplified cortical gyration in a consanguineous Algerian family. Eur. J. Med. Genet.52, 180184. doi: 10.1016/j.ejmg.2009.03.013

  • 176

    Saito T. Niida A. Uchi R. Hirata H. Komatsu H. Sakimura S. et al . (2018). A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat. Commun.9:2884. doi: 10.1038/s41467-018-05226-0

  • 177

    Sajid Hussain M. Marriam Bakhtiar S. Farooq M. Anjum I. Janzen E. Reza Toliat M. et al . (2013). Genetic heterogeneity in Pakistani microcephaly families. Clin. Genet.83, 446451. doi: 10.1111/j.1399-0004.2012.01932.x

  • 178

    Sanborn J. Z. Chung J. Purdom E. Wang N. J. Kakavand H. Wilmott J. S. et al . (2015). Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc. Natl. Acad. Sci. U. S. A.112, 1099511000. doi: 10.1073/pnas.1508074112

  • 179

    Saunders R. D. Avides M. C. Howard T. Gonzalez C. Glover D. M. (1997). The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J. Cell Biol.137, 881890. doi: 10.1083/jcb.137.4.881

  • 180

    Schoborg T. Zajac A. L. Fagerstrom C. J. Guillen R. X. Rusan N. M. (2015). An asp-CaM complex is required for centrosome-pole cohesion and centrosome inheritance in neural stem cells. J. Cell Biol.211, 987998. doi: 10.1083/jcb.201509054

  • 181

    Schou K. B. Morthorst S. K. Christensen S. T. Pedersen L. B. (2014). Identification of conserved, centrosome-targeting ASH domains in TRAPPII complex subunits and TRAPPC8. Cilia3:6. doi: 10.1186/2046-2530-3-6

  • 182

    Schunk S. J. Floege J. Fliser D. Speer T. (2021). WNT-beta-catenin signalling - a versatile player in kidney injury and repair. Nat. Rev. Nephrol.17, 172184. doi: 10.1038/s41581-020-00343-w

  • 183

    Sepulveda G. Antkowiak M. Brust-Mascher I. Mahe K. Ou T. Castro N. M. et al . (2018). Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. elife7:7. doi: 10.7554/eLife.34959

  • 184

    Seshagiri S. Stawiski E. W. Durinck S. Modrusan Z. Storm E. E. Conboy C. B. et al . (2012). Recurrent R-spondin fusions in colon cancer. Nature488, 660664. doi: 10.1038/nature11282

  • 185

    Sharpe H. J. Pau G. Dijkgraaf G. J. Basset-Seguin N. Modrusan Z. Januario T. et al . (2015). Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell27, 327341. doi: 10.1016/j.ccell.2015.02.001

  • 186

    Shen J. et al . (2005). ASPM mutations identified in patients with primary microcephaly and seizures. J. Med. Genet.42, 725729. doi: 10.1136/jmg.2004.027706

  • 187

    Shi H. Xu H. Chai C. Qin Z. Zhou W. (2022). Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. J. Clin. Lab. Anal.36:e24381. doi: 10.1002/jcla.24381

  • 188

    Shiwaku H. Okazawa H. (2015). Impaired DNA damage repair as a common feature of neurodegenerative diseases and psychiatric disorders. Curr. Mol. Med.15, 119128. doi: 10.2174/1566524015666150303002556

  • 189

    Shubbar E. Kovács A. Hajizadeh S. Parris T. Z. Nemes S. Gunnarsdóttir K. et al . (2013). Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome. BMC Cancer13:1. doi: 10.1186/1471-2407-13-1

  • 190

    Singh P. Ramdas Nair A. Cabernard C. (2014). The centriolar protein Bld10/Cep135 is required to establish centrosome asymmetry in Drosophila neuroblasts. Curr. Biol.24, 15481555. doi: 10.1016/j.cub.2014.05.050

  • 191

    Singhmar P. Kumar A. (2011). Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation. PLoS One6:e20397. doi: 10.1371/journal.pone.0020397

  • 192

    Stiles J. Jernigan T. L. (2010). The basics of brain development. Neuropsychol. Rev.20, 327348. doi: 10.1007/s11065-010-9148-4

  • 193

    Su W. Huang B. Zhang Q. Han W. An L. Guan Y. et al . (2022). Exploring potential biomarkers, Ferroptosis mechanisms, and therapeutic targets associated with cutaneous squamous cell carcinoma via integrated transcriptomic analysis. J. Healthc. Eng.2022:3524022. doi: 10.1155/2022/3524022

