Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Introduction
Epilepsy is a disease known worldwide, affecting around 70 million people in the world (Thijs et al., 2019). It has been considered a disease and no longer a disorder or a family of disorders since 2014 by International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) (Falco-Walter et al., 2018). Epilepsy is conceptually defined as a disease in which an individual has at least two unprovoked or reflex seizures in a period greater than 24 h apart, one unprovoked or reflex seizure and a probability of having another seizure similar to the general recurrence risk after two unprovoked seizures (greater than or equal to 60%) over the next ten years or an epilepsy syndrome (Fisher et al., 2014).
When abnormal brain activity begins in one or more identified regions, epilepsy is called focal, whereas, when it occurs in both hemispheres with a wide distribution, it is called generalized. Finally, when it cannot be classified as either focal or generalized, it is called unknown (Devinsky et al., 2018).
Epilepsy can affect anyone, regardless of gender, age, and income levels (Saxena and Li, 2017). Understanding the etiology of epilepsy is crucial for clinical management of patients and for conducting neurobiological research that will direct future therapies (Thomas and Berkovic, 2014). The ILAE Task Force has defined six etiologic categories; they are not hierarchical and more than one might often apply (structural, genetic, infectious, metabolic, immune, and unknown) (Falco-Walter et al., 2018).
Among those genetically caused, it is possible to identify several epilepsy-related genes (Lindy et al., 2018). For example, voltage-gated potassium channel, voltage-gated calcium channel and voltage-gated chloride channel genes, GABA receptors, nicotinic acetylcholine receptors, polymerase (DNA) Gamma genes and voltage-gated sodium channel genes (Deng et al., 2014).
Voltage-gated sodium channels (NaV) can be found mainly in the central nervous system (CNS), peripheral nervous systems (PNS), skeletal, and cardiac muscles (Huang et al., 2017). NaVs are distributed throughout the body and play an important role in the generation and propagation of action potential (Wang et al., 2017b). Structurally, NaVs are composed by an α subunit organized in four homologous ligated domains (DI-DIV), each domain composed by six transmembrane segments (S1-S6), and one or more β subunits associated by non-covalent interactions or disulfide bond (Abdelsayed and Sokolov, 2013; Gilchrist et al., 2013; Catterall, 2017; Bouza and Isom, 2018; Jiang et al., 2020). The domains of an α subunit present a high degree of conservation with each other, presenting the region known as the voltage sensor domains (VSD) located in transmembranes S1-S4, especially S4 helix, which contains positively charged residues, and the pore-forming (PM) domain located in S5-S6 segments, structuring a four VSD around a central pore (Ahern et al., 2016).
The S4 helix of DI, DII, and DIII domains moves faster than the S4 helix of DIV during membrane depolarization, and this asynchronous movement is an essential feature in the steady activation voltage-dependent process, which provokes movement of S4-S5 intracellular links followed by the displacement of the S6 segments to initiate Na+ influx (Goldschen-Ohm et al., 2013; Oelstrom et al., 2014). The movement of the S4 helix of DIV initiates the process of fast inactivation, since the movement of the voltage sensor in domain DIV is associated with the displacement of an intracellular loop between DIII and DIV within an IFM (isoleucine, phenylalanine, and methionine) motif that binds intracellular to PM and terminate Na+ influx (Capes et al., 2013; Clairfeuille et al., 2019). A second type of reversible inactivation occurs after repetitive or prolonged stimulation and results in steady-state inactivation whose asymmetric movement of S6 segments collapses the pore (Payandeh et al., 2012; Zhang et al., 2012; Gamal El-Din et al., 2013; Silva and Goldstein, 2013; Ghovanloo et al., 2016). Consequently, electrophysiological changes such as increased current density, shifting steady-state activation, and inactivation to negative and positive values, respectively, enhanced persistent current, accelerated recovery from inactivation, and delayed fast inactivation can cause gain-of-function (GoF) in the channel. Also, decreased current density, positive shift in steady-state activation, negative shift in steady-state inactivation, and slower recovery from inactivation can cause loss-of-function (LoF) (Mantegazza et al., 2005; Liao et al., 2010; Lossin et al., 2012; Catterall, 2014b; Vanoye et al., 2014; Wagnon et al., 2017; Yang et al., 2018; Zaman et al., 2018; Wengert et al., 2019; Zhang S. et al., 2020).
Currently, there are nine different alpha subtypes of NaVs (NaV1.1-NaV1.9), and mutations in these channels can cause diseases known as channelopathies (Catterall et al., 2010). NaV1.1 (SCN1A), NaV1.2 (SCN2A), NaV1.3 (SCN3A), NaV1.6 (SCN8A) and NaV1.7 (SCN9A) are genes whose mutations are related to epilepsy. So far, there is no correlation of mutations in NaV1.4 (SCN4A), NaV1.5 (SCN5A), NaV1.8 (SCN10A), and NaV1.9 (SCN11A) with epilepsy, which is to be expected, since these channels are mainly expressed in skeletal muscles, cardiac tissues, dorsal root ganglia, trigeminal sensory neurons, nociceptive neurons of the dorsal root and trigeminal ganglia, respectively (Brunklaus et al., 2014). Both α and β subunits (SCN1B) have been reported as the cause of epilepsy phenotype (Meisler et al., 2010; Kaplan et al., 2016).
NaV channels rank amongst the 2% most conserved proteins in the human genome, with an extremely low rate of coding variation, accounting for nearly 5% of known epileptic encephalopathies (Petrovski et al., 2013; Mercimek-Mahmutoglu et al., 2015; Lek et al., 2016; Heyne et al., 2019). Pathogenic mutated residues are situated in the highly evolutionarily conserved portions of the channel: transmembrane segments, intracellular inactivation gate loop, and the proximal 2/3 of the C-terminal domain (Blanchard et al., 2015; Wagnon and Meisler, 2015). The final 1/3 portion of the C-terminal and cytoplasmic interdomain loops 1 and 2 are less conserved (Denis et al., 2019). The proximal 2/3 of the C-terminal are involved in the interaction of several binding sites for proteins and accessory molecules, like beta subunits β1 and β3, fibroblast growth factors (molecules implicated in neural development), calmodulin (regulatory protein in neuronal function and hyperexcitability) and G protein (Bähler and Rhoads, 2002; Spampanato, 2004; Wittmack et al., 2004; Laezza et al., 2009; Yang et al., 2010). Moreover, the C-terminal has been shown to interact with the inactivated channel via ionic interaction between its positively charged residues and negatively charged residues at the inactivation gate. A shift in any of the charges can brake electrostatic interaction and affect normal channel inactivation (Nguyen and Goldin, 2010; Shen et al., 2017; Johnson et al., 2018).
The N-terminal region seems to play a more important role on protein trafficking than on channel activity. This domain interacts with the light chain of microtubule-associated protein MAP1B, facilitating the traffic of the NaV channel to the neuronal cell surface (O’brien et al., 2012; Blanchard et al., 2015). In addition, mutation in the N-terminal leads to protein retention in the endoplasmic reticulum (Sharkey et al., 2009).
Newer genomic approaches, especially next generation sequencing (NGS), improve the rate and reduce the costs associated with genetic epilepsy diagnosis, since traditional cytogenetic and microarray-based tests are lengthy, expensive, and diagnostic yield is incredibly low (Veeramah et al., 2013; Allen et al., 2016; Sands and Choi, 2017; Orsini et al., 2018). The use of gene panels and whole-exome sequencing (WES) provides a powerful tool to change the paradigm of genetic epilepsy diagnosis (Ng et al., 2010; Clark et al., 2018). These techniques have been widely used to elucidate suspected inherited neurological diseases in the last years, contributing to dramatically increase the number of patients diagnosed with genetic epilepsy. Both mendelian and de novo genetic epilepsy can be detected with these methods, but doubtless, de novo mutations are the most prevalent mutations related to epilepsy-related voltage-gated sodium channel mutations.
Gene therapy is promising as an effective approach to treat genetic diseases. Personalized epilepsy therapies are in development and have shown promising results, ranging from antisense oligonucleotides and small peptides to modulation of gene expression through epigenetics (Riban et al., 2009; Tan et al., 2017; Stoke Therapeutics, 2018; Perucca and Perucca, 2019). Even eating habits may be related to an improvement in the patient's clinical condition. Ketogenic diet has been described as an effective treatment in epilepsy (Gardella et al., 2018). Moreover, the combination of traditional antiepileptic drugs with new compounds displayed a synergic and improved efficacy, since these molecules do not compete for the same interaction site (Bialer et al., 2018). Each specific epilepsy-related NaV isoform will be presented and discussed in detail in the following sections.
NaV Mutations
NaV1.1
The SCN1A gene encodes for the α subunit NaV1.1, and is allocated at the 2q24.3 chromosome between 165,984,641 and 166,149,161 base pairs, same gene cluster of SCN2A-SCN3A genes, being the most frequent target of mutation in genetic epilepsy syndromes (OMIM#182389) (Malo et al., 1991; Malo et al., 1994; Catterall et al., 2010). NaV1.1 is widely expressed in the CNS, predominant in inhibitory GABAergic interneurons, regulating neuronal excitability, and the reduction of its activity is one of the factors that cause epileptic diseases due to imbalance between inhibition and excitation (Yu et al., 2006; Verret et al., 2012; Tai et al., 2014; Rubinstein et al., 2015).
Epilepsy syndromes, such as generalized epilepsy with febrile seizures plus (GEFS+; Online Mendelian Inheritance in Man [OMIM] #604233), severe myoclonic epilepsy (SME) and SMEI, also known as Dravet syndrome (OMIM #607208), are associated with mutations in the SCN1A gene (Escayg and Goldin, 2010; Meng et al., 2015; Huang et al., 2017).
In the SCN1A mutation database (http://www.caae.org.cn/gzneurosci/scn1adatabase/data), among 1727 mutations described for the SCN1A gene, 1528 are related to epileptic diseases (Table 1 and for the full description of mutations in the SCN1A gene, see Supplementary Table S1). Among the epilepsy-related mutations, 945 are related to severe myoclonic epilepsy of infancy (SMEI), 263 are related to severe myoclonic epilepsy (SME), 151 are related to severe myoclonic epilepsy borderline (SMEB), 18 are related to partial epilepsy (PE), 31 are related to partial epilepsy and febrile seizures plus (PEFS +), 8 are related to generalized epilepsy (GE), and 55 are related to generalized epilepsy with febrile seizures plus (GEFS +).
Table 1
| Variant | Location | Mutation | Disease | Alteration on biophysical properties or/and Clinical report | Reference |
|---|---|---|---|---|---|
| Inherited mutation | |||||
| A27T | N-terminal | Missense | GEFS+SMEB | Diffuse spikes, prevailing in posterior regions (EEG) | (Nicita et al., 2010) |
| L61P | N-terminal | Missense | DS | Febrile seizures | (Halvorsen et al., 2016) |
| F63L | N-terminal | Missense | DS | Severe developmental delay Spike and Waves in right fronto-temporal region with spreading (EEG) |
(Nicita et al., 2010) |
| F90S | N-terminal | Missense | DS | Multifocal spikes, frontal-dominant spike-waves complex (EEG) | (Sun et al., 2008; Wang et al., 2012; Xu et al., 2014; Butler et al., 2017b) |
| S103G | N-terminal | Missense | SME DS |
Ataxia Rare-spike wave complex (EEG) |
(Fujiwara, 2003; Ebrahimi et al., 2010; Tonekaboni et al., 2013) |
| S106F | N-terminal | Missense | Focal epilepsy | Right temporal parietal occipital slow-wave and generalized spike-wave complex (EEG) | (Barba et al., 2014) |
| M145T | DI (S1) | Missense | Unidentified epilepsy | Decrease current density Shift steady-state inactivation to more positive values |
(Mantegazza et al., 2005; Colosimo et al., 2007) |
| L193F | DI (S3) | Missense | GEFS+ | Generalized tonic–clonic seizures | (Cui et al., 2011) |
| V244L | DI (S4-S5) | Missense | DS | Myoclonic seizures Generalized spikes or spike-and-wave complexes in the interictal (EEG) |
(Morimoto et al., 2006) |
| R377Q | DI (S5-S6) | Missense | GEFS+ | Generalized tonic-clonic seizures | (Zucca et al., 2008; Xu et al., 2015; Cetica et al., 2017; Lindy et al., 2018) |
| F412I | DI (S6) | Missense | SMEB GEFS+ |
Febrile seizure | (Ebrahimi et al., 2010; Tonekaboni et al., 2013) |
| K488EfsX6 | DI-DII | FrameShift | DS | NR | (Yang et al., 2017) |
| R542Q | DI-DII | Missense | GEFS+ SME |
NR | (Escayg et al., 2001; Weiss et al., 2003; Combi et al., 2009; Orrico et al., 2009; Wang et al., 2012; Lee et al., 2014; Lal et al., 2016) |
| R618C | DI-DII | Missense | PEFS+ | Generalized tonic-clonic seizures Multifocal epilepsy and bilateral bursts of 3-4 Hz spike and wave (EEG) |
(Brunklaus et al., 2015) |
| Y790C | DII (S1-S2) | Missense | GEFS+ | Decreased current density Decreased of cell surface expression |
(Annesi et al., 2003; Orrico et al., 2009; Bechi et al., 2015; Bennett et al., 2017) |
| R859H | DII (S4) | Missense | GEFS+ | Shift steady state activation and inactivation to more negative values Enhanced Persistent current |
(Volkers et al., 2011; Myers et al., 2017a; Lindy et al., 2018) |
| S1084C | DII-DIII | Missense | Juvenile myoclonic epilepsy DS |
Paroxysmal generalised polyspike-and- wave complexes with myoclonic seizures (EEG) | (Jingami et al., 2014) |
| T1174S | DII-DIII | Missense | FHM FS |
Shift steady state activation to more positive values Deceleration of recovery from fast inactivation Increase of persistent current |
(Escayg et al., 2001; Gargus and Tournay, 2007; Yordanova et al., 2011; Rilstone et al., 2012; Cestèle et al., 2013; Lal et al., 2016) |
| V1353L | DIII (S5) | Missense | PEFS+ GEFS+ |
Non-functional channel | (Wallace et al., 2001; Lossin et al., 2003; Bennett et al., 2017) |
| A1429S | DIII (S5-S6) |
Missense | Autossomal dominant nocturnal frontal lobe epilepsy | No definitive epileptic spikes (EEG) | (Sone et al., 2012) |
| R1596H | DIV (S2-S3) |
Missense | GEFS+ | Generalized spike-wave complexes (EEG) Normal imaging (MRI) |
(Hoffman-Zacharska et al., 2015) |
| I1656M | DIV (S4) | Missense | GEFS+ | Shift steady state activation to more positive values | (Lossin et al., 2003) |
| G1674S | DIV (S5) | Missense | FS+ | Febrile seizure Hemiconvulsion |
(Saitoh et al., 2015a) |
| De novo mutation | |||||
| Q3X | N-terminal | Nonsense | DS | Generalized tonic clonic seizures | (Claes et al., 2003; Lim et al., 2011) |
| G58X | N-terminal | Nonsense | DS Focal Epilepsy |
Autistic characteristics; Hyperactivity Periventricular nodular heterotopia (MRI) |
(Barba et al., 2014) |
| Y65X | N-terminal | Nonsense | DS | Generalized tonic-clonic seizures | (Zucca et al., 2008) |
| E75D | N-terminal | Missense | DS | Slow-spike-wave complexes (EEG) | (Arafat et al., 2017) |
| L80_D81del | N-terminal | Inframe deletion | DS | Pharmacoresistant | (Usluer et al., 2016) |
| D81N | N-terminal | Missense | DS | Severe Motor and mental delay Multi-focal spike-waves (EEG) |
(Usluer et al., 2016) |
| I91T | N-terminal | Missense | DS | Frontal-dominant spike-waves complex (EEG) | (Sun et al., 2008; Xu et al., 2014) |
