ORIGINAL RESEARCH article

Front. Cell. Infect. Microbiol., 21 February 2023

Sec. Fungal Pathogenesis

Volume 13 - 2023 | https://doi.org/10.3389/fcimb.2023.1133839

Two new species of Haploporus (Polyporales, Basidiomycota) from China and Ecuador based on morphology and phylogeny

  • 1. Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China

  • 2. Experimental Centre of Forestry in North China, Warm Temperate Zone Forestry Jiulong Mountain National Permanent Scientific Research Base, Chinese Academy of Forestry, Beijing, China

  • 3. Inst. Plant Mol. Biol., Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czechia

Article metrics

View details

5

Citations

2,6k

Views

995

Downloads

Abstract

At present, 25 species are accepted in Haploporus and are distributed in Asia, Europe, North America, South America, Australia, and Africa. In this study, two new species, Haploporus ecuadorensis from Ecuador and H. monomitica from China, are described and illustrated based on morphological examination and phylogenetic analyses. H. ecuadorensis is characterized by annual, resupinate basidiomata with pinkish buff to honey yellow hymenophore when dry, round to angular pores of 2–4 per mm, a dimitic hyphal structure with generative hyphae bearing clamp connections, hyphae at dissepiment edge usually with one or two simple septa, the presence of dendrohyphidia and cystidioles, and oblong to ellipsoid basidiospores measuring 14.9–17.9 × 6.9–8.8 µm. Haploporus monomitica differs from other Haploporus species in that it has a monomitic hyphal system and strongly dextrinoid basidiospores. The differences between the new species and morphologically similar and phylogenetically related species are discussed. In addition, an updated key to 27 species of Haploporus is provided.

Introduction

The genus Haploporus Bondartsev & Singer, belonging to Polyporaceae, Polyporales, Agaricomycetes, and Basidiomycota, was established by A. S. Bondartsev and R. Singer in 1944 and typified by Haploporus odorus (Sommerf.) Bondartsev & Singer (Singer, 1944). It is characterized by annual to perennial, resupinate to pileate basidiomata, a dimitic to trimitic hyphal system with clamp connections on the generative hyphae, cyanophilous skeletal hyphae, and thick-walled, cyanophilous, and ornamented basidiospores, causing a white rot of wood (Singer, 1944; Dai et al., 2002; Piatek, 2005; Li et al., 2007; Shen et al., 2016; Zhou et al., 2019; Zhou et al., 2021; Wu et al., 2022a).

In 1963, F. Kotlaba and Z. Pouzar proposed the genus Pachykytospora Kotl. & Pouzar (Kotlaba & Pouzar, 1963). However, most species of Pachykytospora, including P. alabamae (Berk. & Cooke) Ryvarden, P. nanospora A. David & Rajchenb, P. nepalensis T. Hatt., P. papyracea (Cooke) Ryvarden, P. thindii Natarajan & Koland, and P. tuberculosa (Fr.) Kotl. & Pouzar, have been transferred to Haploporus according to morphological characteristics and molecular phylogenetic analyses (Dai & Li, 2002; Piatek, 2003; Piatek, 2005; Shen et al., 2016; Zhou et al., 2021).

The genus Haploporus has been extensively studied in Australia, Brazil, China, Kenya, Sri Lanka, Sweden, and the USA (Lira et al., 2018; Zhou et al., 2019; Decock et al., 2021; Zhou et al., 2021). In the last decade, 16 species were described or combined in Haploporus, namely, H. angustisporus Meng Zhou & Y.C. Dai; H. bicolor Y.C. Dai, Meng Zhou, & Yuan; H. brasiliensis Nogueira-Melo & Ryvarden; H. crassus Meng Zhou & Y.C. Dai; H. cylindrosporus L.L. Shen, Y.C. Dai, & B.K. Cui; H. eichelbaumii (Henn.) Decock; H. gilbertsonii Meng Zhou, Vlasák, & Y.C. Dai; H. grandisporus Decock; H. longisporus Y.C. Dai, Meng Zhou, & Vlasák; H. microsporus L.L. Shen, Y.C. Dai, & B.K. Cui; H. pileatus Ryvarden; H. pirongia (G. Cunn.) Meng Zhou, Y.C. Dai, & T.W. May; H. punctatus Y.C. Dai, Meng Zhou, & Yuan; H. septatus L.L. Shen, Y.C. Dai, & B.K. Cui; H. srilankensis Y.C. Dai, Meng Zhou, & Yuan; and H. subpapyraceus L.L. Shen, Y.C. Dai, & B.K. Cui (Shen et al., 2016; Lira et al., 2018; Zhou et al., 2019; Decock et al., 2021; Zhou et al., 2021). Prior to our work, a total of 25 species was accepted in the genus (Dai et al., 2002; Hattori et al., 2002; Piatek, 2005; Li et al., 2007; Dai & Kashiwadani, 2009; Shen et al., 2016; Lira et al., 2018; Zhou et al., 2019; Decock et al., 2021; Zhou et al., 2021).

