EDITORIAL article

Front. Ecol. Evol., 06 May 2025

Sec. Evolutionary Developmental Biology

Volume 13 - 2025 | https://doi.org/10.3389/fevo.2025.1609597

This article is part of the Research TopicBiological and Physical Basis of the Development of Integument and Associated StructuresView all 6 articles

Editorial: Biological and physical basis of the development of integument and associated structures

  • 1Department of Biological Sciences, National University of Singapore, Singapore, Singapore
  • 2Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
Everything about microscopic life is terribly upsetting. How can things so small be so important?”
Isaac Asimov

The integument of organisms differs greatly in nature and shape, including the cell wall in bacteria, fungi, algae and plants, the cuticle in arthropods, and the skin in vertebrates. The integumentary surface offers a range of micro- and nano-structures that serve a variety of purposes like environmental sensing, light scattering, substrate adhesion, (super)hydrophobicity, (super)hydrophilicity, and thermoregulation (Barthlott et al., 2016; Watson et al., 2017; Seale et al., 2018; Akat et al., 2022). It is worth noting that these structures are often multifunctional. Water striders, for instance, have leg bristles that give both mechanosensation and water repellency (Finet et al., 2018, 2022), whilst clearwing butterflies have transparent wings with anti-reflective and hydrophobic nipple arrays (Finet et al., 2023).

While integuments and their accompanying structures are extremely diverse, their material composition is the result of developmental and evolutionary tinkering of a small set of biopolymers like chitin, keratin, and cellulose, as well as various proteins, lipids, and pigments (Pasquina-Lemonche et al., 2020; Akat et al., 2022; Muthukrishnan et al., 2022; Gow and Lenardon, 2023; Cosgrove, 2024). Structural colors for example, can be created by combinations of these biomaterials (McPhedran et al., 2001; Seago et al., 2009; Sun and Bhushan, 2012; Airoldi et al., 2019; Hsiung et al., 2019; Middleton et al., 2020; Saranathan and Finet, 2021; Thayer and Patel, 2023). Furthermore, these biomaterials are optimized and often hierarchically structured, indicating precise cellular/tissue control over biomaterial assembly across space and time (Miserez et al., 2008; Carroll et al., 2022).

The morphogenesis of integumentary surfaces and nanostructures remains a vast and underexplored field. However, the emergence of recent reviews (Airoldi et al., 2019; Lloyd and Nadeau, 2021; Saranathan and Finet, 2021; Finet, 2024) and research papers on this topic highlights an active field of research. Our understanding of the spatial control of chitin assembly at the subcellular level has progressed (Pesch et al., 2017; Adler, 2019; Sviben et al., 2020; De Giorgio et al., 2023; Ghosh and Treisman, 2024; Ikeda et al., 2024; Inagaki et al., 2024; Itakura et al., 2024). Single-cell gene expression atlases of developing scales in butterflies (Prakash et al., 2024; Loh et al., 2025) and bristles in Drosophila (Hopkins et al., 2023) have identified gene networks involved in hair-like structure morphogenesis. Progress has been made to understand the formation of different nanostructures in butterfly wing scales such as the laminae (Thayer et al., 2020; Prakash et al., 2022; Chatterjee et al., 2023; Balakrishnan et al., 2024), the ridges (Brien et al., 2022; Ficarrotta et al., 2022; Lloyd et al., 2024; Totz et al., 2024), the luminal gyroid (Wilts et al., 2017), and the trabeculae (Ru et al., 2024). Work on cuticular proteins has identified their roles and spatial distributions in the development of beetle elytra (Noh et al., 2014; Murata et al., 2022; Bao et al., 2024) and butterfly scales (Liu et al., 2021).

In particular, many studies feed into the biomimetic and bioengineering fields of research. For example, the natural world has inspired multiple solutions for material adhesion (Li et al., 2024). The morphology of shark scales has led to various applications from membrane antifouling to hydrodynamics (Ghimire et al., 2024), and chameleons and cephalopods have inspired color-changing hydrogels for multiple functions including sensors (Lu et al., 2022; Zhang et al., 2023). However, beyond extracting design principles from biological materials, the ultimate goal would be to develop bio-inspired manufacturing processes, which require an in-depth understanding of the biological processes themselves.