| G96EfsX24 | N-terminal | FrameShift | NR | Genetic generalized epilepsy with intellectual disability | (Fry et al., 2016) |
| R101Q | N-terminal | Missense | DS SMEB GEFS+ PEFS+ |
Psychomotor retardation | (Fukuma et al., 2004; Harkin et al., 2007; Marini et al., 2007; Depienne et al., 2008; Sun et al., 2010; Zuberi et al., 2011; Wang et al., 2012; Tonekaboni et al., 2013; Lee et al., 2014; Djémié et al., 2016) |
| A104V | N-terminal | Missense | DS | Epileptic discharges, slow spike and weave; sharp wave, sharp and slow wave complex (EEG) | (Kwong et al., 2012; Myers et al., 2017a) |
| R118S | N-terminal | Missense | DS | Generalized tonic-clonic seizures Severe mental retardation |
(Zucca et al., 2008) |
| F144YfsX5 | DI (S1) | Frameshift | SME DS |
Moderate psychomotor retardation | (Fukuma et al., 2004; Zuberi et al., 2011; Wang et al., 2012; Villeneuve et al., 2014) |
| M145DfsX4 | DI (S1) | Frameshift | PEFS+ | Generalized tonic-clonic seizures without any provoked factors | (Yu et al., 2010) |
| G177E | DI (S2-S3) | Missense | SME DS |
Non-functional channel | (Nabbout et al., 2003; Ohmori et al., 2006; Usluer et al., 2016) |
| L180X | DI (S2-S3) | Nonsense | DS | Focal spike wave (EEG) | (Liu et al., 2018) |
| W190X | DI (S3) | Nonsense | DS | Febrile, partial, generalized tonic-clonic and myo-clonic seizures Severe intellectual disability |
(Marini et al., 2007; Kwong et al., 2012) |
| S213W | DI (S3-S4) | Missense | Epilepsy | Febrile and afebrile seizures Developmental delay |
(Butler et al., 2017a) |
| R219SfsX57 | DI (S4) | FrameShift | DS | Generalized tonic-clonic seizures | (Claes et al., 2001) |
| R222X | DI (S4) | Nonsense | DS SMEB |
No measurable current | (Claes et al., 2001; Nabbout et al., 2003; Fukuma et al., 2004; Harkin et al., 2007; Depienne et al., 2008; Orrico et al., 2009; Zuberi et al., 2011; Wang et al., 2012; Xu et al., 2014; Esterhuizen et al., 2018) |
| I227S | DI (S4) | Missense | SME SMEB |
Epileptiform discharges on both sides and spikes/polyspikes during photic stimulation (EEG) Low current density (no detectable) |
(Nabbout et al., 2003; Ohmori et al., 2006; Depienne et al., 2008; Mak et al., 2011; Wang et al., 2012; Lindy et al., 2018) |
| A239V | DI (S4-S5) | Missense | SME DS |
Focal right fronto-temporal spikes with spreading (EEG) Severe developmental delay |
(Iannetti et al., 2009; Nicita et al., 2010; Xu et al., 2014) |
| W280R | DI (S5-S6) | Missense | DS | Febrile seizures Status epilepticus Myoclonic Multifocal discharges (EEG) |
(Nabbout et al., 2003; Wang et al., 2012; Liu et al., 2018) |
| P281L | DI (S5-S6) | Missense | DS | Moderate mental retardation | (Depienne et al., 2008; Gokben et al., 2017; Lindy et al., 2018) |
| E311X | DI (S5-S6) | Nonsense | DS | Haploinsufficiency | (Orrico et al., 2009) |
| G329A | DI (S5-S6) | Missense | GEFS+ | Generalized tonic–clonic seizures | (Myers et al., 2017a) |
| G343E | DI (S5-S6) | Missense | SMEB SME DS |
Spike-wave complex, Multifocal spikes (EEG) |
(Fujiwara, 2003; Depienne et al., 2008; Zuberi et al., 2011) |
| D366E | DI (S5-S6) | Missense | DS | Generalized tonic-clonic seizures | (Zucca et al., 2008) |
| W384R | DI (S5-S6) | Missense | DS SMEB SME |
Generalized tonic-clonic seizures Partial seizures |
(Zuberi et al., 2011; Wang et al., 2012; Verbeek et al., 2013) |
| T391P | DI (S5-S6) | Missense | DS | Generalized tonic-conic seizures Partial Seizures |
(Reyes et al., 2011) |
| R393H | DI (S5-S6) | Missense | DS SMEB |
Generalized tonic-clonic seizures Myoclonus, Febrile seizures Developmental delay |
(Claes et al., 2003; Marini et al., 2007; Sun et al., 2010; Zuberi et al., 2011; Lemke et al., 2012; Rilstone et al., 2012; Wang et al., 2012; Xu et al., 2014; Djémié et al., 2016; Haginoya et al., 2018) |
| V422L | DI (S6) | Missense | EE | Psychomotor developmental delay Theta activities with right predominance (EEG) |
(Ohashi et al., 2014) |
| Y426N | DI-DII | Missense | DS | Decreased current density shift stead-state inactivation to more negative values Delayed recovery from inactivation |
(Nabbout et al., 2003; Ohmori et al., 2006; Allen et al., 2016) |
| L433fsX16 | DI-DII | FrameShift | Myoclonic astatic epilepsy | Generalized tonic-clonic seizures | (Ebach et al., 2005) |
| E435X | DI-DII | Nonsense | DS | Myoclonic seizures Atypical absence |
(Fukuma et al., 2004; Wang et al., 2012) |
| Q554H | DI-DII | Missense | DS | Generalized tonic-clonic seizure Atonic and myoclonic seizures |
(Skjei et al., 2015) |
| S662X | DI-DII | Nonsense | PEFS+ | Generalized tonic-clonic seizures | (Yu et al., 2010) |
| W738X | DI-DII | Nonsense | SME | Febrile seizures Generalized tonic-clonic Severe intellectual disability |
(Kwong et al., 2012; Xu et al., 2014) |
| T808S | DII (S2) | Missense | ICEGTC | Rare sharp waves in left temporal (EEG) Increase current density Delay recovery from inactivation |
(Fujiwara, 2003; Rhodes et al., 2005) |
| S843X | DII (S3) | Nonsense | DS | Focal spike activity (EEG) |
(Buoni et al., 2006) |
| R862G | DII (S4) | Missense | MMPSI | Multifocal epilepsy Hemiclonic Cardiac arrest Severe intellectual disability |
(Carranza Rojo et al., 2011; Barba et al., 2014) |
| T932X | DII (S5-S6) | Nonsense | SME DS |
Generalized tonic-clonic seizures Severe mental retardation |
(Claes et al., 2003; Dhamija et al., 2014) |
| M934I | DII (S5-S6) | Missense | DS | Moderate psychomotor retardation | (Fukuma et al., 2004; Depienne et al., 2008; Wang et al., 2012) |
| H939Q | DII (S5-S6) | Missense | DS | Status epilepticus Generalized tonic-clonic seizures Complex partial seizures No measurable current |
(Claes et al., 2003; Ohmori et al., 2006) |
| R946C | DII (S5-S6) | Missense | SME DS SMEB |
Non- functional Channel | (Fukuma et al., 2004; Volkers et al., 2011; Zuberi et al., 2011; Wang et al., 2012; Lee et al., 2014; Xu et al., 2014; Lindy et al., 2018) |
| R946S | DII (S5-S6) | Missense | Severe idiopathic generalized epilepsy of infancy | Short generalized tonic-clonic seizures at night Seizure onset left temporo-parietal (EEG) Seizure onset left frontal Seizure onset right frontocentral, |
(Ebach et al., 2005; Tiefes et al., 2019) |
| R946H | DII (S5-S6) | Missense | PEFS+ SMEB DS |
Non-functional Channel | (Fukuma et al., 2004; Harkin et al., 2007; Depienne et al., 2008; Liao et al., 2010a; Verbeek et al., 2011; Volkers et al., 2011; Zuberi et al., 2011; Wang et al., 2012; Verbeek et al., 2013) |
| C959R | DII (S5-S6) | Missense | DS | Post trauma epilepsy Lateralized tonic-clonic seizures Severe mental retardation Non-functional Channel |
(Claes et al., 2003; Ohmori et al., 2006) |
| V971L | DII (S6) | Missense | DS | Generalized and unilateral tonic-clonic seizures Myoclonic seizures Apneic spells |
(Poryo et al., 2017) |
| V982L | DII (S6) | Missense | SMEB | Focal epilepsy | (Singh et al., 2009; Saitoh et al., 2012; Saitoh et al., 2015a; Saitoh et al., 2015b) |
| V983A | DII (S6) | Missense | ICEGTC | Multifocal spikes, high voltage slow-waves (EEG) Reduced current density Shift steady-state inactivation to more positive values Accelerated recovery from inactivation |
(Fujiwara, 2003; Rhodes et al., 2005) |
| V983AfsX2 | DII (S6) | FrameShift | DS | Enlarged extracerebral gap (MRI) | (Wang et al., 2017b) |
| L986F | DII (S6) | Missense | DS | Generalized tonic-clonic seizures Non-functional channel |
(Claes et al., 2001; Lossin et al., 2003) |
| L991VfsX2 | DII (S6) | FrameShift | DS | Febrile, partial, generalized tonic-clonic, myo-clonic seizures Moderate intellectual disability. |
(Kwong et al., 2012) |
| N1011I | DII-DIII | Missense | ICEGTC | Rare sharp waves in lateral-temporal (EEG) Reduced current density Shift steady state inactivation to more negative values |
(Fujiwara, 2003; Rhodes et al., 2005) |
| D1046MfsX9 | DII-DIII | FrameShift | DS | Diffuse cerebral edema (Computed tomography) | (Myers et al., 2017b) |
| S1100KfsX8 | DII-DIII | FrameShift | DS | Generalized clonic seizures Severe mental retardation |
(Claes et al., 2001) |
| S1104X | DII-DIII | Missense | DS | Febrile seizures | (Depienne et al., 2008; Hernández Chávez et al., 2014) |
| E1153X | DII-DIII | Nonsense | DS | Focal epilepsy with frontal-lateral activity (EEG) | (Hernández Chávez et al., 2014) |
| E1176NfsX32 | DII-DIII | FrameShift | DS | Severe intellectual disability Intractable seizures despite multiple anti-epileptic drugs |
(Willemsen et al., 2012) |
| R1213X | DII-DIII | Nonsense | SME DS LGS |
Rare spikes, multifocal spikes and spike-wave complex (EEG) Severe mental delay |
(Fujiwara, 2003; Depienne et al., 2008; Zuberi et al., 2011; Wang et al., 2012; Allen et al., 2013; Xu et al., 2014; Lindy et al., 2018) |
| L1230P | DIII (S1) | Missense | DS | Focal spike-wave complex (EEG) Febrile seizures Myoclonic seizures |
(Liu et al., 2018) |
| F1263L | DIII (S2) | Missense | SMEB | Rare spike-wave complex and poly spike-waves complex (EEG) | (Fujiwara, 2003) |
| R1636Q | DIV (S4) | Missense | DS LGS |
Epileptic encephalopathy Myoclonic seizures |
(Harkin et al., 2007; Butler et al., 2017b) |
| V1637E | DIV (S4) | Missense | DS | Episodes of status epilepticus triggered by fever |
(Nishri et al., 2010; Zuberi et al., 2011) |
| F1671fsX8 | DIV (S4-S5) |
FrameShift | DS | Generalized tonic-clonic seizures Severe mental retardation |
(Claes et al., 2001; Sugawara et al., 2002; Depienne et al., 2008; Riva et al., 2009) |
| A1685D | DIV (S5) | Missense | DS | Spike-wave complex (EEG) Non-functional channel |
(Fujiwara, 2003) (Sugiura et al., 2012) |
| Y1694C | DIV (S5) | Missense | DS | Myoclonic seizures Atypical absence Severe psychomotor retardation |
(Fukuma et al., 2004; Wang et al., 2012; Cetica et al., 2017) |
| L1717P | DIV (S5-S6) |
Missense | SME | Generalized tonic clonic seizure | (Verbeek et al., 2013) |
| T1722A | DIV (S5-S6) |
Missense | DS | Myoclonic, hemiclonic, focal seizures | (Wu et al., 2015) |
| C1741S | DIV (S5-S6) |
Missense | TLE-MTS | Febrile status epilepticus | (Tiefes et al., 2019) |
| G1754R | DIV (S5-S6) |
Missense | DS | Focal seizures Hemiconvulsions |
(Petrelli et al., 2012) |
| S1768R | DIV (S6) | Missense | DS | Absences and tonic-clonic seizures | (Willemsen et al., 2012) |
| E1881X | C-terminal | Nonsense | DS SMEB |
Febrile and generalized seizures | (Villeneuve et al., 2014) |
| Non genetic origin mutations reported* | |||||
| G177DfsX4 | DI (S2-S3) | FrameShift | DS | Generalized tonic-clonic seizures | (Fujiwara, 2003) |
| V207G | DI (S3) | Missense | EE | Early-onset multifocal seizures | (Daoud et al., 2016) |
| D249E | DI (S4-S5) | Missense | DS | Generalized tonic seizures Absences; Mental retardation |
(Le Gal et al., 2014) |
| N275K | DI (S5) | Missense | PEFS+ | Hippocampal volume loss (MRI) | (Kim et al., 2014) |
| T363R | DI (S5-S6) | Missense | DS | Generalized tonic-clonic seizures | (Zuberi et al., 2011; Le Gal et al., 2014) |
| N416I | DI (S6) | Missense | DS | Focal spike-wave (EEG) | (Zhou et al., 2018) |
| S1631C | DIV (S3-S4) |
Missense | DS | Multifocal spikes (EEG) | (Haginoya et al., 2018) |
SCN1A-related epilepsies identified in clinical patients through WES and/or NGS.
*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Generalized epilepsy with febrile seizures plus (GEFS+); Febrile seizures (FS); Febrile seizures plus (FS+); Lennox-Gastaut syndrome (LGS); Dravet syndrome (DS); Borderline severe myoclonic epilepsy (SMEB); Severe myoclonic epilepsy (SME); Familial hemiplegic migraine (FHM); Partial epilepsy with antecedent FS (PEFS+); Intractable childhood epilepsy with generalized tonic–clonic seizures (ICEGTC); Intractable childhood epilepsy with generalized tonic-clonic seizures (ICE-GTC); Epileptic encephalopathy (EE); Malignant migrating partial seizures of infancy (MMPSI); Temporal lobe epilepsy (TLE); Mesial temporal sclerosis (MTS); Not Reported (NR); Domain (D); Segment (S); Electroencephalography (EEG); Magnetic resonance imaging (MRI).
Mutations in the NaV1.1 channel are described in almost all regions of the protein and may cause GoF or LoF (Goldin and Escayg, 2010; Meng et al., 2015). Among the 52 mutations in SCN1A related to epilepsy with functional studies, 35 mutations (67.30%) exclusively display characteristics of LoF, 6 mutations (11.53%) display characteristics unique to GoF, and 11 mutations (21,15%) display characteristics of GoF+LoF, whereas, in GoF+LoF mutations, the main characteristic that gives GoF features is enhanced persistent current, present in 10 out of the 11 GoF+LoF mutations listed (Tables 1 and S1).
Due to the role of the NaV1.1 channels in the regulation of electrical excitability by the inhibitory interneurons, prescription of AEDs non-selective sodium channel blockers (SCB) for SMEI or GEFS + syndromes is contraindicated, for it may aggravate crises due to the enhanced suppress status of the NaV1.1 channels (Catterall, 2014a; Shi et al., 2016; Knupp and Wirrell, 2018; Ziobro et al., 2018). The first-line drug-based therapy for SCN1A epilepsy diseases is the enhancement of postsynaptic GABAergic transmission with allosteric activation of GABAA receptors as target by Clobazam and/or an increase in GABA concentration in synaptic cleft resulting from increased GABA production and decreased GABA degradation as target by Valproic acid (Catterall, 2014a; Hammer et al., 2016; Knupp and Wirrell, 2018; Musto et al., 2020). Antisense nucleotides (ASO) therapy to increase mRNA of SCN1A for NaV1.1 channel expression in normal levels is a promising strategy for genetic disorders involving haploinsufficiency (Hsiao et al., 2016; Stoke Therapeutics, 2018). Drug-resistant Dravet syndrome cases may thrive on alternative therapeutic strategies based on ketogenic diets (Nabbout et al., 2011; Wu et al., 2018). A recent study with 20 patients with medically intractable Dravet syndrome caused by missense, non-sense, insertion, deletions and splicing mutations presents efficacy during three months of treatment in 17 patients, decreasing seizure frequency in more than 50% (Yan et al., 2018). Besisdes that, Epidiolex is an FDA approved CBD-based drug approved in June 2018 for the treatment of severe forms of epilepsy, as Dravet and Lennox-Gastaut syndromes (U.S. Food and Drug Administration [website]., 2018). Clinical trials using CBD in DS and LGS shown reduced frequency of seizures in monthly average (Lattanzi et al., 2020; Morano et al., 2020). Voltage-gated sodium channel are inhibit by CBD in low micromolar concentrations, IC50 between 1.9 and 3.8 μM, NaV1.4 and NaV1.1 being the most sensitive channels to CBD, 1.9 and 2.0 μM respectively, probably the mechanism of action is reducing channel availability due shift to more hyperpolarized potential in steady-state inactivation (Ghovanloo et al., 2019).
NaV1.2
NaV1.2 is encoded by the SCN2A gene (Wolff et al., 2017). It is located on chromosome 2q24.3 (Shi et al., 2009) and expressed in the CNS (Catterall, 2014a), especially in excitatory neurons (Syrbe et al., 2016) and glutamatergic neurons (Sanders et al., 2018), unlike the NaV1.1 channel, which is highly expressed in the GABAergic interneurons (Catterall, 2014a).
More than 100 mutations have already been described for this gene, with approximately 300 patients studied yet (Reynolds et al., 2020) (Table 2). The most common diseases related with SCN2A mutation are West syndrome (WS; OMIM #308350), epilepsy of infancy with migrating focal seizures (EIMFS; OMIM #616645), and benign familial neonatal-infantile seizures (BFNIS; OMIM #607745) (Perucca and Perucca, 2019). Although epilepsy-related mutations are present throughout the channel, several hotspots such as the ion selectivity filter, the voltage-sensing domain, the intracellular N-terminal, and the C-terminal domain can be highlighted (Sanders et al., 2018).