During a study on polypores from Ecuador and China, we collected specimens that morphologically fit the definition of Haploporus. After further examination and phylogenetic analysis, they formed two distinct lineages within Haploporus, and are morphologically different from the existing species in the genus. Thus, we describe them here as two new species.

Materials and methods

Morphological studies

The studied Haploporus specimens are deposited in the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC), the private herbarium of Josef Vlasák (JV), and the National Museum Prague of Czech Republic (PRM). For the morphological description, we followed the method from a previous study (Wu et al., 2022b). Color terms are from Anonymous (1969) and Petersen (1996).

DNA extraction, PCR, and sequencing

The DNA was extracted from the dried specimens using a rapid plant genome extraction kit (Aidlab Biotechnologies Co., Ltd, Beijing, China), following the manufacturer’s protocol. The internal transcribed spacers (ITS), large subunit of nuclear ribosomal RNA gene (LSU), and small subunit mitochondrial rRNA gene (mtSSU) were amplified with primer pairs ITS 5 (5′‐GGA AGT AAA AGT CGT AAC AAG G‐3′) and ITS 4 (5′‐TCC TCC GCT TAT TGATAT GC‐3′; White et al., 1990), LR0R (5′‐ACC CGC TGA ACT TAA GC‐3′) and LR7 (5′‐TAC TAC CAC CAA GAT CT‐3′; http://www.biology.duke.edu/fungi/mycolab/primers.htm ), and MS1 (5′‐CAG CAG TCA AGA ATA TTA GTC AAT G‐3′) and MS2 5′‐GCG GAT TAT CGA ATT AAA TAA C‐3′; White et al., 1990), respectively. The PCR procedures were as follows: for ITS and mtSSU regions, an initial denaturation at 95°C for 3 min, followed by 34 cycles at 94°C for 40 s, 54°C for ITS and 55°C for mtSSU for 45 s and 72°C for 1 min, and a final extension of 72°C for 10 min; for the LSU region, an initial denaturation at 94°C for 1 min, followed by 34 cycles at 94°C for 30 s, 50°C for 1 min and 72°C for 1.5 min, and a final extension of 72°C for 10 min (Zhou et al., 2021; Zhao et al., 2022c). The PCR products were sequenced using BGI Tech Solutions (Beijing Liuhe Co., Ltd., Beijing, China). Finally, all the new sequences were submitted to GenBank, and the accession numbers are shown in Table 1.

Table 1

SpeciesSample no.GenBank Accession no.Country
ITSLSUmt-SSU
Haploporus alabamaeDollinger 895KY264038MK433606MW463004USA
H. alabamaeJV 1704/75MK429754MK433607MW463005Costa Rica
H. angustisporusDai 10951KX900634KX900681MW463006China
H. bicolorDai 19951MW465684MW462995China
H. crassusDai 13580MW465669KU941865China
H. cylindrosporusDai 15664KU941854KU941878KU941903China
H. ecuadorensisJV1906/C10-JMW465661OP948227OP948226Ecuador
H. eichelbaumiiCongo 1MT758256MT758256Congo
H. eichelbaumiiKE-17-238MT758261MT758261Kenya
H. gilbertsoniiJV 1611/5-JMK429756MK433609MW463007USA
H. grandisporusKE-16-130MT758242MT758242Kenya
H. grandisporusKE-17-228MT758244MT758244Kenya
H. latisporusDai 11873KU941847KU941871MW463008China
H. longisporusJV 1906/C11-JMW465685MW462996Ecuador
H. microsporusDai 12147KU941861KU941885China
H. monomiticaDai 24429OP725709OP725712China
H. monomiticaDai 24446OP725710OP725713OP725715China
H. monomiticaDai 24451OP725711OP725714OP725716China
H. nanosporusMUCL 47447MT782648MT777438Gabon
H. nanosporusMUCL 47559MT782650MT777440Gabon
H. nepalensisDai 12937KU941855KU941879KU941904China
H. odorusDai 11296KU941845KU941869KU941894China
H. odorusYuan 2365KU941846KU941870KU941895China
H. papyraceusDai 10778KU941839KU941863KU941888China
H. pirongiaDai 18659MH631017MH631021MW463009Australia
H. punctatusDai19628MW465687MW462998MW463011Sri Lanka
H. septatusCui 4100KU941844KU941868KU941893China
H. srilankensisDai19523MW465688MW462999MW463012Sri Lanka
H. subpapyraceusCui 2651KU941842KU941866KU941891China
H. subpapyraceusDai 9324KU941841KU941865KU941890China
H. subtrameteusKUC20121102-36KJ668536KJ668389Korea
Haploporus sp. 1LR11231MT758249MT758249Malawi
H. thindiiCui 9373KU941851KU941875KU941900China
H. thindiiCui 9682KU941852KU941876KU941901China
H. tuberculosus15559KU941857KU941881KU941906Sweden
Perenniporia hainanianaCui 6364JQ861743JQ861759KF051044China
P. medulla-panisCui 3274JN112792JN112793KF051043China

Taxa information and GenBank accession numbers used in this study.