This topic explores the genetics and cellular mechanisms underlying the development of integument and associated structures in animals and plants. With this Research Topic, we wish to direct readers to the emerging field of bio-inspired manufacturing and hope to acknowledge the need for more studies in understanding biological processes that can produce precise and compositionally driven micro- and nano-structures.

Plant cell walls are made up of cellulose microfibrils embedded in a matrix of glycoproteins, and pectic and hemicellulosic polysaccharides. Glycosylphosphatidylinositol (GPI) is a common eukaryotic lipid modification that helps proteins adhere to the membrane lipid bilayer. Zhou reviews our knowledge on GPI-anchored proteins involved in cell wall regulation in the plant model Arabidopsis. The author proposes that these proteins might act as structural components of the cell wall by organizing cellulose microfibrils at the cell surface.

In reptiles, a mutation in the TFEC gene leads to a piebald phenotype with white patches in the ball python while it causes reduced coloration in the brown anole lizard due to the loss of iridophores (Garcia-Elfring et al., 2023). Using comparative histology, Tzika demonstrates that TFEC mutants produce similar phenotypes of reduced coloration via different mechanisms. In the anole, TFEC is necessary for the development of iridophores, whereas in the ball python, which lacks iridophores, TFEC is important for the development of melanophores and xanthophores. By pointing out that the same transcription factor can function differently within the same taxon, this study emphasizes that the phenotypic mutant approach is insufficient for elucidating the underlying molecular mechanisms.

Like reptiles, the ribbontail stingray exhibits structurally colored blue spots produced by dermal iridophores. These iridophores are unique by having numerous fingerlike protuberances (Surapaneni et al., 2024) and contain spherical iridosomes enclosing guanine nanocrystals. Blumer et al. provide a detailed ultrastructural description of the ribbontail ray’s novel iridophore. They found that intermediate filaments form an intracellular scaffold that spaces the iridosomes within the iridophores.

In crickets and grasshoppers, males have evolved cuticular structures on their forewings to produce sound via stridulation. Turchyn and Popadić identify the POU homeodomain gene nubbin as a regulator of the development of sound resonators on the wings of the house cricket. They propose that nubbin, a key player in the wing development network, has been recruited in the course of evolution of Orthoptera to evolve these new cuticular nanostructures.

Banerjee et al. investigate the interplay between nanomorphology and pigmentation during the development of butterfly scales. They show that the loss-of-function mutations in Optix result in both pigmentation and nanomorphology defects. By comparing these effects with mutants in melanin and/or ommochrome pathways, they propose that Optix regulates nanomorphology via its effects on pigmentation, complementing earlier studies on melanized (Matsuoka and Monteiro, 2018) and silver scales (Prakash et al., 2022).

Author contributions

CF: Writing – original draft, Writing – review & editing. AP: Writing – original draft, Writing – review & editing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Adler P. N. (2019). The localization of chitin synthase mediates the patterned deposition of chitin in developing Drosophila bristles. bioRxiv [Preprint]. doi: 10.1101/718841

Crossref Full Text | Google Scholar

Airoldi C. A., Ferria J., Glover B. J. (2019). The cellular and genetic basis of structural colour in plants. Curr. Opin. Plant Biol. 47, 81–87. doi: 10.1016/j.pbi.2018.10.002

PubMed Abstract | Crossref Full Text | Google Scholar

Akat E., Yenmiş M., Pombal M. A., Molist P., Megías M., Arman S., et al. (2022). Comparison of vertebrate skin structure at class level: A review. Anat. Rec. 305, 3543–3608. doi: 10.1002/ar.24908

PubMed Abstract | Crossref Full Text | Google Scholar

Balakrishnan D., Prakash A., Daurer B. J., Finet C., Chen Lim Y., Shen Z., et al. (2024). Nanoscale cuticle mass density variations influenced by pigmentation in butterfly wing scales. arXiv [Preprint]. doi: 10.48550/arXiv.2305.16628

Crossref Full Text | Google Scholar

Bao H., Liu Y., Duan Y., Chen L., Yang Q. (2024). The beetle’s structural protein CPCFC making elytra tough and rigid. Insect Sci [Preprint]. doi: 10.1111/1744-7917.13443. Online ahead of print.