Table 2
| Variant | Location | Mutation | Disease | Alteration on biophysical properties or/and Clinical report | Reference |
|---|---|---|---|---|---|
| Inherited mutation | |||||
| R19K | N-terminal | Missense | FS+ | Febrile seizures Partial seizure with eye deviation |
(Ito et al., 2004) |
| R36G | N-terminal | Missense | BFIS | Focal seizures Clonic seizures |
(Wolff et al., 2017) |
| I172V | DI (S2) | Missense | FS | Fever-induced seizure susceptibility | (Saitoh et al., 2015a) |
| R188W | DI | Missense | FS+ | Generalized tonic or tonic clonic seizures Partial seizures |
(Ito et al., 2004) |
| A202V | DI | Missense | BFNS | Focal seizures Generalized tonic-clonic seizures |
(Wolff et al., 2017) |
| V208E | DI | Missense | BFIS | NR | (Lemke et al., 2012) |
| R223Q | DI (S4) | Missense | BFNIS | Positive shifts of both activation and inactivation curves | (Berkovic et al., 2004; Scalmani et al., 2006; Zara et al., 2013) |
| D322N | DI (S5-S6) |
Missense | DS | NR | (Shi et al., 2009) |
| F328V | DI (S5-S6) |
Missense |
SMEB |
Status epilepticus Focal seizures Lesions in the right parietal, temporal and occipital lobes (MRI) |
(Shi et al., 2009; Saitoh et al., 2015a) |
| Q383E | DI | Missense | BFNIS | Seizures in early infancy | (Syrbe et al., 2016) |
| E430Q | DI-DII | Missense | BFNIS | Focal spikes and bifrontal slow wave activity (EEG) | (Herlenius et al., 2007) |
| A467T | DI-DII | Missense | GEFS+ | Loss of consciousness Clonic movements of all extremities High body temperature up to 40 ° Celsius |
(Liu et al., 2018) |
| R524Q | DI-DII | Missense | FS | Febrile seizures | (Ito et al., 2004) |
| V892I | DII (S5) | Missense | BFNIS | NR | (Berkovic et al., 2004) |
| N1001K | DII-DIII | Missense | BFIS | Afebrile seizures Tonic body extension Right parietal–occipital sharp waves (EEG) |
(Striano et al., 2006) |
| L1003I | DII-DIII | Missense | BFNIS | Generalized tonic-clonic seizures | (Berkovic et al., 2004) |
| R1319Q | DIII (S4) | Missense |
BFNIS |
Shift steady state activation and inactivation to more positive values | (Berkovic et al., 2004; Scalmani et al., 2006; Misra et al., 2008; Zara et al., 2013) |
| E1321K | DIII | Missense | BFNS | NR | (Grinton et al., 2015) |
| L1330F |
DIII (S4–S5) |
Missense | BFNIS | Shift steady state inactivation to more positive values | (Heron et al., 2002; Scalmani et al., 2006; Misra et al., 2008) |
| L1563V |
DIV |
Missense | BFNIS | Increase in neuronal excitability Accelerated recovery from fast inactivation |
(Heron et al., 2002; Scalmani et al., 2006; Xu et al., 2007; Misra et al., 2008; Berecki et al., 2018) |
| Y1589C | DIV (S2-S3) |
Missense | BFNIS | Increased persistent Na+ current Delayed fast inactivation Acceleration of recovery |
(Lauxmann et al., 2013) |
| I1596S | DIV (S3) | Missense | BFNIS | Central and posterior focal spikes (EEG) | (Herlenius et al., 2007) |
| K1641N | DIV | Missense | BFIS | Focal seizures with secondary generalization | (Zara et al., 2013) |
| De novo mutation | |||||
|
R102X
(Mutation expressed with wild type channel) |
N-terminal | Nonsense | EE | Shift steady state inactivation to more negative values Decrease of available channel |
(Kamiya, 2004; Ogiwara et al., 2009) |
| N132K | DI | Missense | EOEE | Tonic-clonic seizures | (Matalon et al., 2014) |
| M136I | DI | Missense | EIMFS | Focal seizures Spasms |
(Carvill et al., 2013; Howell et al., 2015) |
| E169G | DI (S2) | Missense | EOEE | Multifocal spikes (EEG) Febrile seizure Myoclonic seizure Focal seizure |
(Nakamura et al., 2013) |
| W191C | DI | Missense | EIMFS | Frequent multifocal spikes (EEG) | (Su et al., 2018) |
| F207S | DI | Missense | BNS | Tonic-clonic seizures Clonic seizures |
(Wolff et al., 2017) |
| G211D | DI | Missense | WS | NR | (Kodera et al., 2013) |
| N212D |
DI (S3-S4) |
Missense | OS and WS | Eyelid myoclonic Spasms Hypsarrhythmia |
(Nakamura et al., 2013) |
| R220G | DI | Missense | EE | Generalized tonic-clonic seizures Generalized spike and slow wave (EEG) |
(Mercimek-Mahmutoglu et al., 2015) |
| T227I | DI | Missense | WS | Tonic seizures Apneic seizures Spasms |
(Wolff et al., 2017) |
| T236S | DI (S4-S5) | Missense | OS | Focal seizure | (Nakamura et al., 2013) |
| A240S | DI | Missense | EIMFS | Focal seizures | (Howell et al., 2015) |
| M252V | DI (S5) | Missense | BFNIS | Increased persistent current Accelerated of recovery from fast inactivation Accelerated of recovery from slow inactivation |
(Liao et al., 2010b) |
| V261M | DI (S5) | Missense | BFNIS | Enhanced persistent current Faster recovery from inactivation |
(Liao et al., 2010b) |
| A263T | DI (S5) | Missense | EOEE | Multifocal spikes (EEG) | (Nakamura et al., 2013) |
| V423L |
DI (S6) |
Missense |
OS |
Change in slope of steady-state activation curve Enhanced persistent current |
(Wolff et al., 2017) |
| E430G | DI-DII | Missense | OS | Generalized tonic-clonic seizures | (Matalon et al., 2014) |
| E717G.fs*30 | DI-DII | Splice site | EE Cerebral and cerebellar atrophy |
High amplitude sharp waves (EEG) | (Horvath et al., 2016) |
| G828V | DII | Missense |
BNS |
Focal seizures Clonic seizures Autonomic seizures Tonic-clonic seizures Multifocal spikes (EEG) |
(Wolff et al., 2017) |
| R853Q | DII (S4) | Missense | WS | Reduced transient current amplitude and densityShift steady state inactivation to more negative values Decreased persistent current |
(Samanta and Ramakrishnaiah, 2015; Wolff et al., 2017; Berecki et al., 2018; Mason et al., 2019) |
| R856L | DII | Missense (During embryogenesis) |
EIMFS | Focal seizures | (Howell et al., 2015) |
| R856Q | DII | Missense | OS | Tonic seizures | (Wolff et al., 2017) |
| S863F | DII | Missense | BNS and Focal epilepsy | Generalized tonic-clonic seizures | (Wolff et al., 2017) |
| I873M | DII | Missense | EIEE | Abnormal electroretinogram | (Trump et al., 2016) |
| N876T | DII (S4-S5) |
Missense | OS and WS | Spasms Focal seizure |
(Nakamura et al., 2013) |
|
L881P |
DII | Missense | WS and LGS | Tonic seizures Tonic-clonic seizures Atypical absences |
(Wolff et al., 2017) |
| G882R | DII | Missense | EIMFS | Unilateral tonic-clonic | (Wolff et al., 2017) |
|
G882E |
DII | Missense | EIMFS | Focal seizures Autonomic seizures Hemiclonic seizures Myoclonic seizures Clonic seizures |
(Wolff et al., 2017) |
| V887A | DII | Missense | OS | Spasms | (Wolff et al., 2017) |
| G899S |
DII (S5) |
Missense | Intractable infantile Childhood epilepsy |
Tonic-clonic seizures and absences Shift steady-state activation to more positive values Increased slop factor |
(Wolff et al., 2017) |
| K905N | DII | Missense | EIMFS | Focal seizures | (Carvill et al., 2013; Howell et al., 2015) |
| F928C | DII | Missense | EIMFS | Focal seizures | (Carvill et al., 2013; Howell et al., 2015) |
| H930Q | DII | Missense |
MAE |
Tonic-clonic seizures Atonic seizures Myoclonic-atonic seizures Tonic seizures Atypical absences |
(Wolff et al., 2017) |
| N976K | DII | Missense | EE | Focal seizures | (Howell et al., 2015) |
| S987I | DII | Missense | EIEE | Focal and tonic seizures | (Trump et al., 2016) |
| G999L | DII-DIII | Missense | Infantile epilepsy | Diffuse slowing with high-amplitude bursts of activity (EEG) Generalized seizures with burst suppression |
(Foster et al., 2017) |
| E999K | DII-DIII | Missense | EIEE | NR | (Trump et al., 2016) |
| E999V | DII-DIII | Missense | EIEE OS |
NR | (Allen et al., 2016; Trump et al., 2016) |
| I1021Y.fs*16 | DII-DIII | Frameshift | LGS | NR | (Carvill et al., 2013) |
| E1211K |
DIII (S1) |
Missense | WS | Shift steady-state activation and inactivation to more negative values Slower recovery from inactivation |
(Ogiwara et al., 2009; Wong et al., 2015) |
| K1260E and K1260Q (Mosaic) | DIII | Missense | EIEE | NR | (Trump et al., 2016) |
| R1312T |
DIII (S4) |
Missense | DS | Reduced current density Shift steady-state activation and inactivation to more negative values Enhanced closed-state inactivation Slowed recovery from inactivation |
(Shi et al., 2009; Lossin et al., 2012) |
| M1323V |
DIII (S4-S5) |
Missense | OS and WS | Multifocal spikes (EEG) | (Nakamura et al., 2013) |
| V1326D | DIII | Missense | EIMFS | Focal seizures | (Dhamija et al., 2013) |
| S1336Y | DIII (S4-S5) |
Missense | OS and WS | Modified hypsarrhythmia | (Nakamura et al., 2013) |
| M1338T | DIII (S4-S5) |
Missense | OS | Spasms Focal seizure Multifocal spikes (EEG) |
(Nakamura et al., 2013) |
| L1342P | DIII | Missense | IOEE | Progressive brain atrophy Short tonic seizures Multifocal sharp wave activity (EEG) |
(Hackenberg et al., 2014) |
| I1473M | DIII (S6) | Missense | SNEE | Shift steady-state inactivation to more negative values | (Ogiwara et al., 2009) |
| Q1479P | DIII | Missense | EIEE | NR | (Trump et al., 2016) |
| V1528Cfs*7 | DIII-DIV | Frameshift | LGS | Tonic-clonic seizures Tonic seizures Status epilepticus |
(Wolff et al., 2017) |
| Q1531K | DIII-DIV | Missense | BNS | Clonic seizures Generalized tonic-clonic seizures |
(Wolff et al., 2017) |
| I1537S and M1538I | DIV | Missense | OS and WS | Clonic seizures Frequent seizure activity (EEG) |
(Foster et al., 2017) |
| M1548V | DIV | Missense |
OS and WS |
Generalized tonic-clonic seizures | (Wolff et al., 2017) |
| G1593R | DIV | Missense | EIMFS | Focal seizures | (Howell et al., 2015) |
| F1597L |
DIV (S3) |
Missense | EIMFS | Shift steady-state activation to more negative values accelerated recovery from fast inactivation |
(Wolff et al., 2017) |
| D1598G | DIV (S3) | Missense |
SME |
Severe intellectual disability Developmental delay Seizures/ infantile spasms |
(Need et al., 2012) |
| P1622S | DIV (S3-S4) |
Missense |
MAE |
Shift steady-state inactivation to more negative values | (Wolff et al., 2017) |
| T1623N | DIV (S3-S4) |
Missense | OS and WS | Multifocal spikes (EEG) Spasms Hypsarrhythmia |
(Nakamura et al., 2013) |
| V1627M | DIV | Missense | EIMFS | Focal seizures Apnoeic seizures |
(Wolff et al., 2017) |
| G1634V | DIV | Missense | OS | Focal seizures Spasms |
(Howell et al., 2015) |
| I1640S | DIV | Missense | EE | Tonic seizures Focal seizues |
(Wolff et al., 2017) |
| L1650P | DIV | Missense | EIEE | NR | (Trump et al., 2016) |
|
A1652P |
DIV | Missense |
WS |
Spasms | (Wolff et al., 2017) |
| S1656F | DIV | Missense | LGS | Generalized tonic-clonic seizures | (Wolff et al., 2017) |
| L1660T | DIV (S4-S5) |
Missense | EE | Generalized tonic-clonic seizures | (Fukasawa et al., 2015) |
| L1660W | DIV | Missense | Acute encephalopathy | Tonic-clonic convulsions Frequent spikes and sharp waves in the right fronto-temporal regions (EEG) Cerebellar atrophy (MRI) |
(Fukasawa et al., 2015) |
| Q1811E | C-terminal | Missense |
OS |
Generalized tonic-clonic seizures Focal seizures |
(Wolff et al., 2017) |
| L1829F | C-terminal | Missense | EIEE | NR | (Trump et al., 2016) |
| H1853R | C-terminal | Missense | OS | Generalized tonic-clonic seizures Absence seizures |
(Martin et al., 2014) |
| R1882L | C-terminal | Missense | Epilepsy | Generalized and irregular spike wave and polyspike wave activity (EEG) Focal and generalized tonic–clonic seizures with opisthotonus, bradycardia, and cyanosis |
(Baasch et al., 2014) |
| R1882G | C-terminal | Missense | BIS | Shift steady-state inactivation to more positive values Increase current density and protein production |
(Carvill et al., 2013; Schwarz et al., 2016; Wolff et al., 2017) |
| R1882Q | C-terminal | Missense | EIEE | Increased current density Enhanced persistent current |
(Trump et al., 2016; Berecki et al., 2018; Mason et al., 2019) |
|
D25Nβ1
β1 subunit mutation* |
β subunit | Substitution * human embryonic kidney 293 (HEK) cells co-expressing human Nav1.2 sodium channels and D25Nβ1 |
GEFS+ | Inhibits the increment of functional expression of NaCh currents Abolishes the shift of the voltage dependence of activation and inactivation |
(Baroni et al., 2018) |
|
Chromosome 2q24.3
Portions of the SCN2A and SCN3A genes |
Chromosome | Deletion (112-kb) |
Mental retardation Infantile seizures |
Anxiety disorders ‘shiver-like’ episodes |
(Bartnik et al., 2011) |
|
Chromosome q24.3q31.1
58 known genes including SCN2A, SCN1A, SCN3A, SCN9A and SCN7A |
Chromosome | Deletion (10.29 - 10.58 Mb) |
Severe epilepsy | Focal and generalized seizures Stereotypic and repetitive hand movements Slow background with high amplitude delta waves mixed with spikes and sharp waves on the temporo-occipital areas (EEG) |
(Pescucci et al., 2007) |
| Non genetic origin mutations reported* | |||||
| V213D | DI (S4) | Missense | EOEE | Focal seizure Focal spikes (EEG) |
(Nakamura et al., 2013) |
| T218K | DI | Missense | EIMFS | Focal seizures Spasms |
(Howell et al., 2015) |
| D649N | DI-DII | Missense | DS | NR | (Wang et al., 2012) |
| V752F | DI-DII | Missense | Absence epilepsy | Increased current density Shift steady-state activation and inactivation to more negative values |
(Oliva et al., 2014) |
| M1128T | DII-DIII | Missense | AERRPS | Generalized convulsive seizure Slow background activity and rare multifocal spikes over the right temporal and bilateral frontopolar regions (EEG) Brain edema (Cranial computed tomography) |
(Kobayashi et al., 2012) |
| G1522A | DIII-DIV | Missense | EE | Absence seizures Generalized spike and waves (EEG) |
(Mercimek-Mahmutoglu et al., 2015) |
| R1629L | DIV (S4) | Missense | EOEE | Focal seizure Burst of spikes (EEG) |
(Nakamura et al., 2013) |
| R1918H | C-terminus | Missense | GEFS+ | Generalized tonic-clonic seizures | (Haug et al., 2001) |
| GAL879-881QQQ | DII (S4-S5) (rat brain) | Mutated channel in transgenic mice | Epilepsy | Delayed fast inactivation Increased persistent current when expressed in Xenopus oocytes |
(Kearney et al., 2001) |
| R85Cβ1 | Extracellular immunoglobulin-like domain (β1 subunit) |
Substitution *Human embryonic kidney (HEK)-293T cells co-expressing human brain NaV1.2 alpha subunit and R85Cβ1 |
GEFS+ | Fail to modulate fast inactivation kinetics Fail to modulated steady-state inactivation |
(Xu et al., 2007) |
| R85Hβ1 | Extracellular immunoglobulin-like domain (β1 subunit) |
Substitution *Human embryonic kidney (HEK)-293T cells co-expressing human brain NaV1.2 alpha subunit and R85Hβ1 |
GEFS+ | Fail to modulated fast inactivation kinetics | (Xu et al., 2007) |
|
C121Wβ1
β1 subunit mutation* |
Ig-like domain (β1 subunit) |
Substitution * Chinese hamster ovary (CHO) cells co-expressing human Nav1.2 sodium channels and C121Wβ1 |
GEFS+ | Destabilization of steady-state inactivation potentials Disrupts the thermoprotective role of the β1 subunit on channel availability |
(Egri et al., 2012; Abdelsayed and Sokolov, 2013) |
|
Chromosome 2q24.3
Involves the SCN2A and SCN3A genes |
Chromosome | Duplication (1.77 Mb) |
EOEE | Multifocal spikes (EEG) Epileptic spasms |
(Baumer et al., 2015) |
|
Chromosome 2q24.3- q31.1
47 genes involved including SCN1A, SCN2A, SCN3A, SCN7A and SCN9A |
Chromosome | Deletion (10.4-Mb) |
Severe epilepsy | Epileptic seizure with pale, atonic periods followed by a spasm-like out-throwing of both arms Predominantly right-sided epileptiform activity (EEG) |
(Davidsson et al., 2008) |
SCN2A-related epilepsies identified in clinical patients through WES and/or NGS.
*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Generalized epilepsy with febrile seizures plus (GEFS+); Benign familial neonatal-infantile seizures (BFNIS); Benign familial neonatal seizures (BFNS); Benign Familial Infantile Seizures (BFIS); Benign neonatal/infantile seizures (BNIS); Benign neonatal seizures (BNS); Benign infantile seizures (BIS); Febrile seizures (FS); Febrile seizures plus (FS+); Epilepsy of infancy with migrating focal seizures (EIMFS); Ohtahara syndrome (OS); West syndrome (WS); Lennox-Gastaut syndrome (LGS); Dravet syndrome (DS); Borderline severe myoclonic epilepsy (SMEB); Severe myoclonic epilepsy (SME); Early-onset epileptic encephalopathies (EOEE); Acute encephalitis with refractory, repetitive partial seizures (AERRPS); Early infantile epileptic encephalopathy (EIEE); myoclonic-atonic epilepsy; Infantile onset epileptic encephalopathy (IOEE); Sporadic neonatal epileptic encephalopathy (SNEE); Epileptic encephalopathy (EE); Not Reported (NR); Domain (D); Segment (S); Electroencephalography (EEG); Magnetic resonance imaging (MRI).
NaV1.2 channels are expressed in the excitatory neurons; therefore, GoF mutations are related to epilepsy because it causes neuronal hyperexcitability. On the other hand, LoF mutations are related to autism and intellectual disability phenotype (Ben-Shalom et al., 2017). Nevertheless, some studies have already related loss of function to epilepsy, as described by Lossin and co-workers (2012) with R1312T mutation (Lossin et al., 2012). Normally, LoF SCN2A gene mutations for epilepsy are related to late-onset epilepsy; however, the mechanism of action is unclear (Mason et al., 2019).
In some cases, NaV1.2 seizures are not controlled not even by various antiepileptic drugs, as with the patient described by Syrbe and colleagues (2016). The proband, even after being treated with oxcarbazepine (OXC), valproic acid, topiramate, sulthiame, phenytoin, among other drugs, kept on having seizures (Syrbe et al., 2016). Furthermore, the SCB drugs can assist the patient during the treatment as described by Gorman and King (2017). The patient had seizures controlled after administration of phenytoin (Gorman and King, 2017). In addition, Musto et al. (2020) cite benefits treatments using SCB such as carbamazepine, mexiletine, oxcarbazepine, phenytoin, lidocaine, and lamotrigine for patients with early onset epilepsies (Musto et al., 2020). Besides, Peters and colleagues studied a substance commercially used as an antianginal drug (human heart) called ranolazine that has been shown to affect NaV1.2 channels, reducing macroscopic currents and delaying the recovery of fast and slow inactivation of the NaV1.2 channel, consequently with more future studies ranolazine could be a efficacious therapy for epilepsy (Peters et al., 2013).
Drugs can be important to modulate channel kinetics for both GoF and LoF, but some precautions must be observed. For example, the degree of conservation between subtypes, such as NaV1.2 and other sodium channels as NaV1.5 and the excessive decrease in channel function or the excessive increase in function obtained by the drug (Sanders et al., 2018).
Organizations like the FamilieSCN2A Foundation (www.scn2a.org) might be essential in the search for new treatments. Understanding the genotype-phenotype of gain and loss of function is essential because science-patient relationship may be helpful in the search for new therapies (Sanders et al., 2018).
NaV1.3
SCN3A is a gene that encodes for type 3 voltage-gated Na+ channel α subunit, the NaV1.3, located on human chromosome 2q24, in a cluster with SCN1A and SCN2A (Holland et al., 2008). NaV1.3 is expressed predominantly in the CNS during embryonic and neonatal development, being extremely low or sometimes undetectable in postnatal individuals. Subsequently, during infancy, it is gradually replaced by increased expression of the NaV1.1 isoform (Felts et al., 1997; Whitaker et al., 2000; Cheah et al., 2013; Zaman et al., 2018). On the other hand, studies regarding nervous system injury and neuropathic pain showed an increasing presence of NaV1.3 channels in affected tissues, suggesting a pivotal hole of these transmembrane proteins in these processes and diseases (Hains et al., 2003; Waxman and Hains, 2006; Black et al., 2008). For the reasons mentioned above, in the last decades, NaV1.3-associated pathogenesis has been restricted to pain. Recently, a genetic linkage between NaV1.3 mutated variants and epilepsy has been suggested, especially in cryptogenic epilepsy cases (OMIM#182391).
K354Q was the first described NaV1.3 epilepsy-related mutation that revealed harmful electrophysiological alterations (Holland et al., 2008; Estacion et al., 2010). In fact, mutations can change many functional characteristics of NaV1.3 affecting biophysical properties differently; however, these changes result predominantly in neuronal hyper-responsiveness (Table 3) (Cummins and Waxman, 1997; Chen et al., 2000; Cummins et al., 2001; Sun et al., 2007). Previous reports correlate heterozygous variants in SCN3A in association with moderate forms of epilepsy, while homozygosis is related with severe cognitive damage and premature mortality, resulting in a broad range of epileptic phenotypes (Estacion and Waxman, 2013; Vanoye et al., 2014; Lamar et al., 2017).