The sequences generated in this study are in bold. “−” represents sequences unavailable in GenBank.

Phylogenetic analyses

The sequences generated were aligned with sequences downloaded from GenBank (Table 1) using MAFFT (version 7) and then manually adjusted (Katoh & Standley, 2013). A dataset of 34 specimens consisting of ITS, LSU, and mtSSU sequences was analyzed using Maximum Likelihood (ML), Maximum Parsimony (MP), and Bayesian Inference (BI) phylogenetic analyses using RAxML (version 8; Stamatakis, 2014), PAUP (version 4.0b10; Swofford, 2002), and MrBayes (version 3.2.7a; Ronquist et al., 2012), respectively, following Zhao et al, 2021; Zhao et al, 2022a; Zhao et al, 2022b). The ModelTest-NG (version 0.1.7; Darriba et al., 2020) determined the best models of ITS, LSU, and mtSSU sequences. The ML analysis was carried out with 1,000 bootstrap replications using the GTR + I + G substitution model. The MP analysis was conducted using 1,000 bootstrap replications with the heuristic search option. The BI analysis was performed for two million generations with random initial trees, using the GTR + I + G substitution model and the first 25% were set as burn-in.

The phylogenetic tree was visualized using FigTree version 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/ ). Branches that received bootstrap support for ML, BP, and Bayesian Posterior Probabilities (BPP) greater than or equal to 50% (ML/BP) and 0.95 (BPP) were considered as significantly supported, respectively.

Results

Phylogeny

In this study, the combined ITS + LSU + mtSSU dataset included sequences from 37 specimens, representing 25 species of Haploporus and 2 species of Perenniporia Murrill as the outgroup (Table 1 and Figure 1). The aligned dataset had a length of 1,932 characters, of which 540 were constant characters, 122 were parsimony-uninformative characters, and 221 were parsimony-informative characters. The MP analysis yielded a tree with a length of 812, a consistency index of 0.5246, a homoplasy index of 0.4754, a retention index of 0.7551, and a rescaled consistency index of 0.3961. The best model for the ITS + LSU + mtSSU aligned dataset was GTR + I + G in the Bayesian analysis, and the average standard deviation of split frequencies is 0.00424. The phylograms of Bayesian analysis, MP analysis, and ML analysis are similar in topology, and the ML tree was chosen to represent the phylogenetic relationships (Figure 1).

Figure 1

Figure 1

A maximum likelihood phylogenetic tree of Haploporus based on ITS, LSU, and mtSSU sequences, with two specimens of Perenniporia hainaniana and P. medulla-panis used as outgroups. The new species Haploporus ecuadorensis and H. monomitica are shaded. Maximum likelihood bootstrap values (≥50%)/maximum parsimony bootstrap values (≥50%)/Bayesian posterior probabilities (≥0.95) of each clade are indicated along branches. A scale bar below indicates the number of substitutions per site.

The phylogenetic tree suggests that the specimen of H. ecuadorensis forms an independent lineage in the Haploporus clade, and specimens of H. monomitica are closely related to H. odorus with strong support.

Taxonomy

Haploporus ecuadorensis Y.C. Dai, Meng Zhou, & Vlasák, sp. nov. (Figures 2 , 3)

Figure 2

Figure 2

Basidiomata of Haploporus ecuadorensis (Holotype, JV1906/C10-J). Scale bar = 1.0 cm.

Figure 3

Figure 3

Microscopic characteristics of Haploporus ecuadorensis (Holotype, JV1906/C10-J). (A) Basidiospores. (B) Basidioles and basidia. (C) Cystidioles. (D) Dendrohyphidia. (E) Hyphae from subiculum. (F) Hyphae from tube trama. (G) Dissepiment hyphae. Scale bars: a = 5 μm, b–e = 10 μm.

MycoBank: MB847499

Etymology: ecuadorensis (Lat.): Refers to the occurrence of the species in Ecuador.

Type: Ecuador, Pichincha, Vicodin svah Volcán Pasochoa, on dead angiosperm branch, June 2019 JV1906/C10-J (Holotype PRM, isotypes BJFC 032988 and JV).

Basidiomata resupinate, annual, inseparable from the substrate, more or less corky when dry, up to 5 cm long, 1.5 cm wide, and 1.5 mm thick at the center. Hymenophore pinkish buff to honey yellow when dry, without distinct margin; pores angular to round, 2–4 per mm; dissepiments thick, entire. Subiculum paler than tubes, more or less corky, up to 0.5 mm thick. Tubes olivaceous buff, hard corky, up to 1.0 mm long.