PubMed Abstract | Crossref Full Text | Google Scholar

Barthlott W., Mail M., Neinhuis C. (2016). Superhydrophobic hierarchically structured surfaces in biology: Evolution, structural principles and biomimetic applications. Philos. Trans. R. Soc A Math. Phys. Eng. Sci. 374, 20160191. doi: 10.1098/rsta.2016.0191

PubMed Abstract | Crossref Full Text | Google Scholar

Brien M. N., Enciso-Romero J., Lloyd V. J., Curran E. V., Parnell A. J., Morochz C., et al. (2022). The genetic basis of structural colour variation in mimetic Heliconius butterflies. Philos. Trans. R. Soc B Biol. Sci. 377, 20200505. doi: 10.1098/rstb.2020.0505

PubMed Abstract | Crossref Full Text | Google Scholar

Carroll S., Amsbury S., Durney C. H., Smith R. S., Morris R. J., Gray J. E., et al. (2022). Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening. Curr. Biol. 32, 3170–3179.e4. doi: 10.1016/j.cub.2022.05.042

PubMed Abstract | Crossref Full Text | Google Scholar

Chatterjee M., Siegel K. J., Loh L. S., McDonald J. M. C., Reed R. D. (2023). Butterfly wing iridescence is regulated by araucan, a direct target of optix and spalt. bioRxiv [Preprint]. doi: 10.1101/2023.11.21.568172

Crossref Full Text | Google Scholar

Cosgrove D. J. (2024). Structure and growth of plant cell walls. Nat. Rev. Mol. Cell Biol. 25, 340–358. doi: 10.1038/s41580-023-00691-y

PubMed Abstract | Crossref Full Text | Google Scholar

De Giorgio E., Giannios P., Espinàs M. L., Llimargas M. (2023). A dynamic interplay between chitin synthase and the proteins Expansion/Rebuf reveals that chitin polymerisation and translocation are uncoupled in Drosophila. PloS Biol. 21, e3001978. doi: 10.1371/journal.pbio.3001978

PubMed Abstract | Crossref Full Text | Google Scholar

Ficarrotta V., Hanly J. J., Loh L. S., Francescutti C. M., Ren A., Tunström K., et al. (2022). A genetic switch for male UV iridescence in an incipient species pair of sulphur butterflies. Proc. Natl. Acad. Sci. U. S. A. 119, e2109255118. doi: 10.1073/pnas.2109255118

PubMed Abstract | Crossref Full Text | Google Scholar

Finet C. (2024). Developmental genetics of cuticular micro- and nano-structures in insects. Curr. Opin. Insect Sci. 65, 101254. doi: 10.1016/j.cois.2024.101254

PubMed Abstract | Crossref Full Text | Google Scholar

Finet C., Decaras A., Armisén D., Khila A. (2018). The achaete–scute complex contains a single gene that controls bristle development in the semi-aquatic bugs. Proc. R. Soc B Biol. Sci. 285, 20182387. doi: 10.1098/rspb.2018.2387

PubMed Abstract | Crossref Full Text | Google Scholar

Finet C., Decaras A., Rutkowska M., Roux P., Collaudin S., Joncour P., et al. (2022). Leg length and bristle density, both necessary for water surface locomotion, are genetically correlated in water striders. Proc. Natl. Acad. Sci. U. S. A. 119, e2119210119. doi: 10.1073/pnas.2119210119

PubMed Abstract | Crossref Full Text | Google Scholar

Finet C., Ruan Q., Bei Y. Y., You En Chan J., Saranathan V., Yang J. K. W., et al. (2023). Multi-scale dissection of wing transparency in the clearwing butterfly Phanus vitreus. J. R. Soc Interface 20, 20230135. doi: 10.1098/rsif.2023.0135

PubMed Abstract | Crossref Full Text | Google Scholar

Garcia-Elfring A., Sabin C. E., Iouchmanov A. L., Roffey H. L., Samudra S. P., Alcala A. J., et al. (2023). Piebaldism and chromatophore development in reptiles are linked to the tfec gene. Curr. Biol. 33, 755–763.e3. doi: 10.1016/j.cub.2023.01.004