Table 3
| Variant | Location | Mutation | Disease | Alteration on biophysical properties or/and Clinical report | Reference |
|---|---|---|---|---|---|
| Inherited mutation | |||||
| K354Q | DI | Missense | CCE | Enhanced persistent current and current amplitude provokes by ramp protocol | (Holland et al., 2008; Estacion et al., 2010) |
| R357Q | DI (S5-S6) |
Missense | Focal epilepsy | Reduced current density Enhanced current amplitude provokes by ramp voltage protocol |
(Vanoye et al., 2014) |
| R621C | DI-DII | Missense | BECTS FS |
Centro-temporal spikes (EEG) | (Zaman et al., 2018) |
| E1111K | DII-III | Missense | Focal epilepsy | Enhanced current amplitude provokes by ramp voltage protocol Enhanced persistent current |
(Vanoye et al., 2014) |
| M1323V | DIII (S5-S6) |
Missense | Focal epilepsy | Enhanced current amplitude provokes by ramp voltage protocol | (Vanoye et al., 2014) |
|
C121Wβ1
β1 subunit mutation* |
Extracellular Ig loop | Substitution * Chinese hamster ovary (CHO) cells co-expressing human Nav1.3 sodium channels and C121Wβ1 |
GEFS+ | Resistant to enter into close-state inactivation Shift steady state inacativation to more positive values |
(Lucas et al., 2005) |
|
Chromosome 2q24.3
Involves the SCN1A,SCN2A, and SCN3A genes |
Chromosome | Duplication (1.57 Mb) |
BFNS | NR | (Heron et al., 2010) |
|
Chromosome 2q24.3
Involves the SCN1A,SCN2A, and SCN3A genes |
Chromosome | Duplication (2.0 Mb) |
Neonatal- infantile epilepsy | Facial flushing, head turning to the left, eye deviation, bilateral arm jerking movement | (Raymond et al., 2011) |
|
Chromosome
2q23.3q24.3 Involves the SCN2A and SCN3A genes |
Chromosome | Mosaic duplication (12 Mb) |
DS BFNIS |
Focal seizures with secondary generalization Atonic seizures (EEG) |
(Vecchi et al., 2011) |
| De novo mutation | |||||
| L247P | DI | Missense | Childhood focal epilepsy | Reduced current density associated with low protein expression | (Lamar et al., 2017) |
| I875T | DII (S4-S5) |
Missense | EE | Enhanced persistente current Shift steady-state activation and inactivation to more negative values Generalized convulsion, infantile spasm |
(Miyatake et al., 2018; Smith et al., 2018; Zaman et al., 2018) |
| P1333L | DIII | Missense | EIEE | Enhanced persistent current Increased current density Shift steady-state activation and inactivation to more negative values |
(Trujillano et al., 2017; Zaman et al., 2018) |
| M1765I | DIV | Missense | Refractory epilepsy | Focal and generalized seizures Myoclonus and epileptic spasms |
(Inuzuka et al., 2019) |
| V1769A | DIV (S6) | Missense | EIEE | Enhanced persistent current Shift steady-state activation to more negative values Shift steady-state inactivation to more positive values |
(Zaman et al., 2018) |
|
chromosome 2q24.3
Involves the SCN1A,SCN2A, and SCN3A genes |
chromosome | Deletion (1.1 Mb) |
WS | Typical hypsarrhythmic pattern (sleeping and awake) | (Chong et al., 2018) |
| Non genetic origin mutations reported* | |||||
| N302S | DI | Missense |
GEFS+ |
Shift steady-state activation and inactivation to more positive values Slower recovery from inactivation with 500 ms duration pre pulse Faster recovery from inactivation with 20 ms duration pre pulse |
(Chen et al., 2015) |
| D766N | DII (S2) | Missense | Focal epilepsy | Increased current amplitude by ramp voltage protocol | (Vanoye et al., 2014) |
SCN3A-related epilepsies identified in clinical patients through WES and/or NGS.
*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Cryptogenic childhood epilepsy (CCE); Benign epilepsy with centro-temporal spikes (BECTS); Generalized epilepsy with febrile seizures plus (GEFS+); West syndrome (WS); Febrile seizures (FS); Benign familial neonatal-infantile seizures (BFNIS); Benign familial neonatal seizures (BFNS); Dravet syndrome (DS); Epileptic encephalopathy (EE); Early infantile epileptic encephalopathy (EIEE); Not Reported (NR); Domain (D); Segment (S); Electroencephalography (EEG).
Different hereditary mutations on NaV1.3 have been reported to date in patients with epilepsy. In general, the biophysical characterization of these mutations reveals GoF, only one mutation (N302S) is related with LoF (Chen et al., 2015), but both GoF and LoF may lead to an increased seizure susceptibility (Lamar et al., 2017).
Moreover, several de novo mutations in SCN3A have been described in the last three years, related with severe infantile neurological dysfunctions and cognitive impairments. These mutations may alter the functionality of NaV1.3 channels, neurons organization, migration, and proliferation during the embryonic development (Smith et al., 2018). Epileptic encephalopathy and polymicrogyria are the main features related with these pathogenic variants, and, so far, polymicrogyria was not reported in other channelopathies, being an exclusive characteristic of SCN3A mutants (Inuzuka et al., 2019).
There is a lack of clinical data on SCN3A-related epilepsies, especially regarding treatment and the use of specific medication. However, in vitro studies reported that mutations related with GoF effect respond favorably to treatment using SCB, like phenytoin, carbamazepine, lacosamide, and topiramate (Sun et al., 2007; Sheets et al., 2008; Colombo et al., 2013; Zaman et al., 2018). The anticonvulsant valproic acid represents a novel and promising epigenetic therapeutic approach (Tan et al., 2017). The compound modulates the SCN3A gene through methylation, downregulating the expression of NaV1.3 and, consequently, decreasing biophysical alterations in the channel.
NaV1.6
The SCN8A gene encodes for type 8 voltage-gated Na+ channel α subunit, the NaV1.6, located in chromosome 12q13.13. The first case of SCN8A pathogenic variant associated with epilepsy was reported eight years ago (Veeramah et al., 2012). Thereafter, due to advances in genome sequencing technology, especially the WES, the number of epilepsy diagnosis associated with NaV1.6 mutations has increased significantly (OMIM #600702), with more than 300 patients diagnosed with SCN8A epilepsy mutations and nearly 200 different putative spots of mutations described, totaling over 100 published reports (Table 4). A website developed especially to present SCN8A epilepsy and related diseases (www.scn8a.net) was created to provide information to families, clinicians, and researchers, gathering news and recent publications on the subject in a private forum for family interaction, to answer questions, strengthening the ties between the community and the researchers.
Table 4
| Variant | Location | Mutation | Alteration on biophysical properties or/and Clinical report | Reference |
|---|---|---|---|---|
| Inherited mutation | ||||
| K101R | N-terminus | Missense | NR | (Butler et al., 2017b) |
| I137M | D1 (S1) | Missense | NR | (Johannesen et al., 2019) |
| T164M | DI (S2) | Missense | NR | (Butler et al., 2017a) |
| G269R | DI (S5) | Missense | Non-functional channel | (Wengert et al., 2019) |
| R530W | DI (S6)-DII (S1) | Missense | NR | (Olson et al., 2015) |
| N544 fs*39 | DI (S6)-DII (S1) | Frameshift | NR | (Johannesen et al., 2019) |
| S702T | DI (S6)-DII (S1) | Missense | NR | (Jang et al., 2019) |
| G822R | DII (S3) | Missense | Non-functional channel | (Wengert et al., 2019) |
| V891M | DII (S5) | Missense | NR | (Johannesen et al., 2019) |
| L1290V | DIII (S3-S4) | Missense | NR | (Carvill et al., 2013) |
| L1331V | DIII (S5) | Missense | NR | (Larsen et al., 2015) |
| T1360N | DIII (S5-S6) | Missense | Shift steady-state inactivation to more negative values | (Wengert et al., 2019) |
| E1442K | DIII (S5-S6) | Missense | NR | (Liu et al., 2018) |
| I1464T | DIII (S6)-DIV (S1) | Missense | NR | (Johannesen et al., 2019) |
| G1476D | DIII (S6)-DIV (S1) | Missense | NR | (Han et al., 2017) |
| E1483K | DIII (S6)-DIV (S1) | Missense | NR | (Gardella et al., 2016) |
| I1583T | DIV (S3) | Missense | NR | (Berghuis et al., 2015) |
| V1598A | DIV (S3) | Missense | NR | (Wang et al., 2017a) |
| R1638C | DIV (S4) | Missense | Shift steady-state activation to more positive values | (Wengert et al., 2019) |
| V1758A | DIV (S6) | Missense | Shift steady-state activation to more positive values | (Zaman et al., 2019) |
| N1877S | C-Terminus | Missense | NR | (Butler et al., 2017b; Johannesen et al., 2019) |
| R1904C | C-Terminus | Missense | NR | (Schreiber et al., 2020) |
| De novo mutation | ||||
| Exons 2-14 | – | Deletion | NR | (Berghuis et al., 2015) |
| c.-8A > G UTR | 5′ UTR | Eight base pairs change upstream of start codon | NR | (Johannesen et al., 2019) |
| c.4296A>G | DIII | Splice-site mutation | NR | (Denis et al., 2019) |
| M139I | D1 (S1) | Missense | Shift steady-state inactivation to more negative values Enhanced persistent current Slightly impaired fast channel inactivation |
(Zaman et al., 2019) |
| I142V | D1 (S1) | Missense | NR | (Denis et al., 2019; Kim et al., 2019) |
| A205E | D1 (S1) | Missense | NR | (Lindy et al., 2018) |
| F210L | D1 (S1) | Missense | NR | (Mercimek-Mahmutoglu et al., 2015) |
| V211L | DI (S3) | Missense | NR | (Denis et al., 2019) |
| V211A | DI (S3) | Missense | NR | (Berkovic et al., 2018) |
| L213P | D1 (S3) | Missense | NR | (Denis et al., 2019) |
| G214D | DI (S3-S4) |
Missense | NR | (Allen et al., 2013) |
| N215R | DI (S3-S4) |
Missense | NR | (Larsen et al., 2015) |
| N215D | DI (S3-S4) |
Missense | NR | (Deciphering Developmental Disorders Study, 2015) |
| V216D | DI (S3-S4) |
Missense | NR | (Ohba et al., 2014) |
| R223G | D1 (S4) | Missense | Reduced current density Increased current amplitude provokes by ramp voltage protocol |
(de Kovel et al., 2014; Berkovic et al., 2018; Denis et al., 2019) |
| I231T | D1 (S4) | Missense | NR | (Berkovic et al., 2018) |
| S232P | D1 (S4) | Missense | NR | (Wang et al., 2017a) |
| T239S | D1 (S4-S5) | Missense | NR | (Møller et al., 2016) |
| I240V | DI (S4-S5) | Missense | NR | (McNally et al., 2016) |
| L257V | DI (S5) | Missense | NR | (Schreiber et al., 2020) |
| F260S | DI (S5) | Missense | NR | (Larsen et al., 2015; Boerma et al., 2016) |
| C261F | DI (S5) | Missense | NR | (Rim et al., 2018; Kim et al., 2019) |
| L267S | DI (S5) | Missense | NR | (Malcolmson et al., 2016) |
| G317A | DI (S5-S6) | Missense | NR | (Denis et al., 2019) |
| F360A | DI (S5-S6) | Missense | NR | (Rolvien et al., 2017) |
| M367V | DI (S5-S6) | Missense | NR | (Lindy et al., 2018) |
| N374K | DI (S5-S6) | Missense | Shift steady-state activation to more negative values | (Johannesen et al., 2019; Zaman et al., 2019) |
| T386R | DI (S5-S6) | Missense | NR | (Lindy et al., 2018) |
| Y401H | DI (S6) | Missense | NR | (Gardella et al., 2018) |
| L405M | DI (S6) | Missense | NR | (Denis et al., 2019) |
| L407F | DI (S6) | Missense | NR | (Fung et al., 2015; Zhang et al., 2015) |
| A408T | DI (S6) | Missense | NR | (Trump et al., 2016; Denis et al., 2019) |
| V410L | DI (S6) | Missense | NR | (Larsen et al., 2015) |
| L483F | DI (S6) –DII (S1) | Missense | Slight shift steady-state activation to more negative values | (Zaman et al., 2019) |
| E587Ter | DI (S6)-DII (S1) | Nonsense | NR | (Schreiber et al., 2020) |
| I763V | DII (S1) | Missense | NR | (Butler et al., 2017b; Hewson et al., 2018; Lindy et al., 2018; Costain et al., 2019; Johannesen et al., 2019) |
| T767I | DII (S1) | Missense | Decreased current density Increased current amplitude provokes by voltage ramp protocol |
(Estacion et al., 2014; Gardella et al., 2018; Lindy et al., 2018) |
| V791F | DII (S2) | Missense | NR | (Xie et al., 2019) |
| V842E | DII (S4) | Missense | NR | (Lindy et al., 2018) |
| S845F | DII (S4) | Missense | NR | (Lindy et al., 2018) |
| F846S | DII (S4) | Missense | NR | (Ohba et al., 2014) |
| L848W | DII (S4) | Missense | NR | (Denis et al., 2019) |
| R850Q | DII (S4) | Missense | Shift steady state inactivation to more negative values Increased persistent current Impaired inactivation |
(Fung et al., 2015; Zhang et al., 2015; Lindy et al., 2018; Kim et al., 2019; Tsang et al., 2019; Pan and Cummins, 2020; Schreiber et al., 2020) |
| R850E | DII (S4) | Missense | NR | (Wang et al., 2017a) |
| R850L | DII (S4) | Missense | NR | (Gardella et al., 2018) |
| L864V | DII (S4-S5) | Missense | NR | (Gardella et al., 2018) |
| L875Q | DII (S5) | Missense | NR | (Allen et al., 2013) |
| A890T | DII (S5) | Missense | NR | (Fung et al., 2015; Larsen et al., 2015; Zhang et al., 2015) |
| V891M | DII (S5) | Missense | NR | (Wang et al., 2017a) |
| V960D | DII (S6) | Missense | NR | (Larsen et al., 2015) |
| L971V | DII (S6) | Missense | NR | (Kim et al., 2019) |
| S978R | DII (S6)-DIII (S1) | Missense | NR | (Kim et al., 2019) |
| S978G | DII (S6)-DIII (S1) | Missense | NR | (Parrini et al., 2017; Gardella et al., 2018) |
| N984K | DII (S6)-DIII (S1) | Missense | Shift steady-state activation to more negative values | (Blanchard et al., 2015; Boerma et al., 2016) |
| G1050S | DII (S6)-DIII (S1) | Missense | NR | (McMichael et al., 2015) |
| S1073N | DII (S6)-DIII (S1) | Missense | NR | (Lindy et al., 2018) |
| E1201K | DIII (S1) | Missense | NR | (Johannesen et al., 2019) |
| V1274M | DIII (S3) | Missense | NR | (Jang et al., 2019) |
| V1315M | DIII (S4-S5) | Missense | NR | (Trump et al., 2016; Bagnasco et al., 2018; Denis et al., 2019) |
| N1318S | DIII (S4-S5) |
Missense | NR | (Johannesen et al., 2019; Lin et al., 2019) |
| A1319S | DIII (S4-S5) |
Missense | NR | (Lindy et al., 2018) |
| A1319D | DIII (S4-S5) |
Missense | NR | (Johannesen et al., 2019) |
| A1323S | DIII (S4-S5) |
Missense | NR | (Trump et al., 2016) |
| A1323T | DIII (S4-S5) |
Missense | NR | (Johannesen et al., 2019) |
| I1327V | DIII (S4-S5) |
Missense | NR | (Vaher et al., 2013; Singh et al., 2015; Trump et al., 2016) |
| N1329D | DIII (S4-S5) | Missense | NR | (Butler et al., 2017b) |
| V1330M | DIII (S4-S5) | Missense | NR | (Schreiber et al., 2020) |
| L1332R | DIII (S5) | Missense | NR | (Butler et al., 2017b) |
| P1428_K1473del | DIII (S5-S6) | Missense | NR | (Larsen et al., 2015) |
| G1451S | DIII (S6) | Missense | Non-functional channel | (Blanchard et al., 2015; Denis et al., 2019) |
| N1466K | DIII (S6)-DIV (S1) | Missense | NR | (Ohba et al., 2014) |
| N1466T | DIII (S6)-DIV (S1) | Missense | NR | (Ohba et al., 2014) |
| Q1470K | DIII (S6)-DIV (S1) | Missense | NR | (Pons et al., 2018; Denis et al., 2019) |
| G1475R | DIII (S6)-DIV (S1) | Missense | Enhanced persistent current | (Hussain et al., 2016; Ortiz Madinaveitia et al., 2017; Parrini et al., 2017; Wang et al., 2017a; Gardella et al., 2018; Lindy et al., 2018; Xiao et al., 2018; Kim et al., 2019; Trivisano et al., 2019; Zaman et al., 2019; Ranza et al., 2020; Schreiber et al., 2020) |
| G1476S | DIII (S6)-DIV (S1) | Missense | NR | (Lindy et al., 2018) |
| I1479V | DIII (S6)-DIV (S1) | Missense | NR | (Larsen et al., 2015; Lindy et al., 2018; Schreiber et al., 2020) |
| E1483K | DIII (S6)-DIV (S1) | Missense | NR | (Johannesen et al., 2019) |
| A1491V | DIII (S6)-DIV (S1) | Missense | Shift steady-state activation to more negative values Increased current amplitude provokes by slow voltage ramp protocol |
(Gardella et al., 2018; Lindy et al., 2018; Zaman et al., 2019) |
| M1494T | DIII (S6)-DIV (S1) | Missense | NR | (Kim et al., 2019) |
| K1498M | DIII (S6)-DIV (S1) | Missense | NR | (Gardella et al., 2018) |
| M1529V | DIV (S1) | Missense | NR | (Johannesen et al., 2019) |
| I1532F | DIV (S1) | Missense | NR | (Møller et al., 2016; Gardella et al., 2018) |
| M1536I | DIV (S1) | Missense | NR | (Lindy et al., 2018) |
| F1547V | DIV (S1-S2) |
Missense | NR | (Gardella et al., 2018) |
| F1588L | DIV (S3) | Missense | NR | (Johannesen et al., 2019) |
| V1592L | DIV (S3) | Missense | NR | (Larsen et al., 2015; Ranza et al., 2020) |
| S1596C | DIV (S3) | Missense | NR | (Fung et al., 2015; Zhang et al., 2015; Boerma et al., 2016) |
| I1605R | DIV (S3-S4) |
Missense | NR | (Larsen et al., 2015) |
| T1614A | DIV (S3-S4) |
Missense | NR | (Johannesen et al., 2019) |
| R1617Q | DIV (S4) | Missense | Increased persistent current Increased peak current density Shift steady state activation to more negative values Shift steady-state inactivation to more positive values |
(Rauch et al., 2012; Ohba et al., 2014; Dyment et al., 2015; Fung et al., 2015; Larsen et al., 2015; Zhang et al., 2015; Fung et al., 2017; Lindy et al., 2018; Johannesen et al., 2019; Schreiber et al., 2020) |
| R1620L | DIV (S4) | Missense | NR | (Rossi et al., 2017) |
| L1621W | DIV (S4) | Missense | NR | (Fung et al., 2015) |
| G1625R | DIV (S4) | Missense | NR | (Deciphering Developmental Disorders Study, 2015) |
| L1630P | DIV (S4) | Missense | NR | (Schreiber et al., 2020) |
| I1631N | DIV (S4) | Missense | NR | (Lindy et al., 2018) |
| M1645I | DIV (S4-S5) |
Missense | NR | (Zhang et al., 2015) |
| A1650T | DIV (S4-S5) |
Missense | NR | (Ohba et al., 2014; Larsen et al., 2015; Parrini et al., 2017; Gardella et al., 2018; Trivisano et al., 2019) |
| A1650V | DIV (S4-S5) |
Missense | NR | (Lindy et al., 2018; Johannesen et al., 2019) |
| F1754S | DIV (S6) | Missense | NR | (Trump et al., 2016) |
| V1758A | DIV (S6) | Missense | Shift steady-state activation to more positive values | (Balciuniene et al., 2019; Johannesen et al., 2019; Zaman et al., 2019) |
| N1759T | DIV (S6) | Missense | NR | (Kim et al., 2019) |
| A1763G | DIV (S6) | Missense | NR | (Denis et al., 2019) |
| I1764M | DIV (S6) | Missense | NR | (Gardella et al., 2018) |
| N1768D | C-Terminus | Missense | Increased spontaneous firing Paroxysmal depolarizing-shift-like complexes, Increased firing frequency Increased persistent current |
(Veeramah et al., 2012) |
| V1771I | C-Terminus | Missense | NR | (Johannesen et al., 2019) |
| Q1801E | C-Terminus | Missense | NR | (Larsen et al., 2015) |
| R1820X | C-Terminus | Nonsense | NR | (Møller et al., 2016; Johannesen et al., 2019) |