Hyphal system dimitic; generative hyphae with clamp connections; skeletal hyphae thick-walled, frequently branched, neither amyloid nor dextrinoid in Melzer’s reagent, cyanophilous in Cotton Blue; tissues unchanged in 5% potassium hydroxide.

Subicular generative hyphae hyaline, thin-walled, sometimes branched, 2.2–3.3 µm in diameter; skeletal hyphae dominant, with a narrow to wide lumen, usually branched, flexuous, interwoven, 3–5.2 µm in diameter.

Tube tramal generative hyphae hyaline, thin-walled, usually branched, 1.6–3.2 µm in diameter; skeletal hyphae dominant, with a narrow lumen, usually branched, strongly flexuous, distinctly interwoven, 2.2–4 µm in diameter. Cystidioles fusiform with a sharp tip, thin-walled, hyaline, 23–34 × 4–6 µm. Basidia more or less capitate to pyriform, with four sterigmata, sometimes with a few small guttules, 40–45 × 13–15 µm, clamped at the base; basidioles capitate to pyriform, almost the same size as basidia. Dissepiment hyphae thick-walled with one or two simple septa. Dendrohyphidia present among hymenium, thin-walled, hyaline. Large and irregularly shaped crystals sometimes present among trama.

Basidiospores oblong to ellipsoid, thick-walled, tuberculate, hyaline, some with a guttule, neither amyloid nor dextrinoid in Melzer’s reagent, cyanophilous in Cotton Blue, (14.3–)14.9–17.9(–19) × (6.5–)6.9–8.8(–9) µm, arithmetic average length L = 15.94 µm, arithmetic average width W = 7.67 µm, and L/W ratio Q = 2.07 (n = 30/1).

Distribution and ecology: Haploporus ecuadorensis is distributed in tropical areas of Pichincha, Ecuador; it grows on dead angiosperm branch and causes a white rot.

Haploporus monomitica Y.C. Dai, sp. nov. (Figures 4, 5)

Figure 4

Figure 4

Basidiomata of Haploporus monomitica (Holotype, Dai 24446). Scale bar = 1 cm. Photo by Yu-Cheng Dai.

Figure 5

Figure 5

Microscopic structures of Haploporus monomitica (Holotype Dai 24446). (A) Basidiospores. (B) Basidia. (C) Basidioles. (D) Cystidioles. (E) Hyphae from subiculum. (F) Hyphae from trama.

MycoBank: MB838450

Etymology: monomitica (Lat.): refers to the species having a monomitic hyphal system.

Type: China, Beijing, Mentougou, Xiaolongmen National Forest Park, on fallen trunk of Quercus sp., 30 August 2022, Yu-Cheng Dai, Dai 24446 (Holotype BJFC 038932).

Basidiomata annual, resupinate, difficult to separate from the substrate, soft and white when fresh, become soft corky to fragile and white to cream when dry, up to 3 cm long, 1 cm wide, and 1 mm thick at the center. Sterile margin distinct, white, cottony, up to 1 mm; pores round to angular, 3–4 per mm; dissepiments thick, entire. Subiculum white, soft corky, up to 0.2 mm thick. Tubes concolorous with pores, fragile, up to 0.8 mm long.

Hyphal system monomitic; generative hyphae bearing clamp connections, hyaline, thin-walled, frequently branched, neither amyloid nor dextrinoid in Melzer’s reagent, cyanophilous in Cotton Blue; tissues unchanging in 5% potassium hydroxide.

Subicular generative hyphae hyaline, thin-walled, frequently branched, flexuous, interwoven, 2–3.3 µm in diameter.

Tube tramal generative hyphae hyaline, thin-walled, frequently branched, flexuous, interwoven, 2–3 µm in diameter. Cystidia absent; cystidioles present, clavate to fusiform, hyaline, thin-walled, 17–25 × 3–5 µm. Basidia clavate with 4-sterigmata and a basal clamp connection, 15–32 × 6–9 µm; basidioles pyriform, slightly smaller than basidia. Dendrohyphidia absent.

Basidiospores broadly ellipsoid, hyaline, thick-walled with echinulate ornamentation, dextrinoid in Melzer’s reagent, cyanophilous in Cotton Blue, (4.2–)4.9–6.5 × (3.0–)3.2–4.8(–5.0) µm, arithmetic average length L = 5.37 µm, arithmetic average width W = 3.90 µm, and L/W ratio Q = 1.32–1.43 (n =90/3).

Additional materials studied: China, Beijing, Mentougou, Xiaolongmen National Forest Park, on fallen trunk of Quercus sp., 30 August 2022, Yu-Cheng Dai, Dai 24429, Dai 24451.

Distribution and ecology: Haploporus monomitica is distributed in temperate area of Beijing, China; it grows on fallen trunk of Quercus, and causes a white rot.

