ORIGINAL RESEARCH article
Front. Neurosci.
Sec. Neuromorphic Engineering
Volume 19 - 2025 | doi: 10.3389/fnins.2025.1662886
This article is part of the Research TopicAlgorithm-Hardware Co-Optimization in Neuromorphic Computing for Efficient AIView all 6 articles
Efficient Spiking Convolutional Neural Networks Accelerator with Multi-Structure Compatibility
Provisionally accepted- 1National University of Defense Technology, Changsha, China
- 2Chongqing Polytechnic University of Electronic Technology, Chongqing, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Spiking Neural Networks (SNNs) possess excellent computational energy efficiency and biological credibility. Among them, Spiking Convolutional Neural Networks (SCNNs) have significantly improved performance, demonstrating promising applications in low-power and brain-like compu-ting. To achieve hardware acceleration for SCNNs, we propose an efficient FPGA accelerator architecture with multi-structure compatibility. This architecture supports both traditional convolutional and residual topologies, and can be adapted to diverse requirements from small networks to complex networks. This architecture uses a clock-driven scheme to perform convolution and neuron updates based on the spike-encoded image at each timestep. Through hierarchical pipelining and channel parallelization strategies, the computation speed of SCNNs is increased. To address the issue of current accelerators only supporting simple network, this architecture combines configuration and scheduling methods, including grouped reuse computation and line-by-line multi-timestep computation to accelerate deep networks with lots of channels and large feature map sizes. Based on the proposed accelerator architecture, we evaluated two scales of networks, named small-scale LeNet and deep residual SCNN, for object detection. Experiments show that the proposed accelerator achieves a maximum recognition speed of 1605 frames/s at a 100 MHz clock for the LeNet network, consuming only 0.65 mJ per image. Furthermore, the accelerator, combined with the proposed configuration and scheduling methods, achieves acceleration for each residual module in the deep residual SCNN, reaching a processing speed of 2.59 times that of the CPU with a power consumption of only 16.77% of the CPU. This demonstrates that the proposed accelerator architecture can achieve higher energy efficiency, compatibility, and wider applicability.
Keywords: spiking neural networks, Spiking Convolutional Neural Networks, artificial neural networks, brain-like computing, Hardwareaccelerator, FPGA
Received: 09 Jul 2025; Accepted: 02 Sep 2025.
Copyright: © 2025 Wu, Lu, Wang, Li, Chen, Li and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Yinan Wang, National University of Defense Technology, Changsha, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.