  • 194

    Sunkel C. E. Glover D. M. (1988). Polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci.89, 2538. doi: 10.1242/jcs.89.1.25

  • 195

    Tan S. Chen W. Kong G. Wei L. (2022). ASPM may be related to the malignant progression of hepatitis B and is associated with a poor prognosis of hepatocellular carcinoma. Front. Bioinform.2:871027. doi: 10.3389/fbinf.2022.871027

  • 196

    Tan C. A. del Gaudio D. Dempsey M. A. Arndt K. Botes S. Reeder A. et al . (2014). Analysis of ASPM in an ethnically diverse cohort of 400 patient samples: perspectives of the molecular diagnostic laboratory. Clin. Genet.85, 353358. doi: 10.1111/cge.12172

  • 197

    Tang Y. Li Q. Zhang D. Ma Z. Yang J. Cui Y. et al . (2022). Cuproptosis-related gene signature correlates with the tumor immune features and predicts the prognosis of early-stage lung adenocarcinoma patients. Front. Genet.13:977156. doi: 10.3389/fgene.2022.977156

  • 198

    Tang J. Lu M. Cui Q. Zhang D. Kong D. Liao X. et al . (2019). Overexpression of ASPM, CDC20, and TTK confer a poorer prognosis in breast Cancer identified by gene co-expression network analysis. Front. Oncol.9:310. doi: 10.3389/fonc.2019.00310

  • 199

    Taverna E. Gotz M. Huttner W. B. (2014). The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol.30, 465502. doi: 10.1146/annurev-cellbio-101011-155801

  • 200

    Tessoulin B. Moreau-Aubry A. Descamps G. Gomez-Bougie P. Maïga S. Gaignard A. et al . (2018). Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways. J. Hematol. Oncol.11:137. doi: 10.1186/s13045-018-0679-0

  • 201

    Tran T. H. Diep Q. M. Cao M. H. Luong L. H. Pham V. A. Lan Dinh O. T. et al . (2021). Microcephaly primary hereditary (MCPH): report of novel ASPM variants and prenatal diagnosis in a Vietnamese family. Taiwan. J. Obstet. Gynecol.60, 907910. doi: 10.1016/j.tjog.2021.07.022

  • 202

    Trimborn M. Bell S. M. Felix C. Rashid Y. Jafri H. Griffiths P. D. et al . (2004). Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am. J. Hum. Genet.75, 261266. doi: 10.1086/422855

  • 203

    Tu B. Jia Y. Qian J. (2022). Bioinformatics analysis identified five widely expressed genes associated with prognosis in sarcoma. Int. J. Gen. Med.15, 37113725. doi: 10.2147/IJGM.S352048

  • 204

    Tungadi E. A. Ito A. Kiyomitsu T. Goshima G. (2017). Human microcephaly ASPM protein is a spindle pole-focusing factor that functions redundantly with CDK5RAP2. J. Cell Sci.130, 36763684. doi: 10.1242/jcs.203703

  • 205

    Turkyilmaz A. Sager S. G. (2022). Two new cases of primary microcephaly with neuronal migration defect caused by truncating mutations in the ASPM gene. Mol. Syndromol.13, 5663. doi: 10.1159/000516201

  • 206

    van der Voet M. Berends C. W. H. Perreault A. Nguyen-Ngoc T. Gönczy P. Vidal M. et al . (2009). NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha. Nat. Cell Biol.11, 269277. doi: 10.1038/ncb1834

  • 207

    Verdier P. Morthorst S. K. Pedersen L. B. (2016). Targeting of ASH domain-containing proteins to the centrosome. Methods Mol. Biol.1454, 1533. doi: 10.1007/978-1-4939-3789-9_2

  • 208

    Visnyei K. Onodera H. Damoiseaux R. Saigusa K. Petrosyan S. de Vries D. et al . (2011). A molecular screening approach to identify and characterize inhibitors of glioblastoma stem cells. Mol. Cancer Ther.10, 18181828. doi: 10.1158/1535-7163.MCT-11-0268

  • 209

    von Wrede R. Schidlowski M. Huppertz H. J. Rüber T. Ivo A. Baumgartner T. et al . (2022). Large phenotypic variation of individuals from a family with a novel ASPM mutation associated with microcephaly, epilepsy, and behavioral and cognitive deficits. Genes (Basel)13, 429. doi: 10.3390/genes13030429