Discussion

In a combined ITS + LSU + mtSSU dataset-based phylogeny (Figure 1) Haploporus ecuadorensis forms an independent lineage that is closely related to H. grandisporus Decock, H. eichelbaumii (Henn.) Decock and H. sp. (Decock et al., 2021). Morphologically, H. eichelbaumii is different from H. ecuadorensis in that it has smaller basidiospores (11–14 × 5.3–6.5 µm vs. 14.9–17.9 × 6.9–8.8 µm; Decock et al., 2021). H. grandisporus is readily distinguished from H. ecuadorensis by larger pores (1.5–2.5 per mm vs. 2–4 per mm) and narrower basidiospores (14–17.5 × 6–7.3 µm vs. 14.9–17.9 × 6.9–8.8 µm; Decock et al., 2021). Haploporus sp. From Malawi is also an independent lineage within the Haploporus clade in a previous study (Decock et al., 2021). This taxon differs from H. ecuadorensis in that it has distinctly smaller pores (4–5 vs. 2–4 per mm Decock et al., 2021). In addition, there are more than 2% nucleotide difference in the ITS sequences between Haploporus sp. and H. ecuadorensis.

Haploporus ecuadorensis, H. crassus, H. pirongia, and H. septatus share thick-walled dissepiment hyphae with a simple septum or a few septa. Haploporuscrassus can be differentiated from H. ecuadorensis by its thick-walled basidia, the ventricose cystidioles occasionally with a simple septum, and the absence of dendrohyphidia (Zhou et al., 2019). Haploporus pirongia is distinguished from H. ecuadorensis by smaller basidiospores (11–14 × 5.2–7 µm vs. 14.9–17.9 × 6.9–8.8 µm; Zhou et al., 2019). Haploporus septatus is different from H. ecuadorensis in that it has dextrinoid skeletal hyphae in Melzer’s reagent and smaller pores and basidiospores (5–6 per mm vs. 2–4 per mm, 8.5–11 × 5–6 μm vs. 14.9–17.9 × 6.9–8.8 µm; Shen et al., 2016).

Haploporus longisporus resembles H. ecuadorensis in terms of resupinate basidiomata, similar pore dimension (2–3 per mm vs. 2–4 per mm), non-dextrinoid skeletal hyphae in Melzer’s reagent, and the presence of dendrohyphidia and cystidioles. Although both species have an overlapping distribution in Ecuador, H. longisporus is readily distinguished from H. ecuadorensis by bigger basidiospores (18.2–22 × 7–9 µm vs. 14.9–17.9 × 6.9–8.8 µm; Zhou et al., 2021).

Haploporus gilbertsonii was described from the USA recently (Zhou et al., 2021). It is similar to H. ecuadorensis in terms of resupinate basidiomata, similar pore dimension (2–3 per mm vs. 2–4 per mm; Zhou et al., 2019), non-dextrinoid skeletal hyphae in Melzer’s reagent, and the presence of cystidioles, but the former differs from the latter by the absence of dendrohyphidia and smaller basidiospores (12–15 × 6–8 µm vs. 14.9–17.9 × 6.9–8.8 µm; Zhou et al., 2021).

Our phylogeny shows that Haploporus monomitica forms a sister group to H. odorus with strong support (BP: 91%, MP: 84%, and BPP 1.0). However, H. odorus has pileate basidiomata with a strong fragrant odor, a dimitic hyphae system, non-dextrinoid or very weakly dextrinoid basidiospores, and grows exclusively on Salix (Niemelä, 2005; Zhou et al., 2021). Moreover, in Siberia and North America, the fungus grows on another member of the Salicaceae family, Populus tremula (Zmitrovich et al., 2019).

The dimitic or trimitic hyphal structure was mentioned in the previous definition of Haploporus (Ryvarden & Melo, 2014; Shen et al., 2016; Zhou et al., 2019; Decock et al., 2021; Zhou et al., 2021); however, a monomitic hyphal system is found in the new species Haploporus monomitica, and phylogenetically, it is nested in Haploporus. Therefore, the updated definition of the genus is as follows: basidiomata annual to perennial, resupinate to pileate, hyphal system monomitic, dimitic to trimitic with clamped generative hyphae, cyanophilous skeletal hyphae, thick-walled, cyanophilous, and ornamented basidiospores, and causing a white rot.

Like other genera of wood-decaying fungi having a rich diversity of species in tropical areas (Wu et al., 2017; Cui et al., 2019; Wu et al., 2020; Dai et al., 2021; Guan & Zhao, 2021; Wang et al., 2021; Wu et al., 2021; Ma et al., 2022), our result shows that a high diversity of Haploporus exists in neotropical areas.