PubMed Abstract | Crossref Full Text | Google Scholar

Ghimire A., Dahl R. B., Shen S. F., Chen P. Y. (2024). Shark skin denticles: from morphological diversity to multi-functional adaptations and applications. Adv. Funct. Mater. 34, 2307121. doi: 10.1002/adfm.202307121

Crossref Full Text | Google Scholar

Ghosh N., Treisman J. E. (2024). Apical cell expansion maintained by Dusky-like establishes a scaffold for corneal lens morphogenesis. Sci. Adv. 10, eado4167. doi: 10.1126/sciadv.ado4167

PubMed Abstract | Crossref Full Text | Google Scholar

Gow N. A. R., Lenardon M. D. (2023). Architecture of the dynamic fungal cell wall. Nat. Rev. Microbiol. 21, 248–259. doi: 10.1038/s41579-022-00796-9

PubMed Abstract | Crossref Full Text | Google Scholar

Hopkins B. R., Barmina O., Kopp A. (2023). A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PloS Biol. 21, e3002148. doi: 10.1371/journal.pbio.3002148

PubMed Abstract | Crossref Full Text | Google Scholar

Hsiung B. K., Shawkey M. D., Blackledge T. A. (2019). Color production mechanisms in spiders. J. Arachnol. 47, 165–180. doi: 10.1636/JoA-S-18-022

Crossref Full Text | Google Scholar

Ikeda K. N., Belevich I., Zelaya-Lainez L., Orel L., Fussl J., Gumulec J., et al. (2024). Dynamic microvilli sculpt bristles at nanometric scale. Nat. Commun. 15, 3733. doi: 10.1038/s41467-024-48044-3

PubMed Abstract | Crossref Full Text | Google Scholar

Inagaki S., Wada H., Itabashi T., Itakura Y., Nakagawa R., Chen L., et al. (2024). Endoplasmic reticulum patterns insect cuticle nanostructure. bioRxiv [Preprint]. doi: 10.1101/2024.08.20.608717

Crossref Full Text | Google Scholar

Itakura Y., Wada H., Inagaki S., Hayashi S. (2024). Mechanical control of the insect extracellular matrix nanostructure. bioRxiv [Preprint]. doi: 10.1101/2024.08.20.608778

Crossref Full Text | Google Scholar

Li W., Zhou R., Ouyang Y., Guan Q., Shen Y., Saiz E., et al. (2024). Harnessing biomimicry for controlled adhesion on material surfaces. Small 20, 2401859. doi: 10.1002/smll.202401859

PubMed Abstract | Crossref Full Text | Google Scholar

Liu J., Chen Z., Xiao Y., Asano T., Li S., Peng L., et al. (2021). Lepidopteran wing scales contain abundant cross-linked film-forming histidine-rich cuticular proteins. Commun. Biol. 4, 491. doi: 10.1038/s42003-021-01996-4

PubMed Abstract | Crossref Full Text | Google Scholar

Lloyd V. J., Burg S. L., Harizanova J., Garcia E., Hill O., Enciso-Romero J., et al. (2024). The actin cytoskeleton plays multiple roles in structural color formation in butterfly wing scales. Nat. Commun. 15, 4073. doi: 10.1038/s41467-024-48060-3

PubMed Abstract | Crossref Full Text | Google Scholar

Lloyd V. J., Nadeau N. J. (2021). The evolution of structural colour in butterflies. Curr. Opin. Genet. Dev. 69, 28–34. doi: 10.1016/j.gde.2021.01.004

PubMed Abstract | Crossref Full Text | Google Scholar

Loh L. S., DeMarr K. A., Tsimba M., Heryanto C., Berrio A., Patel N. H., et al. (2025). Lepidopteran scale cells derive from sensory organ precursors through a canonical lineage. Development 152, DEV204501. doi: 10.1242/dev.204501

PubMed Abstract | Crossref Full Text | Google Scholar

Lu W., Si M., Le X., Chen T. (2022). Mimicking color-changing organisms to enable the multicolors and multifunctions of smart fluorescent polymeric hydrogels. Acc. Chem. Res. 55, 2291–2303. doi: 10.1021/acs.accounts.2c00320

