ORIGINAL RESEARCH article
Front. Pharmacol.
Sec. Renal Pharmacology
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1565713
Bupropion decreases plasma levels of asymmetric dimethylarginine and ameliorates renal injury by modulation of Ddah1, Oatp4c1, Oct2, and Mate1 in rats with adenine-induced chronic renal injury
Provisionally accepted- 1School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, China
- 2Second Affiliated Hospital of Nanchang University, Nanchang, China
- 3China Pharmaceutical University, Nanjing, Jiangsu Province, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Objective: The objective of the study was to investigate whether bupropion (BUP) or its circulation metabolites could decrease plasma level of asymmetric dimethylarginine (ADMA) and ameliorate renal injury by modulation of Ddah1, Oatp4c1, Oct2, and Mate1 in rats with adenine-induced chronic renal injury. Methods: The study initially determined the effect of BUP and its metabolites on cell viability and apoptosis in HK2 cells in the presence and absence of ADMA. Secondly, the study explored whether long-term administration of BUP could reduce the plasma level of ADMA and mitigate renal damage. Thirdly, the expression and activity of Oct2, Ddah1, Mate1 and Oatp4c1 was determined by western blot and UPLC-MS/MS.Results: With 0.5 μmol/L ADMA, hydroxybupropion (HBUP, 100 nmol/L), threo-hydrobupropion (TBUP, 10 nmol/L and 1 μmol/L) reduced N-Acetyl-β-D-glucosidase (NAG) level. At 5 μmol/L ADMA, BUP (1 nmol/L-1 μmol/L), HBUP (1-100 nmol/L), and BUP cocktail enhanced survival. At 50 μmol/L ADMA, HBUP (10 nmol/L and 1 μmol/L), TBUP/erythro-hydrobupropion (EBUP) (10-100 nmol/L), and BUP cocktail stimulated survival. EBUP (1/100 nmol/L) lowered LDH. BUP (100 nmol/L) and TBUP (1 μmol/L) decreased NAG. TBUP (10 nmol/L/1 μmol/L) and EBUP (100 nmol/L) inhibited apoptosis. In adenine-induced chronic renal injury rats, long-term administration of BUP significantly decreased the serum concentration of ADMA and creatinine by 12.78 % and 38.85 %, respectively, ameliorated interstitial lesions and fibrosis and upregulated Ddah1, Oatp4c1, Oct2, Mate1. BUP increased metformin renal clearance without affecting digoxin disposition.Conclusion: Bupropion moderately decreases plasma levels of ADMA and ameliorates renal injury by modulation of Ddah1, Oatp4c1, Oct2, and Mate1.
Keywords: bupropion and its metabolites, Asymmetrical dimethylarginine, Chronic kidney injury, Renal transporters, Metabolism enzyme
Received: 23 Jan 2025; Accepted: 02 May 2025.
Copyright: © 2025 Huang, Xiao, Han, Yu, Zheng, Fang, Li, Liu, Xia, Zhang and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Jiake He, Second Affiliated Hospital of Nanchang University, Nanchang, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.