Key to species of Haploporus

  • 1. Hyphal system monomitic.................................H. monomitica

  • 1. Hyphal system dimitic to trimitic.............................................2

  • 2. Basidiospores < 8 µm long..........................................................3

  • 2. Basidiospores > 8 µm long..........................................................6

  • 3. Pores 7–9 per mm.........................................................................4

  • 3. Pores < 6 per mm..........................................................................5

  • 4. Cystidioles absent...................................................H. nanosporus

  • 4. Cystidioles present................................................H. microsporus

  • 5. Pores 1–3 per mm; skeletal hyphae strongly dextrinoid...............................................................H. brasiliensis

  • 5. Pores 4–5 per mm; skeletal hyphae weakly dextrinoid...............................................................H. odorus

  • 6. Basidiomata annual to perennial................................................7

  • 6. Basidiomata annual.......................................................................9

  • 7. Skeletal hyphae dextrinoid...................................H. srilankensis

  • 7. Skeletal hyphae non-dextrinoid..................................................8

  • 8. Basidiospores cylindrical...............................................H. thindii

  • 8. Basidiospores oblong ellipsoid to ellipsoid..................................

  • ...........................................................................H. subtrameteus

  • 9. Hyphal system trimitic...............................................................10

  • 9. Hyphal system dimitic................................................................12

  • 10. Skeletal hyphae dextrinoid...............................H. tuberculosus

  • 10. Skeletal hyphae non-dextrinoid..............................................11

  • 11. Basidiospores ovoid to ellipsoid...........................H. alabamae

  • 11. Basidiospores oblong-ellipsoid to cylindrical.......H. pirongia

  • 12. Cystidioles absent......................................................................13

  • 12. Cystidioles present....................................................................15

  • 13. Basidiomata pileate....................................................H. pileatus

  • 13. Basidiomata resupinate............................................................14

  • 14. Pores 4–5 per mm, basidiospores cylindrical, 10–11.5 × 4.5–5 µm..................................H. cylindrosporus

  • 14. Pores 1.5–4 per mm, basidiospores ellipsoid to oblong, 10–15 × 5–6.8 µm.................................H. eichelbaumii

  • 15. Dendrohyphidia present..........................................................16

  • 15. Dendrohyphidia absent............................................................20

  • 16. Pores 5–7 per mm.........................................................H. bicolor

  • 16. Pores < 4 per mm.......................................................................17

  • 17. Basidiospores cylindrical..........................................................18

  • 17. Basidiospores ellipsoid to oblong...........................................19

  • 18. Basidiospores 18.2–22 × 7–9 µm.......................H. longisporus

  • 18. Basidiospores 13–15 × 5–6 µm...........................H. papyraceus

  • 19. Hyphal system trimitic, skeletal hyphae dextrinoid.............................H. grandisporus

  • 19. Hyphal system dimitic, skeletal hyphae non-dextrinoid.......................................................................H. ecuadorensis

  • 20. Pores > 3 per mm.......................................................................21

  • 20. Pores < 3 per mm.......................................................................25

  • 21. Pores 5–6 per mm......................................................H. septatus

  • 21. Pores 3–5 per mm......................................................................22

  • 22. Skeletal hyphae non-dextrinoid................................H. crassus

  • 22. Skeletal hyphae dextrinoid.......................................................23

  • 23. Cystidioles without septum............................H. angustisporus

  • 23. Cystidioles with a simple septum............................................24

  • 24. Basidiospores 9–10.8 × 3.8–5 µm.........................H. punctatus

  • 24. Basidiospores 9–12 × 5.5–8 µm...................H. subpapyraceus

  • 25. Basidiospores 9–10 µm wide.................................H. latisporus

  • 25. Basidiospores < 9 µm wide.......................................................26

  • 26. Basidiospores 12–15 × 6–8 µm...........................H. gilbertsonii

  • 26. Basidiospores 8.5–11.5 × 4.5–6.5 µm.................H. nepalensis

Statements

Data availability statement

The datasets presented in this study can be found in GenBank Database. The names of the accession numbers can be found in the Table 1.

Author contributions

Y-CD, L-SB, HZ and JV collected specimens. X-WM, L-SB, MZ and HZ did the drawings, DNA sequencing, and data analyses, and drafted the paper. JV and Y-CD did the morphological descriptions and acquired funding. All authors contributed to the article and approved the submitted version.

Funding

This study was supported by the Fundamental Research Funds for the Central Non-profit Research Institution of the Chinese Academy of Forestry (Project No. CAFYBB2021MA007), the National Natural Science Foundation of China (Project No. 31800018; No. 32161143013), Investigation on ecosystem and biodiversity of Mentougou (Project No. 11010922210200001368-XM001) and Academy of Sciences of the Czechia RVO: 60077344.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  • 1

    Anonymous (1969). Flora of British fungi. colour identification chart (London: Her Majesty’s Stationery Office).