| R1831Q | C-Terminus | Missense | NR | (Liu et al., 2018) |
| R1831W | C-Terminus | Missense | NR | (Jang et al., 2019) |
| T1852I | C-Terminus | Missense | NR | (Lindy et al., 2018; Heyne et al., 2019) |
| L1865P | C-Terminus | Missense | NR | (Trump et al., 2016) |
| R1866Q | C-Terminus | Missense | NR | (Kothur et al., 2018; Johannesen et al., 2019) |
| E1870D | C-Terminus | Missense | NR | (Boerma et al., 2016) |
| R1872L | C-Terminus | Missense | Enhanced persistent current Increased peak current density Shift steady-state activation to more negative values Shift steady-state inactivation to more positive values |
(Wagnon et al., 2016; Sprissler et al., 2017; Lindy et al., 2018; Zaman et al., 2019; Schreiber et al., 2020) |
| R1872Q | C-Terminus | Missense | Enhanced persistent current Increase peak current density Shift steady-state activation to more negative values Shift steady-state inactivation to more positive values |
(Larsen et al., 2015; Horvath et al., 2016; Hussain et al., 2016; Arafat et al., 2017; Atanasoska et al., 2018; Lindy et al., 2018) |
| R1872W | C-Terminus | Missense | Enhanced persistent current Increased peak current density Shift steady-state activation to more negative values Shift steady-state inactivation to more positive values |
(Ohba et al., 2014; Larsen et al., 2015; Takahashi et al., 2015; Gardella et al., 2018; Denis et al., 2019; Kim et al., 2019; Zaman et al., 2019) |
| N1877S | C-Terminus | Missense | NR | (Anand et al., 2016; Parrini et al., 2017; Wang et al., 2017a; Lindy et al., 2018; Costain et al., 2019; Epifanio et al., 2019; Jain et al., 2019; Ranza et al., 2020) |
| P1878S | C-Terminus | Missense | NR | (Lindy et al., 2018) |
| Non genetic origin mutations reported* | ||||
| R45Q | N-terminus | Missense | NR | (Encinas et al., 2019; Heyne et al., 2019) |
| A108fsXTer7 | N-terminus | Truncated gene | NR | (Encinas et al., 2019) |
| T166I | DI (S2) | Missense | NR | (Encinas et al., 2019) |
| I202N | DI (S3) | Missense | NR | (Butler et al., 2017a) |
| V211L | DI (S3) | Missense | NR | (Encinas et al., 2019) |
| V211A | DI (S3) | Missense | NR | (Encinas et al., 2019) |
| R220H | D1 (S4) | Missense | NR | (Oates et al., 2018) |
| R223S | DI (S4) | Missense | NR | (Encinas et al., 2019) |
| T239A | DI (S4-S5) | Missense | NR | (Encinas et al., 2019) |
| I240V | DI (S4-S5) | Missense | NR | (Encinas et al., 2019) |
| I240L | DI (S4-S5) | Missense | NR | (Encinas et al., 2019) |
| L257V | DI (S5) | Missense | NR | (Encinas et al., 2019) |
| L267V | DI (S5) | Missense | NR | (Denis et al., 2019) |
| I268L | DI (S5) | Missense | NR | (Encinas et al., 2019) |
| F360A | DI (S5-S6) | Missense | NR | (Encinas et al., 2019) |
| M367V | DI (S5-S6) | Missense | NR | (Encinas et al., 2019) |
| R381Q | DI (S5-S6) | Missense | NR | (Encinas et al., 2019) |
| T386R | DI (S5-S6) | Missense | NR | (Encinas et al., 2019; Schreiber et al., 2020) |
| S399P | DI (S6) | Missense | NR | (Encinas et al., 2019; Heyne et al., 2019) |
| V410L | DI (S6) | Missense | NR | (Encinas et al., 2019) |
| Y414F | DI (S6)-DII (S1) | Missense | NR | (Butler et al., 2017a) |
| E416K | DI (S6)-DII (S1) | Missense | NR | (Encinas et al., 2019) |
| Q417P | DI (S6)-DII (S1) | Missense | NR | (Encinas et al., 2019) |
| R530Q | DI (S6)-DII (S1) | Missense | NR | (Encinas et al., 2019) |
| E587Ter | DI (S6)-DII (S1) | Nonsense | NR | (Encinas et al., 2019) |
| R598W | DI (S6)-DII (S1) | Missense | NR | (Encinas et al., 2019) |
| G692R | DI (S6)-DII (S1) | Missense | NR | (Encinas et al., 2019) |
| I763V | DII (S1) | Missense | NR | (Butler et al., 2017a; Encinas et al., 2019) |
| T767I | DII (S1) | Missense | Shift steady-state activation to more negative values | (Estacion et al., 2014) |
| L840P | DII (S3-S4) | Missense | NR | (Encinas et al., 2019) |
| L840F | DII (S3-S4) | Missense | NR | (Encinas et al., 2019) |
| S845F | DII (S4) | Missense | NR | (Encinas et al., 2019) |
| L864V | DII (S4-S5) | Missense | NR | (Trivisano et al., 2019) |
| l868T | DII (S4-S5) | Missense | NR | (Encinas et al., 2019) |
| A874T | DII (S4-S5) | Missense | NR | (Encinas et al., 2019) |
| V881A | DII (S5) | Missense | NR | (Encinas et al., 2019) |
| E936K | DII (S6) | Missense | NR | (Johannesen et al., 2019) |
| L969M | DII (S6) | Missense | NR | (Encinas et al., 2019) |
| S979F | DII (S6)-DIII (S1) | Missense | NR | (Encinas et al., 2019) |
| G1050S | DII (S6)-DIII (S1) | Missense | NR | (Encinas et al., 2019) |
| Y1241C | DIII (S2) | Missense | NR | (Encinas et al., 2019; Johannesen et al., 2019) |
| S1308P | DIII (S4) | Missense | NR | (Encinas et al., 2019) |
| V1315M | DIII (S4-S5) |
Missense | NR | (Encinas et al., 2019) |
| L1320F | DIII (S4-S5) | Missense | NR | (Encinas et al., 2019; Schreiber et al., 2020) |
| A1323P | DIII (S4-S5) |
Missense | NR | (Encinas et al., 2019) |
| I1327V | DIII (S4-S5) |
Missense | NR | (Oates et al., 2018) |
| M1328T | DIII (S4-S5) |
Missense | NR | (Encinas et al., 2019) |
| N1329D | DIII (S4-S5) |
Missense | NR | (Butler et al., 2017a) |
| G1451S | DIII (S6) | Missense | NR | (Encinas et al., 2019) |
| G1461V | DIII (S6) | Missense | NR | (Encinas et al., 2019; Schreiber et al., 2020) |
| N1466K | DIII (S6)-DIV (S1) | Missense | NR | (Encinas et al., 2019) |
| F1467C | DIII (S6)-DIV (S1) | Missense | NR | (Encinas et al., 2019) |
| Q1470H | DIII (S6)-DIV (S1) | Missense | NR | (Trivisano et al., 2019) |
| I1479V | DIII (S6)-DIV (S1) | Missense | NR | (Encinas et al., 2019) |
| A1491V | DIII (S6)-DIV (S1) | Missense | Shift steady-state activation to more negative values | (Johannesen et al., 2018; Trivisano et al., 2019) |
| M1492V | DIII (S6)-DIV (S1) | Missense | NR | (Encinas et al., 2019; Ranza et al., 2020) |
| Q1501K | DIII (S6)-DIV (S1) | Missense | NR | (Encinas et al., 2019) |
|
Splice donor
c.4419+1A>G |
DIII (S6)-DIV (S1) | Truncated gene | NR | (Encinas et al., 2019) |
| M1536I | DIV (S1) | Missense | NR | (Encinas et al., 2019) |
| V1592L | DIV (S3) | Missense | NR | (Encinas et al., 2019) |
| I1594L | DIV (S3) | Missense | NR | (Encinas et al., 2019) |
| S1596C | DIV (S3) | Missense | NR | (Encinas et al., 2019) |
| T1614A | DIV (S3-S4) |
Missense | NR | (Encinas et al., 2019) |
| R1617Q | DIV (S4) | Missense | Enhanced persistent current Increased peak current density Shift steady-state activation to more negative values Shift steady-state inactivation to more positive values |
(Encinas et al., 2019) |
| R1617P | DIV (S4) | Missense | NR | (Encinas et al., 2019) |
| G1625R | DIV (S4) | Missense | NR | (Encinas et al., 2019) |
| L1630P | DIV (S4) | Missense | NR | (Encinas et al., 2019) |
| F1642C | DIV (S4-S5) |
Missense | NR | (Encinas et al., 2019) |
| A1650T | DIV (S4-S5) |
Missense | NR | (Trivisano et al., 2019) |
| A1650V | DIV (S4-S5) |
Missense | NR | (Encinas et al., 2019) |
| I1654N | DIV (S4-S5) |
Missense | NR | (Johannesen et al., 2019) |
| N1759S | DIV (S6) | Missense | NR | (Encinas et al., 2019; Schreiber et al., 2020) |
| M1760I | DIV (S6) | Missense | Shift steady-state activation to more negative values Increase action potential firing frequency |
(Liu et al., 2019) |
| N1768D | C-Terminus | Missense | Increased spontaneous firingParoxysmal depolarizing shift like complexes Increased firing frequency Enhanced persistent current |
(Veeramah et al., 2012; Encinas et al., 2019) |
| K1807N | C-Terminus | Missense | NR | (Encinas et al., 2019) |
| R1831W | C-Terminus | Missense | NR | (Encinas et al., 2019) |
| D1833H | C-Terminus | Missense | NR | (Johannesen et al., 2019) |
| T1852I | C-Terminus | Missense | NR | (Encinas et al., 2019; Ranza et al., 2020) |
| R1872L | C-Terminus | Missense | Increased persistent current Increased peak current density Shift steady state activation to more negative values Shift steady inactivation to more positive values |
(Encinas et al., 2019) |
| N1877S | C-Terminus | Missense | NR | (Johannesen et al., 2019; Schreiber et al., 2020) |
| R1904C | C-Terminus | Missense | NR | (Encinas et al., 2019) |
SCN8A-related epilepsies identified in clinical patients through WES and/or NGS.
*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Not Reported (NR); Domain (D); Segment (S).
NaV1.6 is expressed since prenatal, during fetal development (Plummer et al., 1997). Shortly after birth, expression begins to increase, reaching maximum levels during the first years of life. This channel is widely expressed in the nodes of Ranvier of myelinated axons and in the distal part of the axon initial segments (AIS), although they are also ubiquitously present throughout the central and peripheral nervous systems, in both excitatory and inhibitory neurons (Caldwell et al., 2000; Oliva et al., 2012). For these reasons, NaV1.6 is one of the most common subtype of voltage-gated sodium channels found in the central nervous system (Caldwell et al., 2000). In humans, the distal AIS is the specialized membrane region in neurons where action potentials are triggered. Overexpression of Nav1.6 in the AIS has been shown to cause an increase in spontaneous and repetitive firing (Hu et al., 2009; Sun et al., 2013), a possible explanation for why SCN8A mutations in epilepsy patients are predominantly GoF and affect the action potential threshold. On the other hand, the functional importance of Nav1.6 in inhibitory interneurons is not clear yet, but evidence indicates a role for Nav1.6 in establishing synaptic inhibition in the thalamic network (Makinson et al., 2017), supporting the LoF results caused by missense mutations in the mature protein. These attributes lead to different network effects in distinct nervous system circuits. Mutations in SCN8A are associated with early-infantile epileptic encephalopathy type 13 (EIEE13; OMIM #614558), a phenotypically heterogeneous early onset epilepsy, with seizure onset happening before 18 months of age (Hammer et al., 2016). Patients typically develop intellectual disability, developmental delay, and movement disorders (Ohba et al., 2014; Gardella et al., 2016; Johannesen et al., 2018). Co-occurrence of autism spectrum disorders, severe juvenile osteoporosis, bradyarrhythmia, cortical visual impairment, and gastrointestinal disorders have been reported in rare cases (Larsen et al., 2015; Hammer et al., 2016; Rolvien et al., 2017; Gardella et al., 2018). Sudden unexpected death in epilepsy (SUDEP) has also been linked to SCN8A mutations, described as the most common cause of death in epilepsy patients. Reports have suggested that patients with SCN8A-related epilepsy have increased risk of SUDEP, ranging from 1% to 10% (Hammer et al., 2016; Wang et al., 2017a; Gardella et al., 2018; Johannesen et al., 2018). One possible correlation of SUDEP with SCN8A-related epilepsy is the presence of NaV1.6 in heart muscles and tissues, being broadly expressed within ventricular myocytes (Maier et al., 2002). Single mutations may affect heart function, causing failure of the cardiorespiratory system and, consequently, death (Haufe et al., 2005; Noujaim et al., 2012). Most recently, few cases of SCN8A-related epilepsies with “milder” phenotype were associated with benign familial infantile seizures-5 (BFIS5; OMIM #617080) (Anand et al., 2016; Gardella et al., 2016; Han et al., 2017).
An increase in new described variants made some mutation patterns visible. Wagnon and co-workers observed numerous cases of the same epiletogenic mutation, and suggested that CpG dinucleotides are mutation hotspots that, through enzymatic processing and epigenetic methylation, can convert cytosine to thymine, such as arginine residues 1617 and 1872 (Wagnon and Meisler, 2015). The prominent number of new variant cases in Arg850 indicates this residue as a new hotspot, since the arginine codon holds a CpG dinucleotide. In addition to these mutation hotspots, residues I763, I1327, G1475, A1650, and N1877 do not present CpG dinucleotides in their codon; however, they can be considered recurrent mutations in view of its high repetition cases in literature (Table 4).
The mutation at position c.- 8A>G produces a pathogenic variant, despite not being inside the gene, or promoter regions, transcriptional and translational sites. This mutation was detected in an untranslated region outside of the Kozak consensus sequence (Johannesen et al., 2019). Its role in SCN8A-related epilepsy is still unclear; however, it may change RNA stability, modulate transcriptional factors and promoters, modify the initiation of translation, or work as an enhancer or silencer in the splicing pattern. For all the reasons mentioned above, Nav1.6 variants are predominantly harmful, and the same mutation can lead to different phenotypes, hampering the correlation of genotypes with phenotypes (Blanchard et al., 2015).
SCN8A mutations can be both GoF and LoF, which will likely require different approaches and targets. Even in patients with the same SCN8A mutation, the response to the same drug treatment can differ. Surprisingly, most SCN8A-related epilepsies respond favorably to channel blockers. Phenytoin and lacosamide are SBCs widely used in SCN8A mutations with GoF effect, while carbamazepine exhibited positive seizure control in a patient with NaV 1.6 mutation and LoF effect. (Blanchard et al., 2015; Wagnon and Meisler, 2015; Hammer et al., 2016; Perucca and Perucca, 2019). Phenytoin demonstrated effectiveness in decreasing seizure episodes in several patients with SCN8A-related epilepsies, however, side effects during prolonged use are very common (Boerma et al., 2016; Braakman et al., 2017). A recent study of a DS model using zebrafish demonstrated the use of the channel blocking compound MV1312, which is 5–6 fold selectivity of NaV1.6 over NaV1.1–1.7, reduced burst movement phenotype and the number of epileptiform events, activity similar to that described with the use of a selective NaV1.1 activator AA43279 (Weuring et al., 2020). Selective Nav1.6 blockers may represent a new therapeutic strategy for DS patients. In addition, two precise and promising drugs have been described recently: XEN901 and GS967. XEN901 is an arylsulfonamide highly selective and potent NaV1.6 inhibitor that binds specifically in voltage sensor domain IV, avoiding recovery from inactivation. GS967 is a NaV1.6 modulator that inhibits the persistent sodium current and exhibits a protective effect (Baker et al., 2018; Bialer et al., 2018).
NaV1.7
The SCN9A gene encodes for the NaV1.7 channel, located in chromosome 2q24 (Yang et al., 2018). NaV1.7 is expressed preferably in the PNS, but it is also expressed in the CNS (Cen et al., 2017). Consequently, mutations in this channel are generally related to pain disorders (Young, 2007; Han et al., 2009; Doty, 2010; Rush et al., 2018); however, current studies have described a correlation between epilepsy and this channel (OMIM #603415).
Pain disorder mutations with GoF are related with diseases such as erythromelalgia (EMI), small-fiber neuropathy (SFN) and paroxysmal extreme pain disorder (PEPD), and mutations with LoF are related with congenital insensitivity to pain (CIP) (Cen et al., 2017). Epilepsy studies such as Zhang S. et al. (2020) showed mutations with GoF phenotype: W1150R, N641Y, and K655R mutations (Table 5). Being that, after treatment with OXC (120 µmol/L), N641Y and K655R reduced sodium current and decreased the opening time of the channel, while W1150R did not alter that (Zhang S. et al., 2020). However, in a study conducted by Yang et al. (2018), one of the patients presented generalized tonic-clonic seizure with fever, treated with sodium valproic acid, and a LoF mutation I1901fs was observed (Yang et al., 2018) (Table 5).
Table 5
| Variant | Location | Mutation | Disease | Alteration on biophysical properties or/and Clinical report | Reference |
|---|---|---|---|---|---|
| Inherited mutation | |||||
| Q10R | N-terminal | Missense | GEFS+ | Febrile and afebrile seizures Generalized tonic-clonic seizures |
(Cen et al., 2017) |
| G327E | DI | Missense | Epilepsy | Generalized tonic-clonic seizure | (Yang et al., 2018) |
| N641Y | DI- DII | Missense | FS | Reduced electroconvulsive seizure thresholds (Knocking mice) Increased corneal kindling acquisition rates (Knocking mice) Increased current density Faster recovery from inactivation More susceptible to clonic and tonic seizures induced by electrical stimulation (mice) Enhanced persistent current |
(Singh et al., 2009; Zhang S. et al., 2020) |
| I1901fs | C-terminal |
Frameshift |
Epilepsy | Generalized tonic-clonic seizure | (Yang et al., 2018) |
| Non genetic origin mutations reported* | |||||
| K655R | DI-DII | Missense | FS | Enhanced persistent current Faster recovery from inactivation |
(Zhang S. et al., 2020) |
| W1150R | DII-DIII | Missense | FS | Increased current density Enhanced persistent current Focal seizures with secondary generalization High-potential spike activity, paroxysmal release, and d frequency power enhancement (EEG) |
(Zhang S. et al., 2020) |
SCN9A-related epilepsies identified in clinical patients through WES and/or NGS.
Variants of NaV1.7 have been related with febrile seizure or GEFS+ (Cen et al., 2017; Zhang S. et al., 2020) and even as asymptomatic (Singh et al., 2009). However, SCN9A can act as a putative modifier of NaV1.1 gene; consequently, it can elevate the severity of patients’ phenotype (Guerrini et al., 2010; Parihar and Ganesh, 2013). Some NaV1.7 mutations could probably contribute to generate a genetic susceptibility to a known epilepsy disease called Dravet syndrome, in a multifactorial way, as a modifier gene (Singh et al., 2009; Doty, 2010; Mulley et al., 2013; Cen et al., 2017; Zhang T. et al., 2020). That said, some rare cases of DS found in patients can be understood (Mulley et al., 2013). For example, even parents with mild phenotype had children with severe cases (Guerrini et al., 2010).
