Frontiers journals are at the top of citation and impact metrics

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Ecol. Evol. | doi: 10.3389/fevo.2018.00191

Landscape level effects of lion presence (Panthera leo) on two contrasting prey species

  • 1Department of Zoology, Stockholm University, Sweden
  • 2Institute of Mammal Research, Department of Zoology and Entomology, University of Pretoria, South Africa
  • 3University of Venda, South Africa
  • 4Universidad de Oviedo, Spain

Due to the strong individual cost of being predated, potential prey species alter their behavior and physiology in response to predation risk. Such alterations may cause major indirect consequences on prey populations that are additive to the direct demographic effects caused by prey being killed. However, although earlier studies showed strong general effects of the presence of apex predators, recent data suggest that indirect effects may be highly context dependent and not consistently present. We combined behavioral data with data on endocrine stress and stable isotopes to assess landscape level effects of lion (Panthera leo) presence on two prey species in South Africa, impala (Aepyceros melampus) and blue wildebeest (Connochaetes taurinus). We also evaluated if there was any seasonal variation in such effects. In addition, we provide results from a physiological validation for an enzyme-linked immunoassay (EIA) that can be used for non-invasive monitoring of glucocorticoid stress metabolite concentrations in impala from fecal pellets. We did not find any significant differences in vigilance behavior, fecal glucocorticoid metabolite concentrations, 13C values or isotope niche breadth between animals living with and without lions for either species. However, wildebeest living in a reserve with lions spent more time foraging compared to wildebeest in a lion-free environment, but only during the wet season. Values of fecal 15N suggest a shift in habitat use, with impala and wildebeest living with lions potentially feeding in less productive areas compared to animals living without lions. For both species, characteristics of the social groups appeared to be more important than individual characteristics for both foraging and vigilance behavior. Our results highlight that antipredator responses may be highly dynamic and scale-dependent. We urge for further studies that quantify at what temporal and spatial scales predation risk is causing indirect effects on prey populations.

Keywords: fecal glucocorticoid metabolites, Validation, Large carnivores, African ecology, anti-predatory responses, predation

Received: 13 Sep 2018; Accepted: 02 Nov 2018.

Edited by:

Evan Preisser, University of Rhode Island, United States

Reviewed by:

Shawn M. Wilder, Oklahoma State University, United States
Meredith S. Palmer, University of Minnesota Twin Cities, United States  

Copyright: © 2018 Chizzola, Belton, Ganswindt, Greco, Hall, Swanepoel and Dalerum. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Fredrik Dalerum, Universidad de Oviedo, Oviedo, Spain,