  • 2

    CuiB. K.LiH. J.JiX.ZhouJ. L.SongJ.SiJ.et al. (2019). Species diversity, taxonomy and phylogeny of polyporaceae (Basidiomycota). in China. Fungal Diversity97, 137392. doi: 10.1007/s13225-019-00427-4

  • 3

    DaiY. C.KashiwadaniH. (2009). Haploporus subtrameteus (Polyporaceae, basidiomycota) found in Japan. Mycoscience50, 452454. doi: 10.1007/S10267-009-0498-9

  • 4

    DaiY. C.LiT. H. (2002). Megasporoporia major (Basidiomycota), a new combination. Mycosystema21, 519521.

  • 5

    DaiY. C.NiemeläT.KinnunenJ. (2002). The polypore genera Abundisporus and Perenniporia (Basidiomycota) in China, with notes on Haploporus. Annales Botanici Fennici39, 169182.

  • 6

    DaiY. C.YangZ. L.CuiB. K.WuG.YuanH. S.ZhouL. W.et al. (2021). Diversity and systematics of the important macrofungi in Chinese forests. Mycosystema40, 770805. doi: 10.13346/j.mycosystema.210036

  • 7

    DarribaD.PosadaD.KozlovA. M.StamatakisA.MorelB.FlouriT. (2020). ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol.37, 291294. doi: 10.1093/molbev/msz189

  • 8

    DecockC. A.WagaraI.BaleziA.YombiyeniP. (2021). Haploporus (Basidiomycota, polyporales) in sub-Saharan Africa: Poria eichelbaumii, a long-forgotten name, is reinstated in Haploporus and h. grandisporus sp. nov. is proposed. Mycological Prog.20, 149168. doi: 10.1007/s11557-020-01660-x

  • 9

    GuanQ. X.ZhaoC. L. (2021). Two new corticioid species, Hyphoderma sinense and H. floccosum (Hyphodermataceae, polyporales), from southern China. Mycosystema40, 447461. doi: 10.13346/j.mycosystema.200382

  • 10

    HattoriT.AdhikariM. K.SudaT.DoiY. (2002). A list of polypores (Basidiomycotina, aphyllophorales) collected in jumla, Nepal. Bull. Natl. Sci. Museum28, 2738.

  • 11

    KatohK.StandleyD. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772780. doi: 10.1093/molbev/mst010

  • 12

    KotlabaF.PouzarZ. (1963). A new genus of the polypores–Pachykytospora gen. nov. Ceská Mykol17, 2734.

  • 13

    LiJ.DaiY. C.YuanH. S. (2007). A new species of Haploporus (Basidiomycotina) from China. Mycotaxon99, 181187.

  • 14

    LiraC.Nogueira-MeloG.RyvardenL.GibertoniT. (2018). Two new species of Haploporus from Brazil. Synopsis Fungorum38, 6265.

  • 15

    MaH. X.SiJ.DaiY. C.ZhuA. H.CuiB. K.FanY. G.et al. (2022). Diversity of wood-inhabiting macrofungi in hainan province, south China. Mycosystema41, 695712. doi: 10.13346/j.mycosystema.210424

  • 16

    NiemeläT. (2005). Polypores, lignicolous fungi. Norrlinia13, 1320.

  • 17

    PetersenJ. H. (1996). The Danish mycological society’s colour-chart (Greve.: Foreningen til Svampekundskabens Fremme), 16.

  • 18

    PiatekM. (2003). Haploporus tuberculosus, a new polypore genus and species in Belarus, with a new combination in haploporus. Polish Botanical J.48, 8183.

  • 19

    PiatekM. (2005). Taxonomic position and world distribution of Pachykytospora nanospora (Polyporaceae). Annales Botanici Fennici42, 2325.

  • 20

    RonquistF.TeslenkoM.van der MarkP.AyresD. L.DarlingA.HöhnaS.et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biol.61, 539542. doi: 10.1093/sysbio/sys029

  • 21

    RyvardenL.MeloI. (2014). Poroid fungi of Europe. Synopsis Fungorum31, 1455.

  • 22

    ShenL. L.ChenJ. J.WangM.CuiB. K. (2016). Taxonomy and multi-gene phylogeny of Haploporus (Polyporales, basidiomycota). Mycological Prog.15, 731742. doi: 10.1007/s11557-016-1203-y

  • 23

    SingerR. (1944). Notes on taxonomy and nomenclature of the polypores. Mycologia36, 6569. doi: 10.1080/00275514.1944.12017529

  • 24

    StamatakisA. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30, 13121313. doi: 10.1093/bioinformatics/btu033

  • 25

    SwoffordD. L. (2002). PAUP*: Phylogenetic analysis using parsimony (* and other methods); version 4.0b10 (MA, USA: Sinauer Associates: Sunderland).