Conclusion and Future Perspectives
The past two decades have enabled remarkable progress in understanding monogenic epilepsies. NaV-related epilepsies are diseases of phenotypic heterogeneity, since sodium channels are found in both the CNS and the PNS, but with different expression ranges. The lack of a clear genotype-phenotype correlation to help guide patient counseling and management by healthcare professionals makes it very complex, and often expensive, to determine a correct diagnosis. Consequently, identify the monogenic mutation in individual patients with epilepsy is important not only for diagnosis and prognosis, but also for a correct treatment approach (Mei et al., 2017; Reif et al., 2017).
Susceptibility to specific treatments may be different depending on the disease’s features, diverging even in patients who share the same phenotype and/or mutation (Weber et al., 2014). The use of innovative tools that facilitate and prevent diagnostic delay in patients with epilepsy of unknown etiology onset is crucial. WES has proved to be a valuable tool to circumvent the lack of an accurate and fast diagnosis to epilepsies caused by monogenic mutation, and also cheapen and drastically anticipate diagnosis. This genetic diagnostic tool may reduce traditional investigation costs by 55 to 70%, besides avoiding further pre-surgical evaluation and epilepsy surgery (Kothur et al., 2018; Oates et al., 2018). In addition to the financial impact, it can anticipate diagnosis from nearly 3.5 years to 21 days, optimizing management and health care support (Oates et al., 2018).
Effective and safe drugs for the treatment of monogenic epilepsy are still an unmet clinical need. The drugs currently available in the pharmaceutical market are only palliative methods for a temporary control of the disease symptoms, and few patients will benefit from the existing pharmacotherapy, since a great number of patients treated with antiepileptic channel blockers showed no improvement in clinical conditions. Also, most treated patients exhibited manifold side effects, and the prolonged use of these medications proved to be harmful (Boerma et al., 2016; Braakman et al., 2017). Several examples of novel and promising candidate compounds to be used in personalized medicine, such as precision therapies, have been suggested. A previously study demonstrated that CBD at 1μM inhibit preferably resurgent currents than transient current in Nav1.6 WT and also inhibit peak resurgent current in Nav1.6 mutant N1768D, with less effect in current density and without alters voltage dependence of activation (Patel et al., 2016) Possibly the modulation of CBD over mutations in SCN8A that promotes a phenotype with increased resurgent currents would cause a reduction in the causative excitability of epileptic seizures. CBD also showed its ability to preferential inhibit resurgent currents in the NaV1.2 channel (Mason and Cummins, 2020). Due the role of Nav1.2 and Nav1.6 in excitatory neurons, preferentially inhibition in resurgent currents by CBD could possibly reduce the excitability in that subset of neurons and decrease the frequency of seizures by a change in threshold of activation and repetitive fire (Lewis and Raman, 2014). Peptides derived from scorpion and spider venom are well known modulator tools in neuroscience and showed specific capacity to regulate most NaV subtypes related with monogenic epilepsy, unlike the available promiscuous drugs that generally interact with any NaV channel isoform (Schiavon et al., 2006; Israel et al., 2018; Richards et al., 2018; Tibery et al., 2019; Zhang et al., 2019). Bioengineering tools, like antisense oligonucleotides capable to regulate NaV1.1 channels expression, and the peptide Hm1, that modulates the function of this subtype of sodium channel, are some innovative treatment examples (Richards et al., 2018; Stoke Therapeutics, 2018).
However, there is still a long path toward the development of efficacious treatments for NaV-related epilepsies. Recent studies offered a better understanding of the complexity of the phenotypic and genetic spectrum, which has only just begun to be elucidated. Biomolecular diagnostic tools will drastically reduce the developmental and cognitive effects caused by misdiagnosis and late diagnosis, and maybe, in the upcoming years, the treatment for inherited NaV-related epilepsies will be conducted ideally in utero, during the prenatal stage. Moreover, further functional studies, with greater cohorts of patients, represent an urgent medical need for a better understanding of the correlations between genotype and clinical symptoms, as well as the different NaV-related epilepsies mechanisms. These studies will improve clinical efficacy and promote safety diagnostic strategies, as well as develop prognosis prediction in the near future.
Funding
This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [407625/2013-5] and the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) [grants 193.001.202/2016 and 00193.0000109/2019-17].
Statements
Author contributions
All authors made an intellectual and direct contribution for this article and approved it for publication.
Acknowledgments
CNPq, CAPES, and the Molecular Biology postgraduate program of the University of Brasilia. LM received scholarships from CNPq and DT from CAPES. EFS was supported by CNPq.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Supplementary material
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.01276/full#supplementary-material
References
1
Abdelsayed M. Sokolov S. (2013). Voltage-gated sodium channels. Channels7, 146–152. doi: 10.4161/chan.24380
2
Ahern C. A. Payandeh J. Bosmans F. Chanda B. (2016). The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol.147, 1–24. doi: 10.1085/jgp.201511492
3
Allen A. S. Berkovic S. F. Cossette P. Delanty N. Dlugos D. Eichler E. E. et al . (2013). De novo mutations in epileptic encephalopathies. Nature501, 217–221. doi: 10.1038/nature12439
4
Allen N. M. Conroy J. Shahwan A. Lynch B. Correa R. G. Pena S. D. J. et al . (2016). Unexplained early onset epileptic encephalopathy: Exome screening and phenotype expansion. Epilepsia57, e12–e17. doi: 10.1111/epi.13250
5
Anand G. Collett-White F. Orsini A. Thomas S. Jayapal S. Trump N. et al . (2016). Autosomal dominant SCN8A mutation with an unusually mild phenotype. Eur. J. Paediatr. Neurol.20, 761–765. doi: 10.1016/j.ejpn.2016.04.015
6
Annesi G. Gambardella A. Carrideo S. Incorpora G. Labate A. Pasqua A. A. et al . (2003). Two Novel SCN1A Missense Mutations in Generalized Epilepsy with Febrile Seizures Plus. Epilepsia44, 1257–1258. doi: 10.1046/j.1528-1157.2003.22503.x
7
Arafat A. Jing P. Ma Y. Pu M. Nan G. Fang H. et al . (2017). Unexplained Early Infantile Epileptic Encephalopathy in Han Chinese Children: Next-Generation Sequencing and Phenotype Enriching. Sci. Rep.7:46227. doi: 10.1038/srep46227
8
Atanasoska M. Vazharova R. Ivanov I. Balabanski L. Andonova S. Ivanov S. et al . (2018). SCN8A p.Arg1872Gln mutation in early infantile epileptic encephalopathy type 13: Review and case report. Biotechnol. Biotechnol. Equip.32, 1345–1351. doi: 10.1080/13102818.2018.1532815
9
Bähler M. Rhoads A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett.513, 107–113. doi: 10.1016/S0014-5793(01)03239-2
10
Baasch A. L. Hüning I. Gilissen C. Klepper J. Veltman J. A. Gillessen-Kaesbach G. et al . (2014). Exome sequencing identifies a de novo SCN2A mutation in a patient with intractable seizures, severe intellectual disability, optic atrophy, muscular hypotonia, and brain abnormalities. Epilepsia55, e25–e29. doi: 10.1111/epi.12554
11
Bagnasco I. Dassi P. Blé R. Vigliano P. (2018). A relatively mild phenotype associated with mutation of SCN8A. Seizure56, 47–49. doi: 10.1016/j.seizure.2018.01.021
12
Baker E. M. Thompson C. H. Hawkins N. A. Wagnon J. L. Wengert E. R. Patel M. K. et al . (2018). The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia59, 1166–1176. doi: 10.1111/epi.14196
13
Balciuniene J. DeChene E. T. Akgumus G. Romasko E. J. Cao K. Dubbs H. A. et al . (2019). Use of a Dynamic Genetic Testing Approach for Childhood-Onset Epilepsy. JAMA Netw. Open2, e192129. doi: 10.1001/jamanetworkopen.2019.2129
14
Barba C. Parrini E. Coras R. Galuppi A. Craiu D. Kluger G. et al . (2014). Co-occurring malformations of cortical development and SCN1A gene mutations. Epilepsia55, 1009–1019. doi: 10.1111/epi.12658
15
Baroni D. Picco C. Moran O. (2018). A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum. Mutat.39, 1402–1415. doi: 10.1002/humu.23589
16
Bartnik M. Chun-Hui Tsai A. Xia Z. Cheung S. Stankiewicz P. (2011). Disruption of the SCN2A and SCN3A genes in a patient with mental retardation, neurobehavioral and psychiatric abnormalities, and a history of infantile seizures. Clin. Genet.80, 191–195. doi: 10.1111/j.1399-0004.2010.01526.x
17
Baumer F. M. Peters J. M. El Achkar C. M. Pearl P. L. (2015). SCN2A-Related Early-Onset Epileptic Encephalopathy Responsive to Phenobarbital. J. Pediatr. Epilepsy05, 042–046. doi: 10.1055/s-0035-1567853
18
Bechi G. Rusconi R. Cestèle S. Striano P. Franceschetti S. Mantegazza M. (2015). Rescuable folding defective NaV1.1 (SCN1A) mutants in epilepsy: Properties, occurrence, and novel rescuing strategy with peptides targeted to the endoplasmic reticulum. Neurobiol. Dis.75, 100–114. doi: 10.1016/j.nbd.2014.12.028
19
Bennett C. A. Petrovski S. Oliver K. L. Berkovic S. F. (2017). ExACtly zero or once. Neurol. Genet.3, e163. doi: 10.1212/NXG.0000000000000163
20
Ben-Shalom R. Keeshen C. M. Berrios K. N. An J. Y. Sanders S. J. Bender K. J. (2017). Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol. Psychiatry82, 224–232. doi: 10.1016/j.biopsych.2017.01.009
21
Berecki G. Howell K. B. Deerasooriya Y. H. Cilio M. R. Oliva M. K. Kaplan D. et al . (2018). Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy. Proc. Natl. Acad. Sci. U. S. A.115, E5516–E5525. doi: 10.1073/pnas.1800077115
22
Berghuis B. de Kovel C. G. F. van Iterson L. Lamberts R. J. Sander J. W. Lindhout D. et al . (2015). Complex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy. Epilepsy Res.115, 141–144. doi: 10.1016/j.eplepsyres.2015.06.007
23
Berkovic S. F. Heron S. E. Giordano L. Marini C. Guerrini R. Kaplan R. E. et al . (2004). Benign Familial Neonatal-Infantile Seizures: Characterization of a New Sodium Channelopathy. Ann. Neurol.55, 550–557. doi: 10.1002/ana.20029
24
Berkovic S. F. Grinton B. Dixon-Salazar T. Laughlin B. L. Lubbers L. Milder J. et al . (2018). De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy. Genet. Med.20, 275–281. doi: 10.1038/gim.2017.100
25
Bialer M. Johannessen S. I. I. Koepp M. J. Levy R. H. Perucca E. Tomson T. et al . (2018). Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs preclinical early clinical development. Epilepsia59, 1811–1841. doi: 10.1111/epi.14557
26
Black J. A. Nikolajsen L. Kroner K. Jensen T. S. Waxman S. G. (2008). Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann. Neurol.64, 644–653. doi: 10.1002/ana.21527
27
Blanchard M. G. Willemsen M. H. Walker J. B. Dib-Hajj S. D. Waxman S. G. Jongmans M. C. J. et al . (2015). De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet.52, 330–337. doi: 10.1136/jmedgenet-2014-102813
28
Boerma R. S. Braun K. P. van de Broek M. P. H. van Berkestijn F. M. C. Swinkels M. E. Hagebeuk E. O. et al . (2016). Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach. Neurotherapeutics13, 192–197. doi: 10.1007/s13311-015-0372-8
29
Bouza A. A. Isom L. L. (2018). “Voltage-Gated Sodium Channel b Subunits and Their Related Diseases,” in Handbook of experimental pharmacology (Springer International Publishing), 423–450. doi: 10.1007/164_2017_48
30
Braakman H. M. Verhoeven J. S. Erasmus C. E. Haaxma C. A. Willemsen M. H. Schelhaas H. J. (2017). Phenytoin as a last-resort treatment in SCN8A encephalopathy. Epilepsia Open2, 343–344. doi: 10.1002/epi4.12059
31
Brunklaus A. Ellis R. Reavey E. Semsarian C. Zuberi S. M. (2014). Genotype phenotype associations across the voltage-gated sodium channel family. J. Med. Genet.51, 650–658. doi: 10.1136/jmedgenet-2014-102608
32
Brunklaus A. Ellis R. Stewart H. Aylett S. Reavey E. Jefferson R. et al . (2015). Homozygous mutations in the SCN1A gene associated with genetic epilepsy with febrile seizures plus and Dravet syndrome in 2 families. Eur. J. Paediatr. Neurol.19, 484–488. doi: 10.1016/j.ejpn.2015.02.001
33
Buoni S. Orrico A. Galli L. Zannolli R. Burroni L. Hayek J. et al . (2006). SCN1delG) novel truncating mutation with benign outcome of severe myoclonic epilepsy of infancy. Neurology66, 606–607. doi: 10.1212/01.WNL.0000198504.41315.B1
34
Butler K. M. da Silva C. Alexander J. J. Hegde M. Escayg A. (2017a). Diagnostic Yield From 339 Epilepsy Patients Screened on a Clinical Gene Panel. Pediatr. Neurol.77, 61–66. doi: 10.1016/j.pediatrneurol.2017.09.003
35
Butler K. M. da Silva C. Shafir Y. Weisfeld-Adams J. D. Alexander J. J. Hegde M. et al . (2017b). De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Res.129, 17–25. doi: 10.1016/j.eplepsyres.2016.11.002
36
Caldwell J. H. Schaller K. L. Lasher R. S. Peles E. Levinson S. R. (2000). Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci.97, 5616–5620. doi: 10.1073/pnas.090034797
37
Capes D. L. Goldschen-Ohm M. P. Arcisio-Miranda M. Bezanilla F. Chanda B. (2013). Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J. Gen. Physiol.142, 101–112. doi: 10.1085/jgp.201310998
38
Carranza Rojo D. Hamiwka L. McMahon J. M. Dibbens L. M. Arsov T. Suls A. et al . (2011). De novo SCN1A mutations in migrating partial seizures of infancy. Neurology77, 380–383. doi: 10.1212/WNL.0b013e318227046d
39
Carvill G. L. Heavin S. B. Yendle S. C. McMahon J. M. O’Roak B. J. Cook J. et al . (2013). Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat. Genet.45, 825–830. doi: 10.1038/ng.2646
40
Catterall W. A. Kalume F. Oakley J. C. (2010). NaV1.1 channels and epilepsy. J. Physiol.588, 1849–1859. doi: 10.1113/jphysiol.2010.187484
41
Catterall W. A. (2014a). Sodium Channels, Inherited Epilepsy, and Antiepileptic Drugs. Annu. Rev. Pharmacol. Toxicol.54, 317–338. doi: 10.1146/annurevpharmtox-011112-140232
42
Catterall W. A. (2014b). Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol.99, 35–51. doi: 10.1113/expphysiol.2013.071969
43
Catterall W. A. (2017). Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem. Res.42, 2495–2504. doi: 10.1007/s11064-017-2314-9
44
Cen Z. Lou Y. Guo Y. Wang J. Feng J. (2017). Q10R mutation in SCN9A gene is associated with generalized epilepsy with febrile seizures plus. Seizure50, 186–188. doi: 10.1016/j.seizure.2017.06.023
45
Cheah C. S. Westenbroek R. E. Roden W. H. Kalume F. Oakley J. C. Jansen L. A. et al . (2013). Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels7, 468–472. doi: 10.4161/chan.26023
46
Chen Y. H. Dale T. J. Romanos M. A. Whitaker W. R. J. Xie X. M. Clare J. J. (2000). Cloning, distribution and functional analysis of the type III sodium channel from human brain. Eur. J. Neurosci.12, 4281–4289. doi: 10.1046/j.1460-9568.2000.01336.x
47
Cestèle S. Labate A. Rusconi R. Tarantino P. Mumoli L. Franceschetti S. et al . (2013). Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia54, 927–935. doi: 10.1111/epi.12123
48
Cetica V. Chiari S. Mei D. Parrini E. Grisotto L. Marini C. et al . (2017). Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations. Neurology88, 1037–1044. doi: 10.1212/WNL.0000000000003716
49
Chen Y. J. Shi Y. W. Xu H. Q. Chen M. L. Gao M. M. Sun W. W. et al . (2015). Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and SCN3A. Mol. Neurobiol.51, 1263–1270. doi: 10.1007/s12035-014-8802-x
50
Chong P. F. Saitsu H. Sakai Y. Imagi T. Nakamura R. Matsukura M. et al . (2018). Deletions of SCN2A and SCN3A genes in a patient with West syndrome and autistic spectrum disorder. Seizure60, 91–93. doi: 10.1016/j.seizure.2018.06.012
51
Claes L. Del-Favero J. Ceulemans B. Lagae L. Van Broeckhoven C. De Jonghe P. (2001). De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet.68, 1327–1332. doi: 10.1086/320609
52
Claes L. Ceulemans B. Audenaert D. Smets K. Löfgren A. Del-Favero J. et al . (2003). De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum. Mutat.21, 615–621. doi: 10.1002/humu.10217
53
Clairfeuille T. Cloake A. Infield D. T. Llongueras J. P. Arthur C. P. Li Z. R. et al . (2019). Structural basis of a-scorpion toxin action on Nav channels. Science363, 1–25. doi: 10.1126/science.aav8573
54
Clark M. M. Stark Z. Farnaes L. Tan T. Y. White S. M. Dimmock D. et al . (2018). Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genomic Med.3, 16. doi: 10.1038/s41525-018-0053-8
55
Colombo E. Franceschetti S. Avanzini G. Mantegazza M. (2013). Phenytoin Inhibits the Persistent Sodium Current in Neocortical Neurons by Modifying Its Inactivation Properties. PloS One8, e55329. doi: 10.1371/journal.pone.0055329
56
