ORIGINAL RESEARCH article
Front. Oncol.
Sec. Thoracic Oncology
Volume 15 - 2025 | doi: 10.3389/fonc.2025.1646580
This article is part of the Research TopicTailored Strategies for Lung Cancer Diagnosis and Treatment in Special PopulationsView all 14 articles
Does Chemotherapy Improve Survival Outcomes in Breast Cancer Survivors with Secondary Primary Stage I Non-Small Cell Lung Cancer? A Real-World Analysis Using Machine Learning Models
Provisionally accepted- 1The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- 2Zhongshan Hospital Fudan University, Shanghai, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Advances in breast cancer treatment have prolonged survival, leading to an increased incidence of secondary primary lung cancer (SPLC) in survivors. This study aims to investigate the prognosis and treatment strategies for patients with recurrent early-stage lung cancer histories and establish predictive models to guide clinical practice. Methods: This study analyzed clinical data from 2,775 patients (2008–2024) extracted from the SEER database and 15 patients (2008–2024) from the cancer registry of the First Affiliated Hospital of Xi’an Jiaotong University. The analysis focused on comparing clinical characteristics, prognosis, and chemotherapy benefits between early-stage second primary lung cancer (SPLC) patients with a history of breast cancer and those with primary lung cancer. The average age of patients in the SEER cohort was 69.64 ± 8.89 years(31-90), while the 15 hospital-registered patients had an average age of 67.15 ± 9.12 years(43-77). We employed neural network-based machine learning methods to develop models for predicting treatment decisions. Specifically, the COX-lung and MLP-lung models were developed, with a LOG-lung model used for comparison. Results: LC patients with a prior breast cancer history had significantly poorer prognosis survival time of 93 months vs 129 months. Postoperative chemotherapy improved the prognosis for some patients; however, the population benefiting from chemotherapy exhibited specific clinical characteristics. The COX-lung and MLP-lung models accurately predicted chemotherapy beneficiaries, with the MLP-lung model achieving an AUC of 0.813 and high positive predictive value. Conclusion: SPLC with prior breast cancer do have a poorer prognosis than lung cancer patients, although postoperative chemotherapy can benefit some individuals, careful selection of patients to receive chemotherapy is still warranted. We developed COX-lung and MLP-lung models which can predict beneficiaries of chemotherapy, providing crucial insights for clinicians in formulating personalized treatment plans. The findings indicate that this patient population is heterogeneous, necessitating more individualized treatment strategies.
Keywords: breast cancer, lung cancer, second primary cancer, machine learning, chemotherapy
Received: 13 Jun 2025; Accepted: 28 Aug 2025.
Copyright: © 2025 Liu, Yan, Huang, Zhu, Feng, Qiao, HAO, Zhang and Gao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Guangjian Zhang, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
Shan Gao, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.