  • 26

    WangK.ChenS. L.DaiY. C.JiaZ. F.LiT. H.LiuT. Z.et al. (2021). Overview of china’s nomenclature novelties of fungi in the new centur–2020). Mycosystema40, 8228332. doi: 10.13346/j.mycosystema.210483

  • 27

    WhiteT. J.BrunsT.LeeS.TaylorJ. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: guide to Methods Appl.18, 315322.

  • 28

    WuF.ChenJ. J.JiX. H.VlasákJ.DaiY. C. (2017). Phylogeny and diversity of the morphologically similar polypore genera Rigidoporus, Physisporinus, Oxyporus, and Leucophellinus. Mycologia109, 749765. doi: 10.1080/00275514.2017.1405215

  • 29

    WuF.ManX. W.TohtirjapA.DaiY. C. (2022a). A comparison of polypore funga and species composition in forest ecosystems of China, north America, and Europe. For. Ecosyst.9, 17. doi: 10.1016/j.fecs.2022.100051

  • 30

    WuF.TohtirjapA.FanL. F.ZhouL. W.AlvarengaR. L. M.GibertoniT. B.et al. (2021). Global diversity and updated phylogeny of Auricularia (Auriculariales, basidiomycota). J. Fungi7, 933. doi: 10.3390/jof7110933

  • 31

    WuF.YuanH. S.ZhouL. W.YuanY.CuiB. K.DaiY. C. (2020). Polypore diversity in south China. Mycosystema39, 653682. doi: 10.13346/j.mycosystema.200087

  • 32

    WuF.ZhouL. W.VlasákJ.Dai.Y. C. (2022b). Global diversity and systematics of hymenochaetaceae with poroid hymenophore. Fungal Diversity113, 1192. doi: 10.1007/s13225-021-00496-4

  • 33

    ZhaoH.NieY.ZongT. K.DaiY. C.LiuX. Y. (2022a). Three new species of Absidia (Mucoromycota) from China based on phylogeny, morphology and physiology. Diversity14, 132. doi: 10.3390/d14020132

  • 34

    ZhaoH.NieY.ZongT. K.WangY. J.WangM.DaiY. C.et al. (2022b). Species diversity and ecological habitat of Absidia (Cunninghamellaceae, mucorales) with emphasis on five new species from forest and grassland soil in China. J. Fungi8, 471. doi: 10.3390/jof8050471

  • 35

    ZhaoH.ZhouM.LiuX.-Y.WuF.DaiY. C. (2022c). Phylogeny, divergence time estimation and biogeography of the genus Onnia (Basidiomycota, hymenochaetaceae). Fronter Microbiol.13. doi: 10.3389/fmicb.2022.907961

  • 36

    ZhaoH.ZhuJ.ZongT. K.LiuX. L.RenL. Y.LinQ.et al. (2021). Two new species in the family cunninghamellaceae from China. Mycobiology49, 142150. doi: 10.1080/12298093.2021.1904555

  • 37

    ZhouM.DaiY. C.VlasákJ.YuanY. (2021). Molecular phylogeny and global diversity of the genus Haploporus (Polyporales, basidiomycota). J. Fungi7, 96. doi: 10.3390/jof7020096

  • 38

    ZhouM.WangL.MayT. W.VlasákJ.ChenJ. J.DaiY. C. (2019). Phylogeny and diversity of Haploporus (Polyporaceae, basidiomycota). MycoKeys54, 7798. doi: 10.3897/mycokeys.54.34362

  • 39

    ZmitrovichI. V.ArefyevS. P.BondartsevaM. A.BelovaN. V.KhimichY. R.IsaevaL. G.et al. (2019). Profiles of little-known medicinal polypores: Haploporus odorus (Agaricomycetes). Int. J. Medicinal Mushrooms21, 783791. doi: 10.1615/IntJMedMushrooms.v21.i8.40

Summary

Keywords

polyporaceae, wood-rotting fungi, taxonomy, fungi diversity, new taxa

Citation

Man X-W, Dai Y-C, Bian L-S, Zhou M, Zhao H and Vlasák J (2023) Two new species of Haploporus (Polyporales, Basidiomycota) from China and Ecuador based on morphology and phylogeny. Front. Cell. Infect. Microbiol. 13:1133839. doi: 10.3389/fcimb.2023.1133839

Received

29 December 2022

Accepted

06 February 2023

Published

21 February 2023

Volume

13 - 2023

Edited by

Yusufjon Gafforov, Academy of Science of the Republic of Uzbekistan, Uzbekistan

Reviewed by

Sergey Volobuev, Komarov Botanical Institute (RAS), Russia; Komsit Wisitrassameewong, National Biobank of Thailand, Thailand

Updates

Copyright

*Correspondence: Heng Zhao, ; Josef Vlasák,

†These authors have contributed equally to this work

This article was submitted to Fungal Pathogenesis, a section of the journal Frontiers in Cellular and Infection Microbiology

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Figures

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics