Frontiers reaches 6.4 on Journal Impact Factors

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Energy Res. | doi: 10.3389/fenrg.2018.00018

Microwave-assisted coprecipitation synthesis of LaCoO3 nanoparticles and their catalytic activity for syngas production by partial oxidation of methane

 Consuelo Alvarez-Galvan1*,  Annette Trunschke2, Horacio Falcon3, Maricruz Sanchez-Sanchez4,  Jose Miguel Campos-Martin1, Robert Schlögl2 and Jose Luis G. Fierro1
  • 1Instituto de Catálisis y Petroleoquímica (CSIC), Spain
  • 2Inorganic Chemistry, Fritz Haber Institute (MPG), Germany
  • 3Centro de Investigaciones en Nanociencia y Nanotecnología (NANOTEC), Argentina
  • 4Department of Chemistry and Catalysis Research Center, Technische Universität München, Germany

LaCoO3 perovskite-type oxides were prepared by microwave-assisted coprecipitation route and investigated in the catalytic partial oxidation of methane (CPOM) to syngas.
This preparation method aims to achieve higher specific surface areas than soft-chemical methods commonly used in the preparation of engineered materials. In an attempt to accomplish the creation of mesostructured porous LaCoO3, an ionic template such as cetyl trimethyl ammonium bromide has been used as endotemplate in some samples.
The influence of pH and the type of precipitating agent has been studied. The materials have been characterized at different levels: morphology has been studied by scanning electron microscopy, textural properties by nitrogen adsorption-desorption at -196ºC, structural analysis by X-ray diffraction, surface composition by X-ray photoelectron spectroscopy (XPS), thermal stability by Thermogravimetric Analysis (TGA) and carbon formation in spent catalysts, by Raman spectroscopy. Structure-activity correlations point out that the precipitating agent has a key role on the morphology and porosity of the resultant oxide, as well as on the average crystalline domain of lanthanum perovskite (catalyst precursor). Thus, the use of ammonium hydroxide as precipitant leads to materials with a higher surface area and a greater specific surface area of cobalt (per unit mass), improving their catalytic performance for the CPOM reaction. The best catalytic performance was found for the catalyst prepared using ammonium hydroxide as precipitant (pH 9) and without adding CTAB as endotemplate.

Keywords: Methane, partial oxidation, syngas, microwave-assisted coprecipitation, endotemplate

Received: 12 Jan 2018; Accepted: 05 Mar 2018.

Edited by:

Luis M. Gandía, Universidad Pública de Navarra, Spain

Reviewed by:

Fabio B. Passos, Federal Fluminense University, Brazil
Maria A. Goula, Western Macedonia University Of Applied Science, Greece
Jordi Llorca, Universitat Politecnica de Catalunya, Spain  

Copyright: © 2018 Alvarez-Galvan, Trunschke, Falcon, Sanchez-Sanchez, Campos-Martin, Schlögl and Fierro. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Consuelo Alvarez-Galvan, Instituto de Catálisis y Petroleoquímica (CSIC), c/ Marie Curie nº2, Cantoblanco, Madrid, Spain,