PubMed Abstract | Crossref Full Text | Google Scholar

Matsuoka Y., Monteiro A. (2018). Melanin pathway genes regulate color and morphology of butterfly wing scales. Cell Rep. 24, 56–65. doi: 10.1016/j.celrep.2018.05.092

PubMed Abstract | Crossref Full Text | Google Scholar

McPhedran R. C., Nicorovici N. A., McKenzie D. R., Botten L. C., Parker A. R., Rouse G. W. (2001). The sea mouse and the photonic crystal. Aust. J. Chem. 54, 241–244. doi: 10.1071/CH01054

Crossref Full Text | Google Scholar

Middleton R., Sinnott-Armstrong M., Ogawa Y., Jacucci G., Moyroud E., Rudall P. J., et al. (2020). Viburnum tinus fruits use lipids to produce metallic blue structural color. Curr. Biol. 30, 3804–3810.e2. doi: 10.1016/j.cub.2020.07.005

PubMed Abstract | Crossref Full Text | Google Scholar

Miserez A., Schneberk T., Sun C., Zok F. W., Waite J. H. (2008). The transition from stiff to compliant materials in squid beaks. Science 319, 1816–1819. doi: 10.1126/science.1154117

PubMed Abstract | Crossref Full Text | Google Scholar

Murata S., Rivera J., Noh M. Y., Hiyoshi N., Yang W., Parkinson D. Y., et al. (2022). Unveiling characteristic proteins for the structural development of beetle elytra. Acta Biomater. 140, 467–480. doi: 10.1016/j.actbio.2021.12.021

PubMed Abstract | Crossref Full Text | Google Scholar

Muthukrishnan S., Arakane Y., Noh M. Y., Mun S., Merzendorfer H., Boehringer C., et al. (2022). Chitin in insect cuticle. Adv. Insect Physiol. 62, 1–110. doi: 10.1016/bs.aiip.2022.03.001

Crossref Full Text | Google Scholar

Noh M. Y., Kramer K. J., Muthukrishnan S., Kanost M. R., Beeman R. W., Arakane Y. (2014). Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochem. Mol. Biol. 53, 22–29. doi: 10.1016/j.ibmb.2014.07.005

PubMed Abstract | Crossref Full Text | Google Scholar

Pasquina-Lemonche L., Burns J., Turner R. D., Kumar S., Tank R., Mullin N., et al. (2020). The architecture of the Gram-positive bacterial cell wall. Nature 582, 294–297. doi: 10.1038/s41586-020-2236-6

PubMed Abstract | Crossref Full Text | Google Scholar

Pesch Y. Y., Riedel D., Behr M. (2017). Drosophila Chitinase 2 is expressed in chitin producing organs for cuticle formation. Arthropod Struct. Dev. 46, 4–12. doi: 10.1016/j.asd.2016.11.002

PubMed Abstract | Crossref Full Text | Google Scholar

Prakash A., Dion E., Banerjee T. D., Monteiro A. (2024). The molecular basis of scale development highlighted by a single-cell atlas of Bicyclus anynana butterfly pupal forewings. Cell Rep. 43, 114147. doi: 10.1016/j.celrep.2024.114147

PubMed Abstract | Crossref Full Text | Google Scholar

Prakash A., Finet C., Banerjee T. D., Saranathan V., Monteiro A. (2022). Antennapedia and optix regulate metallic silver wing scale development and cell shape in Bicyclus anynana butterflies. Cell Rep. 40, 111052. doi: 10.1016/j.celrep.2022.111052

PubMed Abstract | Crossref Full Text | Google Scholar

Ru H., Finet C., Monteiro A. (2024). Calreticulin is required for cuticle deposition and trabeculae formation inside butterfly wing scale cells. bioRxiv [Preprint]. doi: 10.1101/2024.09.12.612608

Crossref Full Text | Google Scholar

Saranathan V., Finet C. (2021). Cellular and developmental basis of avian structural coloration. Curr. Opin. Genet. Dev. 69, 56–64. doi: 10.1016/j.gde.2021.02.004

PubMed Abstract | Crossref Full Text | Google Scholar

Seago A. E., Brady P., Vigneron J. P., Schultz T. D. (2009). Gold bugs and beyond: A review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc Interface 6, S165–S184. doi: 10.1098/rsif.2008.0354.focus

PubMed Abstract | Crossref Full Text | Google Scholar

Seale M., Cummins C., Viola I. M., Mastropaolo E., Nakayama N. (2018). Design principles of hair-like structures as biological machines. J. R. Soc Interface 15, 20180206. doi: 10.1098/rsif.2018.0206

PubMed Abstract | Crossref Full Text | Google Scholar

Sun J., Bhushan B. (2012). Hierarchical structure and mechanical properties of nacre: A review. RSC Adv. 2, 7617–7632. doi: 10.1039/c2ra20218b

Crossref Full Text | Google Scholar

Surapaneni V. A., Blumer M. J., Tadayon K., McIvor A. J., Redl S., Honis H. R., et al. (2024). Ribbontail stingray skin employs a core–shell photonic glass ultrastructure to make blue structural color. Adv. Opt. Mater. 12, 2301909. doi: 10.1002/adom.202301909

Crossref Full Text | Google Scholar

Sviben S., Spaeker O., Bennet M., Albéric M., Albéric M., Dirks J. H., et al. (2020). Epidermal cell surface structure and chitin-protein co-assembly determine fiber architecture in the locust cuticle. ACS Appl. Mater. Interfaces 12, 25581–25590. doi: 10.1021/acsami.0c04572

PubMed Abstract | Crossref Full Text | Google Scholar

Thayer R., Allen F., Patel N. H. (2020). Structural color in Junonia butterflies evolves by tuning scale lamina thickness. Elife 9, e52187. doi: 10.7554/eLife.52187

PubMed Abstract | Crossref Full Text | Google Scholar

Thayer R., Patel N. H. (2023). A meta-analysis of butterfly structural colors: their color range, distribution and biological production. J. Exp. Biol. 226, jeb245940. doi: 10.1242/jeb.245940

PubMed Abstract | Crossref Full Text | Google Scholar

Totz J. F., McDougal A. D., WAgner L., Kang S., So P. T. C., Dunkel J., et al. (2024). Cell membrane buckling governs early-stage ridge formation in butterfly wing scales. Cell Rep. Phys. Sci. 5, 102063. doi: 10.1016/j.xcrp.2024.102063

PubMed Abstract | Crossref Full Text | Google Scholar

Watson G. S., Watson J. A., Cribb B. W. (2017). Diversity of cuticular micro- and nanostructures on insects: properties, functions, and potential applications. Annu. Rev. Entomol. 62, 185–205. doi: 10.1146/annurev-ento-031616-035020

PubMed Abstract | Crossref Full Text | Google Scholar

Wilts B. D., Zubiri B. A., Klatt M. A., Butz B., Fischer M. G., Kelly S. T., et al. (2017). Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development. Sci. Adv. 3, e1603119. doi: 10.1126/sciadv.1603119

PubMed Abstract | Crossref Full Text | Google Scholar

Zhang W., Tian H., Liu T., Liu H., Zhao F., Li X., et al. (2023). Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation. Mater. Horizons 10, 2024–2034. doi: 10.1039/d3mh00070b

PubMed Abstract | Crossref Full Text | Google Scholar

Keywords: integument, micro- and nano-structures, morphogenesis, biomaterials, bioinspiration and biomimetics

Citation: Finet C and Prakash A (2025) Editorial: Biological and physical basis of the development of integument and associated structures. Front. Ecol. Evol. 13:1609597. doi: 10.3389/fevo.2025.1609597

Received: 10 April 2025; Accepted: 22 April 2025;
Published: 06 May 2025.

Edited and Reviewed by:

Maria Ina Arnone, Stazione Zoologica Anton Dohrn, Italy

Copyright © 2025 Finet and Prakash. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Cédric Finet, Y2VkcmljLmZpbmV0QGVucy1seW9uLm9yZw==; Anupama Prakash, YS5zYXJvamluaS1wcmFrYXNoQGltcGVyaWFsLmFjLnVr

Present address: Anupama Prakash, Department of Bioengineering, Imperial College, London, United Kingdom

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.