  • 210

    Wagle R. Song Y. H. (2020). Ionizing radiation reduces larval brain size by inducing premature differentiation of Drosophila neural stem cells. Biochem. Biophys. Res. Commun.523, 555560. doi: 10.1016/j.bbrc.2019.12.047

  • 211

    Wang Y. Cheng H. Zeng T. Chen S. Xing Q. Zhu B. (2022). A novel 17 apoptosis-related genes signature could predict overall survival for bladder cancer and its associations with immune infiltration. Heliyon8:e11343. doi: 10.1016/j.heliyon.2022.e11343

  • 212

    Wang R. Khan A. Han S. Zhang X. (2017). Molecular analysis of 23 Pakistani families with autosomal recessive primary microcephaly using targeted next-generation sequencing. J. Hum. Genet.62, 299304. doi: 10.1038/jhg.2016.128

  • 213

    Wei L. Wang Y. Zhou D. Li X. Wang Z. Yao G. et al . (2021). Bioinformatics analysis on enrichment analysis of potential hub genes in breast cancer. Transl. Cancer Res.10, 23992408. doi: 10.21037/tcr-21-749

  • 214

    Wei P. C. et al . (2016). Long neural Genes Harbor recurrent DNA break clusters in neural stem/progenitor cells. Cells164, 644655. doi: 10.1016/j.cell.2015.12.039

  • 215

    Wen X. Liu S. Cui M. (2020). Effect of BRCA1 on the concurrent Chemoradiotherapy resistance of cervical squamous cell carcinoma based on transcriptome sequencing analysis. Biomed. Res. Int.2020:3598417. doi: 10.1155/2020/3598417

  • 216

    Williams S. E. Garcia I. Crowther A. J. Li S. Stewart A. Liu H. et al . (2015). Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice. Development142, 39213932. doi: 10.1242/dev.124271

  • 217

    Woods C. G. Bond J. Enard W. (2005). Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings. Am. J. Hum. Genet.76, 717728. doi: 10.1086/429930

  • 218

    Woodworth M. B. Greig L. C. Kriegstein A. R. Macklis J. D. (2012). SnapShot: cortical development. Cells151, 918918.e1. doi: 10.1016/j.cell.2012.10.004

  • 219

    Wu J. He Z. Zhu Y. Jiang C. Deng Y. Wei B. (2021). ASPM predicts poor clinical outcome and promotes tumorigenesis for diffuse large B-cell lymphoma. Curr. Cancer Drug Targets21, 8089. doi: 10.2174/1568009620666200915090703

  • 220

    Wu X. Xu S. Wang P. Wang Z. Q. Chen H. Xu X. et al . (2022). ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc. Natl. Acad. Sci.119:e2203783119. doi: 10.1073/pnas.2203783119

  • 221

    Wu Y. You Y. Chen L. Liu Y. Liu Y. Lou W. et al . (2022). Abnormal spindle-like microcephaly-associated protein promotes proliferation by regulating cell cycle in epithelial ovarian cancer. Gland Surg.11, 687701. doi: 10.21037/gs-22-29

  • 222

    Xicola R. M. Manojlovic Z. Augustus G. J. Kupfer S. S. Emmadi R. Alagiozian-Angelova V. et al . (2018). Lack of APC somatic mutation is associated with early-onset colorectal cancer in African Americans. Carcinogenesis39, 13311341. doi: 10.1093/carcin/bgy122

  • 223

    Xie J. J. Zhuo Y. J. Zheng Y. Mo R. J. Liu Z. Z. Li B. W. et al . (2017). High expression of ASPM correlates with tumor progression and predicts poor outcome in patients with prostate cancer. Int. Urol. Nephrol.49, 817823. doi: 10.1007/s11255-017-1545-7

  • 224

    Xu S. Wu X. Peng B. Cao S. L. Xu X. (2020). Primary microcephaly with an unstable genome. Genome Instab. Dis.1, 235264. doi: 10.1007/s42764-020-00020-z

  • 225

    Xu S. Wu X. Wang P. Cao S. L. Peng B. Xu X. (2021). ASPM promotes homologous recombination-mediated DNA repair by safeguarding BRCA1 stability. iScience24:102534. doi: 10.1016/j.isci.2021.102534

  • 226

    Xu W. Xu J. Wang Z. Jiang Y. (2021). Weighted gene correlation network analysis identifies specific functional modules and genes in esophageal cancer. J. Oncol.2021:8223263. doi: 10.1155/2021/8223263