Colosimo E. Gambardella A. Mantegazza M. Labate A. Rusconi R. Schiavon E. et al . (2007). Electroclinical Features of a Family with Simple Febrile Seizures and Temporal Lobe Epilepsy Associated with SCN1A Loss-of-Function Mutation. Epilepsia48, 1691–1696. doi: 10.1111/j.1528-1167.2007.01153.x
57
Combi R. Grioni D. Contri M. Redaelli S. Redaelli F. Bassi M. T. et al . (2009). Clinical and genetic familial study of a large cohort of Italian children with idiopathic epilepsy. Brain Res. Bull.79, 89–96. doi: 10.1016/j.brainresbull.2009.01.008
58
Costain G. Cordeiro D. Matviychuk D. Mercimek-Andrews S. (2019). Clinical Application of Targeted Next-Generation Sequencing Panels and Whole Exome Sequencing in Childhood Epilepsy. Neuroscience418, 291–310. doi: 10.1016/j.neuroscience.2019.08.016
59
Cui X. Zeng F. Liu Y. Zhang J. Archacki S. Zhan T. et al . (2011). A novel SCN1A missense mutation causes generalized epilepsy with febrile seizures plus in a Chinese family. Neurosci. Lett.503, 27–30. doi: 10.1016/j.neulet.2011.08.001
60
Cummins T. R. Waxman S. G. (1997). Downregulation of tetrodotoxinresistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci.17, 3503–3514. doi: 10.1523/jneurosci.17-10-03503.1997
61
Cummins T. R. Aglieco F. Renganathan M. Herzog R. I. I. Dib-Hajj S. D. Waxman S. G. (2001). Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci.21, 5952–5961. doi: 10.1523/jneurosci.21-16-05952.2001
62
Daoud H. Luco S. M. Li R. Bareke E. Beaulieu C. Jarinova O. et al . (2016). Next-generation sequencing for diagnosis of Rare diseases in the neonatal intensive care unit. Cmaj188, E254–E260. doi: 10.1503/cmaj.150823
63
Davidsson J. Collin A. Olsson M. E. Lundgren J. Soller M. (2008). Deletion of the SCN gene cluster on 2q24.4 is associated with severe epilepsy: An array-based genotype–phenotype correlation and a comprehensive review of previously published cases. Epilepsy Res.81, 69–79. doi: 10.1016/j.eplepsyres.2008.04.018
64
de Kovel C. G. F. Meisler M. H. Brilstra E. H. van Berkestijn F. M. C. van Lieshout S. et al . (2014). Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res.108, 1511–1518. doi: 10.1016/j.eplepsyres.2014.08.020
65
Deciphering Developmental Disorders Study (2015). Large-scale discovery of novel genetic causes of developmental disorders. Nature519, 223–228. doi: 10.1038/nature14135
66
Deng H. Xiu X. Song Z. (2014). The molecular biology of genetic-based epilepsies. Mol. Neurobiol.49, 352–367. doi: 10.1007/s12035-013-8523-6
67
Denis J. Villeneuve N. Cacciagli P. Mignon-Ravix C. Lacoste C. Lefranc J. et al . (2019). Clinical study of 19 patients with SCN8A-related epilepsy: Two modes of onset regarding EEG and seizures. Epilepsia60, 845–856. doi: 10.1111/epi.14727
68
Depienne C. Trouillard O. Saint-Martin C. Gourfinkel-An I. Bouteiller D. Carpentier W. et al . (2008). Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J. Med. Genet.46, 183–191. doi: 10.1136/jmg.2008.062323
69
Devinsky O. Vezzani A. Jette N. De Curtis M. Perucca P. (2018). Epilepsy. Nat. Rev.3, 1–24. doi: 10.1038/nrdp.2018.24
70
Dhamija R. Wirrell E. Falcao G. Kirmani S. Wong-Kisiel L. C. (2013). Novel de novo SCN2A Mutation in a Child With Migrating Focal Seizures of Infancy. Pediatr. Neurol.49, 486–488. doi: 10.1016/j.pediatrneurol.2013.07.004
71
Dhamija R. Erickson M. K. St Louis E. K. Wirrell E. Kotagal S. (2014). Sleep Abnormalities in Children With Dravet Syndrome. Pediatr. Neurol.50, 474–478. doi: 10.1016/j.pediatrneurol.2014.01.017
72
Djémié T. Weckhuysen S. von Spiczak S. Carvill G. L. Jaehn J. Anttonen A.-K. et al . (2016). Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol. Genet. Genomic Med.4, 457–464. doi: 10.1002/mgg3.217
73
Doty C. N. (2010). SCN9A: Another sodium channel excited to play a role in human epilepsies. Clin. Genet.77, 326–328. doi: 10.1111/j.1399-0004.2009.01366_1.x
74
Dyment D. A. Tétreault M. Beaulieu C. L. Hartley T. Ferreira P. Chardon J. W. et al . (2015). Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: A retrospective study. Clin. Genet.88, 34–40. doi: 10.1111/cge.12464
75
Ebach K. Joos H. Doose H. Stephani U. Kurlemann G. Fiedler B. et al . (2005). SCN1A mutation analysis in myoclonic astatic epilepsy and severe idiopathic generalized epilepsy of infancy with generalized tonic-clonic seizures. Neuropediatrics36, 210–213. doi: 10.1055/s-2005-865607
76
Ebrahimi A. Houshmand M. Tonekaboni S. H. Fallah Mahboob Passand M. S. Zainali S. Moghadasi M. (2010). Two Novel Mutations in SCN1A Gene in Iranian Patients with Epilepsy. Arch. Med. Res.41, 207–214. doi: 10.1016/j.arcmed.2010.04.007
77
Egri C. Vilin Y. Y. Ruben P. C. (2012). A thermoprotective role of the sodium channel β 1 subunit is lost with the β 1(C121W) mutation. Epilepsia53, 494–505. doi: 10.1111/j.1528-1167.2011.03389.x
78
Encinas A. C. Moore I. (Ki) M. Watkins J. C. Hammer M. F. (2019). Influence of age at seizure onset on the acquisition of neurodevelopmental skills in an SCN8A cohort. Epilepsia60, 1711–1720. doi: 10.1111/epi.16288
79
Epifanio R. Zanotta N. Giorda R. Bardoni A. Zucca C. (2019). Novel epilepsy phenotype associated to a known SCN8A mutation. Seizure67, 15–17. doi: 10.1016/j.seizure.2019.01.017
80
Escayg A. Heils A. MacDonald B. T. Haug K. Sander T. Meisler M. H. (2001). A Novel SCN1A Mutation Associated with Generalized Epilepsy with Febrile Seizures Plus—and Prevalence of Variants in Patients with Epilepsy. Am. J. Hum. Genet.68, 866–873. doi: 10.1086/319524
81
Escayg A. Goldin A. L. (2010). Sodium channel SCN1A and epilepsy : Mutations and mechanisms. Epilepsia51, 1650–1658. doi: 10.1111/j.1528-1167.2010.02640.x
82
Estacion M. Gasser A. Dib-Hajj S. D. Waxman S. G. (2010). A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp. Neurol.224, 362–368. doi: 10.1016/j.expneurol.2010.04.012
83
Estacion M. Waxman S. G. (2013). The response of NaV1.3 sodium channels to ramp stimuli: Multiple components and mechanisms. J. Neurophysiol.109, 306–314. doi: 10.1152/jn.00438.2012
84
Estacion M. O’Brien J. E. Conravey A. Hammer M. F. Waxman S. G. Dib-Hajj S. D. et al . (2014). A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol. Dis.69, 117–123. doi: 10.1016/j.nbd.2014.05.017
85
Esterhuizen A. II Mefford H. C. Ramesar R. S. Wang S. Carvill G. L. Wilmshurst J. M. (2018). Dravet syndrome in South African infants: Tools for an early diagnosis. Seizure62, 99–105. doi: 10.1016/j.seizure.2018.09.010
86
Falco-Walter J. J. Scheffer I. E. Fisher R. S. (2018). The new definition and classification of seizures and epilepsy. Epilepsy Res.139, 73–79. doi: 10.1016/j.eplepsyres.2017.11.015
87
Felts P. A. Yokoyama S. Dib-Hajj S. Black J. A. Waxman S. G. (1997). Sodium channel a-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Mol. Brain Res.45, 71–82. doi: 10.1016/S0169-328X(96)00241-0
88
Fisher R. S. Acevedo C. Arzimanoglou A. Bogacz A. Cross J. H. Elger C. E. et al . (2014). ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia55, 475–482. doi: 10.1111/epi.12550
89
Foster L. A. Johnson M. R. MacDonald J. T. Karachunski P. II Henry T. R. Nascene D. R. et al . (2017). Infantile Epileptic Encephalopathy Associated With SCN2A Mutation Responsive to Oral Mexiletine. Pediatr. Neurol.66, 108–111. doi: 10.1016/j.pediatrneurol.2016.10.008
90
Fry A. E. Rees E. Thompson R. Mantripragada K. Blake P. Jones G. et al . (2016). Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Med. Genet.17, 34. doi: 10.1186/s12881-016-0294-2
91
Fujiwara T. (2003). Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain126, 531–546. doi: 10.1093/brain/awg053
92
Fukasawa T. Kubota T. Negoro T. Saitoh M. Mizuguchi M. Ihara Y. et al . (2015). A case of recurrent encephalopathy with SCN2A missense mutation. Brain Dev.37, 631–634. doi: 10.1016/j.braindev.2014.10.001
93
Fukuma G. Oguni H. Shirasaka Y. Watanabe K. Miyajima T. Yasumoto S. et al . (2004). Mutations of Neuronal Voltage-gated Na+ Channel alpha1 Subunit Gene SCN1A in Core Severe Myoclonic Epilepsy in Infancy (SMEI) and in Borderline SMEI (SMEB). Epilepsia45, 140–148. doi: 10.1111/j.0013-9580.2004.15103.x
94
Fung L.-W. E. Kwok S.-L. J. Tsui K.-W. S. (2015). SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia56, 1319–1320. doi: 10.1111/epi.12925
95
Fung C. W. Kwong A. K. Y. Wong V. C. N. (2017). Gene panel analysis for nonsyndromic cryptogenic neonatal/infantile epileptic encephalopathy. Epilepsia Open2, 236–243. doi: 10.1002/epi4.12055
96
Gamal El-Din T. M. Martinez G. Q. Payandeh J. Scheuer T. Catterall W. A. (2013). A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb. J. Gen. Physiol.142, 181–190. doi: 10.1085/jgp.201311012
97
Gardella E. Becker F. Møller R. S. Schubert J. Lemke J. R. Larsen L. H. G. et al . (2016). Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann. Neurol.79, 428–436. doi: 10.1002/ana.24580
98
Gardella E. Marini C. Trivisano M. Fitzgerald M. P. Alber M. Howell K. B. et al . (2018). The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology91, E1112–E1124. doi: 10.1212/WNL.0000000000006199
99
Gargus J. J. Tournay A. (2007). Novel Mutation Confirms Seizure Locus SCN1A is Also Familial Hemiplegic Migraine Locus FHM3. Pediatr. Neurol.37, 407–410. doi: 10.1016/j.pediatrneurol.2007.06.016
100
Ghovanloo M. R. Aimar K. Ghadiry-Tavi R. Yu A. Ruben P. C. (2016). Physiology and Pathophysiology of Sodium Channel Inactivation. Curr. Top. Membr.78, 479–509. doi: 10.1016/bs.ctm.2016.04.001
101
Gokben S. Onay H. Yilmaz S. Atik T. Serdaroglu G. Tekin H. et al . (2017). Targeted next generation sequencing: the diagnostic value in early-onset epileptic encephalopathy. Acta Neurol. Belg.117, 131–138. doi: 10.1007/s13760-016-0709-z
102
Gilchrist J. Das S. Van Petegem F. Bosmans F. (2013). Crystallographic insights into sodium-channel modulation by the b4 subunit. Proc. Natl. Acad. Sci.110, E5016–E5024. doi: 10.1073/pnas.1314557110
103
Goldin A. L. Escayg A. (2010). Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia51:16. doi: 10.1111/j.1528-1167.2010.02640.x
104
Goldschen-Ohm M. P. Capes D. L. Oelstrom K. M. Chanda B. (2013). Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel. Nat. Commun.4, 1350. doi: 10.1038/ncomms2356
105
Gorman K. M. King M. D. (2017). SCN2A p.Ala263Val Variant a Phenotype of Neonatal Seizures Followed by Paroxysmal Ataxia in Toddlers. Pediatr. Neurol.67, 111–112. doi: 10.1016/j.pediatrneurol.2016.11.008
106
Grinton B. E. Heron S. E. Pelekanos J. T. Zuberi S. M. Kivity S. Afawi Z. et al . (2015). Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome. Epilepsia56, 1071–1080. doi: 10.1111/epi.13020
107
Guerrini R. Cellini E. Mei D. Metitieri T. Petrelli C. Pucatti D. et al . (2010). Variable epilepsy phenotypes associated with a familial intragenic deletion of the SCN1A gene. Epilepsia51, 2474–2477. doi: 10.1111/j.1528-1167.2010.02790.x
108
Hackenberg A. Baumer A. Sticht H. Schmitt B. Kroell-Seger J. Wille D. et al . (2014). Infantile Epileptic Encephalopathy, Transient Choreoathetotic Movements, and Hypersomnia due to a De Novo Missense Mutation in the SCN2A Gene. Neuropediatrics45, 261–264. doi: 10.1055/s-0034-1372302
109
Haginoya K. Togashi N. Kaneta T. Hino-Fukuyo N. Ishitobi M. Kakisaka Y. et al . (2018). [18F]fluorodeoxyglucose-positron emission tomography study of genetically confirmed patients with Dravet syndrome. Epilepsy Res.147, 9–14. doi: 10.1016/j.eplepsyres.2018.08.008
110
Hains B. C. Klein J. P. Saab C. Y. Craner M. J. Black J. A. Waxman S. G. (2003). Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci.23, 8881–8892. doi: 10.1523/jneurosci.23-26-08881.2003
111
Halvorsen M. Petrovski S. Shellhaas R. Tang Y. Crandall L. Goldstein D. et al . (2016). Mosaic mutations in early-onset genetic diseases. Genet. Med.18, 746–749. doi: 10.1038/gim.2015.155
112
Han J. Y. Jang J. H. Lee I. G. Shin S. Park J. (2017). A novel inherited mutation of SCN8a in a korean family with benign familial infantile epilepsy using diagnostic exome sequencing. Ann. Clin. Lab. Sci.47, 747–753.
113
Han C. Dib-Hajj S. D. Lin Z. Li Y. Eastman E. M. Tyrrell L. et al . (2009). Early- and late-onset inherited erythromelalgia: genotypephenotype correlation. Brain132, 1711–1722. doi: 10.1093/brain/awp078
114
Hammer M. F. Wagnon J. L. Mefford H. C. Meisler M. H. et al . (2016). “SCN8A-Related Epilepsy with Encephalopathy,” in GeneReviews® [Internet]. Eds. AdamM. P.ArdingerH. H.PagonR. A. (Seattle (WA): University of Washington).
115
Harkin L. A. McMahon J. M. Iona X. Dibbens L. Pelekanos J. T. Zuberi S. M. et al . (2007). The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain130, 843–852. doi: 10.1093/brain/awm002
116
Haug K. Hallmann K. Rebstock J. Dullinger J. Muth S. Haverkamp F. et al . (2001). The voltage-gated sodium channel gene SCN2A and idiopathic generalized epilepsy. Epilepsy Res.47, 243–246. doi: 10.1016/S0920-1211(01)00312-6
117
Haufe V. Camacho J. A. Dumaine R. Günther B. Bollensdorff C. von Banchet G. S. et al . (2005). Expression pattern of neuronal and skeletal muscle voltage-gated Na+ channels in the developing mouse heart. J. Physiol.564, 683–696. doi: 10.1113/jphysiol.2004.079681
118
Herlenius E. Heron S. E. Grinton B. E. Keay D. Scheffer I. E. Mulley J. C. et al . (2007). SCN2A mutations and benign familial neonatal-infantile seizures: The phenotypic spectrum. Epilepsia48, 1138–1142. doi: 10.1111/j.1528-1167.2007.01049.x
119
Hernández Chávez M. Mesa Latorre T. Pedraza Herrera M. Troncoso Schifferli M. (2014). ¿Crisis febriles complejas o síndrome de Dravet?: Descripción de 3 casos clínicos. Rev. Chil. pediatría85, 588–593. doi: 10.4067/S0370-41062014000500010
120
Heron S. E. Crossland K. M. Andermann E. Phillips H. A. Hall A. J. Bleasel A. et al . (2002). Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet360, 851–852. doi: 10.1016/S0140-6736(02)09968-3
121
Heron S. E. Scheffer I. E. Grinton B. E. Eyre H. Oliver K. L. Bain S. et al . (2010). Familial neonatal seizures with intellectual disability caused by a microduplication of chromosome 2q24.3. Epilepsia51, 1865–1869. doi: 10.1111/j.1528-1167.2010.02558.x
122
Hewson S. Brunga L. Ojeda M. F. Imhof E. Patel J. Zak M. et al . (2018). Prevalence of Genetic Disorders and GLUT1 Deficiency in a Ketogenic Diet Clinic. Can. J. Neurol. Sci.45, 93–96. doi: 10.1017/cjn.2017.246
123
Heyne H. O. Artomov M. Battke F. Bianchini C. Smith D. R. Liebmann N. et al . (2019). Targeted gene sequencing in 6994 individuals with neurodevelopmental disorder with epilepsy. Genet. Med.21, 2496–2503. doi: 10.1038/s41436-019-0531-0
124
Hoffman-Zacharska D. Szczepanik E. Terczynska I. Goszczanska-Ciuchta A. Zalewska-Miszkurka Z. Tataj R. et al . (2015). From focal epilepsy to dravet syndrome –heterogeneity of the phenotype due to SCN1A mutations of the p.Arg1596 amino acid residue in the nav1.1 subunit. Neurol. Neurochir. Pol.49, 258–266. doi: 10.1016/j.pjnns.2015.06.006
125
Holland K. D. Kearney J. A. Glauser T. A. Buck G. Keddache M. Blankston J. R. et al . (2008). Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci. Lett.433, 65–70. doi: 10.1016/j.neulet.2007.12.064
126
Horvath G. A. Demos M. Shyr C. Matthews A. Zhang L. Race S. et al . (2016). Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target? Mol. Genet. Metab.117, 42–48. doi: 10.1016/j.ymgme.2015.11.008
127
Howell K. B. McMahon J. M. Carvill G. L. Tambunan D. Mackay M. T. Rodriguez-Casero V. et al . (2015). SCN2A encephalopathy. Neurology85, 958–966. doi: 10.1212/WNL.0000000000001926
128
Hsiao J. Yuan T. Y. Tsai M. S. Lu C. Y. Lin Y. C. Lee M. L. et al . (2016). Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome. EBioMedicine9, 257–277. doi: 10.1016/j.ebiom.2016.05.011
129
Hu W. Tian C. Li T. Yang M. Hou H. Shu Y. (2009). Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci.12, 996–1002. doi: 10.1038/nn.2359
130
Huang W. Liu M. Yan S. F. Yan N. (2017). Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell8, 401–438. doi: 10.1007/s13238-017-0372-z
131
Hussain A. Seinfeld S. Morton L. (2016). Genetic association with ictal cardiorespiratory phenomena: SCN8A case series. J. Pediatr. Neurol.14, 151–155. doi: 10.1055/s-0036-1593744
132
Iannetti P. Parisi P. Spalice A. Ruggieri M. Zara F. (2009). Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res.85, 89–95. doi: 10.1016/j.eplepsyres.2009.02.014
133
Inuzuka L. M. Macedo-Souza L. II Della-Ripa B. Cabral K. S. S. Monteiro F. Kitajima J. P. et al . (2019). Neurodevelopmental disorder associated with de novo SCN3A pathogenic variants: two new cases and review of the literature. Brain Dev.42, 211–216. doi: 10.1016/j.braindev.2019.09.004
134
Israel M. R. Thongyoo P. Deuis J. R. Craik D. J. Vetter I. Durek T. (2018). The E15R Point Mutation in Scorpion Toxin Cn2 Uncouples Its Depressant and Excitatory Activities on Human Na V 1.6. J. Med. Chem.61, 1730–1736. doi: 10.1021/acs.jmedchem.7b01609
135
Ito M. Shirasaka Y. Hirose S. Sugawara T. Yamakawa K. (2004). Seizure phenotypes of a family with missense mutations in SCN2A. Pediatr. Neurol.31, 150–152. doi: 10.1016/j.pediatrneurol.2004.02.013
