ORIGINAL RESEARCH article
Front. Pharmacol.
Sec. Gastrointestinal and Hepatic Pharmacology
Volume 16 - 2025 | doi: 10.3389/fphar.2025.1645634
Berberine Protects Against Gefitinib-Induced Liver Injury by Inhibiting the HMGB1/TLR4/NF-κB Pathway
Provisionally accepted- 1Chongqing University Cancer Hospital, Chongqing, China
- 2Sichuan Cancer Hospital and Institute, Chengdu, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Gefitinib (GEF), a first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for non-small cell lung cancer (NSCLC), is frequently associated with drug-induced liver injury (DILI), thereby limiting its clinical application. This study aimed to evaluate the hepatoprotective effects of berberine (BBR) and explore the underlying mechanisms. Methods: In vitro, human hepatocyte lines (THLE-2 and THLE-3) were exposed to GEF alone or in combination with HMGB1 siRNA, a TLR4 inhibitor, an NF-κB inhibitor, or varying concentrations of BBR to assess hepatotoxicity and the involvement of the HMGB1/TLR4/NF-κB pathway. In vivo, Sprague-Dawley (SD) rats were treated with GEF with or without different doses of BBR for 21 days. Liver injury and inflammatory responses were assessed, and pathway alterations were evaluated at both transcriptional and protein levels. Results: GEF activated the HMGB1/TLR4/NF-κB pathway in vitro, increasing the levels of p-NF-κB p65, ALT, AST, and pro-inflammatory cytokines (INF-α, IL-1β and IL-6). BBR inhibited these effects in a concentration-dependent manner by suppressing pathway activation, reducing hepatotoxicity, and inhibiting HMGB1 nuclear-to-cytoplasmic translocation. In vivo, GEF induced weight loss, an increased liver-to-body weight ratio, elevated serum transaminases and pro-inflammatory cytokines, and histopathological liver injury, all of which were dose-dependently ameliorated by BBR co-administration. Moreover, BBR significantly downregulated the expression of HMGB1, TLR4, and NF-κB at both mRNA and protein levels in liver tissues. Conclusion: GEF-induced liver injury is mediated by HMGB1-driven inflammation via the TLR4/NF-κB pathway. BBR provides dose-dependent hepatoprotection by targeting this pathway, suggesting a potential strategy to protect against GEF-induced liver injury among NSCLC patients.
Keywords: gefitinib, Berberine, Drug-induced liver injury (DILI), HMGB1/TLR4/NF-κB, hepatoprotection Summary
Received: 12 Jun 2025; Accepted: 18 Aug 2025.
Copyright: © 2025 Zhang, Li, Ma, Qiu, Li and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Chao Li, Chongqing University Cancer Hospital, Chongqing, China
Ya Chen, Sichuan Cancer Hospital and Institute, Chengdu, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.