  • 227

    Xu Z. Zhang Q. Luh F. Jin B. Liu X. (2019). Overexpression of the ASPM gene is associated with aggressiveness and poor outcome in bladder cancer. Oncol. Lett.17, 18651876. doi: 10.3892/ol.2018.9762

  • 228

    Xu S. Zhang W. Zhou R. Huang H. Chen W. Xiang W. et al . (2022). Two novel truncating variants of the ASPM gene identified in a nonconsanguineous Chinese family associated with primary microcephaly. Clin. Dysmorphol.31, 15. doi: 10.1097/MCD.0000000000000395

  • 229

    Yang Z. Wu X. Li J. Zheng Q. Niu J. Li S. (2021). CCNB2, CDC20, AURKA, TOP2A, MELK, NCAPG, KIF20A, UBE2C, PRC1, and ASPM may be potential therapeutic targets for hepatocellular carcinoma using integrated bioinformatic analysis. Int. J. Gen. Med.14, 1018510194. doi: 10.2147/IJGM.S341379

  • 230

    Yin Q. Chen W. Zhang C. Wei Z. (2022). A convolutional neural network model for survival prediction based on prognosis-related cascaded Wx feature selection. Lab. Investig.102, 10641074. doi: 10.1038/s41374-022-00801-y

  • 231

    Yu F. Yu C. Li F. Zuo Y. Wang Y. Yao L. et al . (2021). Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther.6:307. doi: 10.1038/s41392-021-00701-5

  • 232

    Zaqout S. Kaindl A. M. (2021). Autosomal recessive primary microcephaly: not just a small brain. Front. Cell Dev. Biol.9:784700. doi: 10.3389/fcell.2021.784700

  • 233

    Zhang S. Pang K. Feng X. Zeng Y. (2022). Transcriptomic data exploration of consensus genes and molecular mechanisms between chronic obstructive pulmonary disease and lung adenocarcinoma. Sci. Rep.12:13214. doi: 10.1038/s41598-022-17552-x

  • 234

    Zhang Q. Wang Y. Xue F. (2022). ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG may serve as diagnostic and prognostic biomarkers in endometrial carcinoma. Genet. Res.2022:3217248. doi: 10.1155/2022/3217248

  • 235

    Zhang X. Yang L. Chen W. Kong M. (2020). Identification of potential hub genes and therapeutic drugs in malignant pleural mesothelioma by integrated bioinformatics analysis. Oncol. Res. Treat.43, 656671. doi: 10.1159/000510534

  • 236

    Zhang Y. Zeng L. Lin L. (2022). Diagnosis and counseling for a Chinese pedigree affected with autosomal recessive primary microcephaly 5 due to variants of ASPM gene. Zhonghua Yi Xue Yi Chuan Xue Za Zhi39, 405408. doi: 10.3760/cma.j.cn511374-20200820-00615

  • 237

    Zhang L. Zhou Y. Cheng C. Cui H. Cheng L. Kong P. et al . (2015). Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am. J. Hum. Genet.96, 597611. doi: 10.1016/j.ajhg.2015.02.017

  • 238

    Zhong X. Liu L. Zhao A. Pfeifer G. P. Xu X. (2005). The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein. Cell Cycle4, 12271229. doi: 10.4161/cc.4.9.2029

  • 239

    Zhou Z. W. Tapias A. Bruhn C. Gruber R. Sukchev M. Wang Z. Q. (2013). DNA damage response in microcephaly development of MCPH1 mouse model. DNA Repair (Amst)12, 645655. doi: 10.1016/j.dnarep.2013.04.017

  • 240

    Zhou X. Zhi Y. Yu J. Xu D. (2020). The Yin and Yang of autosomal recessive primary microcephaly genes: insights from neurogenesis and carcinogenesis. Int. J. Mol. Sci.21, 1691. doi: 10.3390/ijms21051691

Summary

Keywords

microcephaly, small brain, ASPM, MCPH5, neurogenesis, cancer

Citation

Wu X, Li Z, Wang Z-Q and Xu X (2023) The neurological and non-neurological roles of the primary microcephaly-associated protein ASPM. Front. Neurosci. 17:1242448. doi: 10.3389/fnins.2023.1242448

Received

19 June 2023

Accepted

24 July 2023

Published

03 August 2023

Volume

17 - 2023

Edited by

Zhong-Wei Zhou, Sun Yat-sen University, China

Reviewed by

Ling Yuan, Central South University, China; Dorothy Lerit, Emory University, United States

Updates

Copyright

*Correspondence: Xingzhi Xu,

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Figures

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics