ORIGINAL RESEARCH article
Front. Pharmacol.
Sec. Drugs Outcomes Research and Policies
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1569863
This article is part of the Research TopicPharmacist and patient safety: Focus on drug safetyView all articles
Research on strategies for enhancing drug knowledge dissemination on Chinese social media WeChat public accounts based on text mining technology
Provisionally accepted- Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Objective: Health science popularization is an important means to improve public health literacy, promote healthy lifestyles, prevent diseases and respond to health crises, which is of great significance for improving the overall health of the people. Strengthening the medication education of patients is also one of the key factors to improve patients' medication adherence. In order to strengthen the dissemination of pharmaceutical popular science articles and give full play to the value of pharmaceutical popular science, this study takes WeChat public account as the research platform to explore effective strategies to improve pageviews of science popularization. It provides references for science popularization workers, so that science popularization can play a better role in improving the public's knowledge of medication safety.Methods: Taking the well-known pharmaceutical science popularization WeChat account "PSM Medicine Shield Public Welfare" as an example, we combined the Term Frequency-Inverse Document Frequency (TF-IDF) algorithm and VOSviewer visualization analysis technology to construct a hot topic analysis model for pharmaceutical science popularization articles, and analyzed the common rules and characteristics of successful hot articles. Latent Dirichlet Allocation (LDA) and The Bidirectional Encoder Representations from Transformers Topic (BERTopic) model were used to realize the construction of the topic model.Results: The model selected the top 20% of popularization articles with the greatest reading volume between 2015 and 2023 as the database for text mining. The clustering results indicated that the public was interested in these five types of pharmaceutical science popularization themes: drug dosage, drug side effects, children's infections, the efficacy of traditional Chinese medicine and Chinese patent medicines, and the usage methods of different drug administration routes. The public's interest in topics changed from drug side effects to practical drug usage issues, as seen by the keyword time series graph.Conclusion: Pharmaceutical professionals may more effectively discover hot themes in the industry by combining the TF-IDF algorithm with VOSviewer visualization analysis and LDA and BERTopic in the text mining. This improves the readability of popularization articles and the impact of WeChat accounts, which may improve medication adherence and raise public awareness of medication usage.
Keywords: Natural Language Processing, Topic modelling, term frequency-inverse document frequency (TF-IDF), VOSviewer, WeChat, Visualization analysis, Pharmic science popularization, Medication Adherence
Received: 02 Feb 2025; Accepted: 12 Aug 2025.
Copyright: © 2025 Yu, Chen, Yan, Wu, Zhang, Luo, Ma, Fu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Yaofeng Zhang, Department of Pharmacy, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.