136
Jain P. Gulati P. Morrison-Levy N. Yau I. Alsowat D. Otsubo H. et al . (2019). “Breath holding spells” in a child with SCN8A-related epilepsy: Expanding the clinical spectrum. Seizure65, 129–130. doi: 10.1016/j.seizure.2019.01.020
137
Jang S. S. Kim S. Y. Kim H. Hwang H. Chae J. H. Kim K. J. et al . (2019). Diagnostic Yield of Epilepsy Panel Testing in Patients With Seizure Onset Within the First Year of Life. Front. Neurol.10, 988. doi: 10.3389/fneur.2019.00988
138
Jiang D. Shi H. Tonggu L. Gamal El-Din T. M. Lenaeus M. J. Zhao Y. et al . (2020). Structure of the Cardiac Sodium Channel. Cell180, 122–134.e10. doi: 10.1016/j.cell.2019.11.041
139
Jingami N. Matsumoto R. Ito H. Ishii A. Ihara Y. Hirose S. et al . (2014). A novel SCN1A mutation in a cytoplasmic loop in intractable juvenile myoclonic epilepsy without febrile seizures. Epileptic Disord.16, 227–231. doi: 10.1684/epd.2014.0657
140
Johannesen K. M. Gardella E. Scheffer I. Howell K. Smith D. M. Helbig I. et al . (2018). Early mortality in SCN8A -related epilepsies. Epilepsy Res.143, 79–81. doi: 10.1016/j.eplepsyres.2018.04.008
141
Johannesen K. M. Gardella E. Encinas A. C. Lehesjoki A. E. Linnankivi T. Petersen M. B. et al . (2019). The spectrum of intermediate SCN8A-related epilepsy. Epilepsia60, 830–844. doi: 10.1111/epi.14705
142
Johnson C. N. Potet F. Thompson M. K. Kroncke B. M. Glazer A. M. Voehler M. W. et al . (2018). A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure26, 683–694.e3. doi: 10.1016/j.str.2018.03.005
143
Kamiya K. (2004). A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline. J. Neurosci.24, 2690–2698. doi: 10.1523/JNEUROSCI.3089-03.2004
144
Kaplan D. I. I. Isom L. L. Petrou S. (2016). Role of sodium channels in epilepsy. Cold Spring Harb. Perspect. Med.6:a022814. doi: 10.1101/cshperspect.a022814
145
Kearney J. Plummer N. Smith M. Kapur J. Cummins T. Waxman S. et al . (2001). A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience102, 307–317. doi: 10.1016/S0306-4522(00)00479-6
146
Kim Y. O. Bellows S. Mcmahon J. M. Iona X. Damiano J. Dibbens L. et al . (2014). Atypical multifocal Dravet syndrome lacks generalized seizures and may show later cognitive decline. Dev. Med. Child Neurol.56, 85–90. doi: 10.1111/dmcn.12322
147
Kim H. J. Yang D. Kim S. H. Kim B. Kim H. D. Lee J. S. et al . (2019). Genetic and clinical features of SCN8A developmental and epileptic encephalopathy. Epilepsy Res.158, 106222. doi: 10.1016/j.eplepsyres.2019.106222
148
Knupp K. G. Wirrell E. C. (2018). Treatment Strategies for Dravet Syndrome. CNS Drugs32, 335–350. doi: 10.1007/s40263-018-0511-y
149
Kobayashi K. Ohzono H. Shinohara M. Saitoh M. Ohmori I. Ohtsuka Y. et al . (2012). Acute encephalopathy with a novel point mutation in the SCN2A gene. Epilepsy Res.102, 109–112. doi: 10.1016/j.eplepsyres.2012.04.016
150
Kodera H. Kato M. Nord A. S. Walsh T. Lee M. Yamanaka G. et al . (2013). Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. Epilepsia54, 1262–1269. doi: 10.1111/epi.12203
151
Kothur K. Holman K. Farnsworth E. Ho G. Lorentzos M. Troedson C. et al . (2018). Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure59, 132–140. doi: 10.1016/j.seizure.2018.05.005
152
Kwong A. K. Y. Fung C. W. Chan S. Y. Wong V. C. N. (2012). Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome. PloS One7, e41802. doi: 10.1371/journal.pone.0041802
153
Laezza F. Lampert A. Kozel M. A. Gerber B. R. Rush A. M. Nerbonne J. M. et al . (2009). FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol. Cell. Neurosci.42, 90–101. doi: 10.1016/j.mcn.2009.05.007
154
Lal D. Reinthaler E. M. Dejanovic B. May P. Thiele H. Lehesjoki A.-E. et al . (2016). Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes. PloS One11, e0150426. doi: 10.1371/journal.pone.0150426
155
Lamar T. Vanoye C. G. Calhoun J. Wong J. C. Dutton S. B. Jorge B. S. et al . (2017). SCN3A deficiency associated with increased seizure susceptibility. Neurobiol. Dis.102, 38–48. doi: 10.1016/j.nbd.2017.02.006
156
Larsen J. Carvill G. L. Gardella E. Kluger G. Schmiedel G. Barisic N. et al . (2015). The phenotypic spectrum of SCN8A encephalopathy. Neurology84, 480–489. doi: 10.1212/WNL.0000000000001211
157
Lattanzi S. Brigo F. Trinka E. Zaccara G. Striano P. Del Giovane C. et al . (2020). Adjunctive Cannabidiol in Patients with Dravet Syndrome: A Systematic Review and Meta-Analysis of Efficacy and Safety. CNS Drugs34, 229–241. doi: 10.1007/s40263-020-00708-6
158
Lauxmann S. Boutry-Kryza N. Rivier C. Mueller S. Hedrich U. B. S. Maljevic S. et al . (2013). An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na+ current. Epilepsia54, e117–e121. doi: 10.1111/epi.12241
159
Lek M. Karczewski K. J. Minikel E. V. Samocha K. E. Banks E. Fennell T. et al . (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature536, 285–291. doi: 10.1038/nature19057
160
Le Gal F. Lebon S. Ramelli G. P. Datta A. N. Mercati D. Maier O. et al . (2014). When is a child with status epilepticus likely to have Dravet syndrome? Epilepsy Res.108, 740–747. doi: 10.1016/j.eplepsyres.2014.02.019
161
Lee H.-F. Chi C.-S. Tsai C.-R. Chen C.-H. Wang C.-C. (2014). Electroencephalographic features of patients with SCN1A-positive Dravet syndrome. Brain Dev.37, 599–611. doi: 10.1016/j.braindev.2014.10.003
162
Lemke J. R. Riesch E. Scheurenbrand T. Schubach M. Wilhelm C. Steiner I. et al . (2012). Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia53, 1387–1398. doi: 10.1111/j.1528-1167.2012.03516.x
163
Lewis A. H. Raman I. M. (2014). Resurgent current of voltage-gated Na+ channels. J. Physiol.592, 4825–4838. doi: 10.1113/jphysiol.2014.277582
164
Liao W.-P. Shi Y.-W. Long Y.-S. Zeng Y. Li T. Yu M.-J. et al . (2010a). Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: Associated with loss of function of Nav1.1. Epilepsia51, 1669–1678. doi: 10.1111/j.1528-1167.2010.02645.x
165
Liao Y. Deprez L. Maljevic S. Pitsch J. Claes L. Hristova D. et al . (2010b). Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain133, 1403–1414. doi: 10.1093/brain/awq057
166
Lim B. C. Hwang H. Chae J. H. Choi J.-E. Hwang Y. S. Kang S.-H. et al . (2011). SCN1A mutational analysis in Korean patients with Dravet syndrome. Seizure20, 789–794. doi: 10.1016/j.seizure.2011.08.002
167
Lin K. M. Su G. Wang F. Zhang X. Wang Y. Ren J. et al . (2019). A de novo SCN8A heterozygous mutation in a child with epileptic encephalopathy: A case report. BMC Pediatr.19, 400. doi: 10.1186/s12887-019-1796-9
168
Lindy A. S. Stosser M. B. Butler E. Downtain-Pickersgill C. Shanmugham A. Retterer K. et al . (2018). Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia59, 1062–1071. doi: 10.1111/epi.14074
169
Liu J. Tong L. Song S. Niu Y. Li J. Wu X. et al . (2018). Novel and de novo mutations in pediatric refractory epilepsy. Mol. Brain11, 48. doi: 10.1186/s13041-018-0392-5
170
Liu Y. Schubert J. Sonnenberg L. Helbig K. L. Hoei-Hansen C. E. Koko M. et al . (2019). Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain142, 376–390. doi: 10.1093/brain/awy326
171
Lossin C. Rhodes T. H. Desai R. R. Vanoye C. G. Wang D. Carniciu S. et al . (2003). Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A. J. Neurosci.23, 11289–11295. doi: 10.1523/jneurosci.23-36-11289.2003
172
Lossin C. Shi X. Rogawski M. A. Hirose S. (2012). Compromised function in the Nav1.2 Dravet syndrome mutation R1312T. Neurobiol. Dis.47, 378–384. doi: 10.1016/j.nbd.2012.05.017
173
Lucas P. T. Meadows L. S. Nicholls J. Ragsdale D. S. (2005). An epilepsy mutation in the β1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin. Epilepsy Res.64, 77–84. doi: 10.1016/j.eplepsyres.2005.03.003
174
Maier S. K. G. Westenbroek R. E. Schenkman K. A. Feigl E. O. Scheuer T. Catterall W. A. (2002). An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. U. S. A.99, 4073–4078. doi: 10.1073/pnas.261705699
175
Mak C. M. Chan K. Y. W. Yau E. K. C. Chen S. P. L. Siu W. K. Law C. Y. et al . (2011). Genetic diagnosis of severe myoclonic epilepsy of infancy (Dravet syndrome) with SCN1A mutations in the Hong Kong Chinese patients. Hong Kong Med. J. = Xianggang yi xue za zhi17, 500–502.
176
Makinson C. D. Tanaka B. S. Sorokin J. M. Wong J. C. Christian C. A. Goldin A. L. et al . (2017). Regulation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron93, 1165–1179.e6. doi: 10.1016/j.neuron.2017.01.031
177
Malcolmson J. Kleyner R. Tegay D. Adams W. Ward K. Coppinger J. et al . (2016). SCN8A mutation in a child presenting with seizures and developmental delays. Cold Spring Harb. Mol. Case Stud.2, a001073. doi: 10.1101/mcs.a001073
178
Malo D. Schurr E. Dorfman J. Canfield V. Levenson R. Gros P. (1991). Three brain sodium channel a-subunit genes are clustered on the proximal segment of mouse chromosome 2. Genomics10, 666–672. doi: 10.1016/0888-7543(91)90450-S
179
Malo M. S. Blanchard B. J. Andresen J. M. Srivastava K. Chen X.-N. Li X. et al . (1994). Localization of a putative human brain sodium channel gene (SCN1A) to chromosome band 2q24. Cytogenet. Genome Res.67, 178–186. doi: 10.1159/000133818
180
Mantegazza M. Gambardella A. Rusconi R. Schiavon E. Annesi F. Cassulini R. R. et al . (2005). Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. U. S. A.102, 18177–18182. doi: 10.1073/pnas.0506818102
181
Marini C. Mei D. Temudo T. Ferrari A. R. Buti D. Dravet C. et al . (2007). Idiopathic Epilepsies with Seizures Precipitated by Fever and SCN1A Abnormalities. Epilepsia48, 1678–1685. doi: 10.1111/j.1528-1167.2007.01122.x
182
Martin H. C. Kim G. E. Pagnamenta A. T. Murakami Y. Carvill G. L. Meyer E. et al . (2014). Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet.23, 3200–3211. doi: 10.1093/hmg/ddu030
183
Mason E. R. Wu F. Patel R. R. Xiao Y. Cannon S. C. Cummins T. R. (2019). Resurgent and gating pore currents induced by De Novo SCN2A epilepsy mutations. eNeuro6, 1–17, ENEURO.0141–19.2019. doi: 10.1523/ENEURO.0141-19.2019
184
Mason E. R. Cummins T. R. (2020). Differential inhibition of human Nav1.2 resurgent and persistent sodium currents by cannabidiol and GS967. Int. J. Mol. Sci.21, 1–21. doi: 10.3390/ijms21072454
185
Matalon D. Goldberg E. Medne L. Marsh E. D. (2014). Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord.16, 13–18. doi: 10.1684/epd.2014.0641
186
McMichael G. Bainbridge M. N. Haan E. Corbett M. Gardner A. Thompson S. et al . (2015). Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol. Psychiatry20, 176–182. doi: 10.1038/mp.2014.189
187
McNally M. A. Johnson J. Huisman T. A. Poretti A. Baranano K. W. Baschat A. A. et al . (2016). SCN8A Epileptic Encephalopathy: Detection of Fetal Seizures Guides Multidisciplinary Approach to Diagnosis and Treatment. Pediatr. Neurol.64, 87–91. doi: 10.1016/j.pediatrneurol.2016.08.003
188
Mei D. Parrini E. Marini C. Guerrini R. (2017). The Impact of Next- Generation Sequencing on the Diagnosis and Treatment of Epilepsy in Paediatric Patients. Mol. Diagnosis Ther.21, 357–373. doi: 10.1007/s40291-017-0257-0
189
Meisler M. H. O’Brien J. E. Sharkey L. M. (2010). Sodium channel gene family: Epilepsy mutations, gene interactions and modifier effects. J. Physiol.588, 1841–1848. doi: 10.1113/jphysiol.2010.188482
190
Meng H. Xu H. Q. Yu L. Lin G. W. He N. Su T. et al . (2015). The SCN1A Mutation Database: Updating Information and Analysis of the Relationships among Genotype, Functional Alteration, and Phenotype. Hum. Mutat.36, 573–580. doi: 10.1002/humu.22782
191
Mercimek-Mahmutoglu S. Patel J. Cordeiro D. Hewson S. Callen D. Donner E. J. et al . (2015). Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia56, 707–716. doi: 10.1111/epi.12954
192
Misra S. N. Kahlig K. M. George A. L. (2008). Impaired Na V 1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia49, 1535–1545. doi: 10.1111/j.1528-1167.2008.01619.x
193
Miyatake S. Kato M. Sawaishi Y. Saito T. Nakashima M. Mizuguchi T. et al . (2018). Recurrent SCN3A p.Ile875Thr variant in patients with polymicrogyria. Ann. Neurol.84, 159–161. doi: 10.1002/ana.25256
194
Møller R. S. Larsen L. H. G. Johannesen K. M. Talvik I. Talvik T. Vaher U. et al . (2016). Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol. Syndromol.7, 210–219. doi: 10.1159/000448369
195
Morano A. Fanella M. Albini M. Cifelli P. Palma E. Giallonardo A. T. et al . (2020). Cannabinoids in the treatment of epilepsy: Current status and future prospects. Neuropsychiatr. Dis. Treat.16, 381–396. doi: 10.2147/NDT.S203782
196
Morimoto M. Mazaki E. Nishimura A. Chiyonobu T. Sawai Y. Murakami A. et al . (2006). SCN1A Mutation Mosaicism in a Family with Severe Myoclonic Epilepsy in Infancy. Epilepsia47, 1732–1736. doi: 10.1111/j.1528-1167.2006.00645.x
197
Mulley J. C. Hodgson B. McMahon J. M. Iona X. Bellows S. Mullen S. A. et al . (2013). Role of the sodium channel SCN9A in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia54, e122–e126. doi: 10.1111/epi.12323
198
Musto E. Gardella E. Møller R. S. (2020). Recent advances in treatment of epilepsy-related sodium channelopathies. Eur. J. Paediatr. Neurol.24, 123–128. doi: 10.1016/j.ejpn.2019.12.009
199
Myers K. A. Burgess R. Afawi Z. Damiano J. A. Berkovic S. F. Hildebrand M. S. et al . (2017a). De novo SCN1A pathogenic variants in the GEFS+ spectrum: Not always a familial syndrome. Epilepsia58, e26–e30. doi: 10.1111/epi.13649
200
Myers K. A. McMahon J. M. Mandelstam S. A. Mackay M. T. Kalnins R. M. Leventer R. J. et al . (2017b). Fatal Cerebral Edema With Status Epilepticus in Children With Dravet Syndrome: Report of 5 Cases. Pediatrics139, e20161933. doi: 10.1542/peds.2016-1933
201
Nabbout R. Gennaro E. Dalla Bernardina B. Dulac O. Madia F. Bertini E. et al . (2003). Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology60, 1961–1967. doi: 10.1212/01.WNL.0000069463.41870.2F
202
Nabbout R. Copioli C. Chipaux M. Chemaly N. Desguerre I. Dulac O. et al . (2011). Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: A prospective pilot study. Epilepsia52, 54–57. doi: 10.1111/j.1528-1167.2011.03107.x
203
Nakamura K. Kato M. Osaka H. Yamashita S. Nakagawa E. Haginoya K. et al . (2013). Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology81, 992–998. doi: 10.1212/WNL.0b013e3182a43e57
204
Need A. C. Shashi V. Hitomi Y. Schoch K. Shianna K. V. McDonald M. T. et al . (2012). Clinical application of exome sequencing in undiagnosed genetic conditions. J. Med. Genet.49, 353–361. doi: 10.1136/jmedgenet-2012-100819
205
Ng S. B. Buckingham K. J. Lee C. Bigham A. W. Tabor H. K. Dent K. M. et al . (2010). Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet.42, 30–35. doi: 10.1038/ng.499
206
Nguyen H. M. Goldin A. L. (2010). Sodium channel carboxyl-terminal residue regulates fast inactivation. J. Biol. Chem.285, 9077–9089. doi: 10.1074/jbc.M109.054940
207
Nicita F. Spalice A. Papetti L. Ursitti F. Parisi P. Gennaro E. et al . (2010). Genotype-phenotype correlations in a group of 15 SCN1A-mutated italian patients with GEFS+ spectrum (seizures plus, classical and borderline severe myoclonic epilepsy of infancy). J. Child Neurol.25, 1369–1376. doi: 10.1177/0883073810365737
208
Nishri D. Blumkin L. Lev D. Leshinsky-Silver E. Abu-Rashid M. Birch R. et al . (2010). Hepatic coma culminating in severe brain damage in a child with a SCN1A mutation. Eur. J. Paediatr. Neurol.14, 456–459. doi: 10.1016/j.ejpn.2010.03.002
209
Noujaim S. F. Kaur K. Milstein M. Jones J. M. Furspan P. Jiang D. et al . (2012). A null mutation of the neuronal sodium channel Na V 1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart. FASEB J.26, 63–72. doi: 10.1096/fj.10-179770
210
Oates S. Tang S. Rosch R. Lear R. Hughes E. F. Williams R. E. et al . (2018). Incorporating epilepsy genetics into clinical practice: A 360°evaluation. NPJ Genomic Med.3, 13. doi: 10.1038/s41525-018-0052-9
211
O’Brien J. E. Sharkey L. M. Vallianatos C. N. Han C. Blossom J. C. Yu T. et al . (2012). Interaction of Voltage-gated Sodium Channel Na v 1.6 ( SCN8A ) with Microtubule-associated Protein Map1b. J. Biol. Chem.287, 18459–18466. doi: 10.1074/jbc.M111.336024
212
Oelstrom K. Goldschen-ohm M. P. Holmgren M. Chanda B. (2014). Evolutionarily conserved intracellular gate of voltage-dependent sodium channels. Nat. Commun.5, 1–9. doi: 10.1038/ncomms4420
213
Ogiwara I. Ito K. Sawaishi Y. Osaka H. Mazaki E. Inoue I. et al . (2009). De novo mutations of voltage-gated sodium channel αiI gene SCN2A in intractable epilepsies. Neurology73, 1046–1053. doi: 10.1212/WNL.0b013e3181b9cebc
214
Ohashi T. Akasaka N. Kobayashi Y. Magara S. Kawashima H. Matsumoto N. et al . (2014). Infantile epileptic encephalopathy with a hyperkinetic movement disorder and hand stereotypies associated with a novel SCN1A mutation. Epileptic Disord.16, 208–212. doi: 10.1684/epd.2014.0649
215
Ohba C. Kato M. Takahashi S. Lerman-Sagie T. Lev D. Terashima H. et al . (2014). Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia55, 994–1000. doi: 10.1111/epi.12668
216
Ohmori I. Kahlig K. M. Rhodes T. H. Wang D. W. George A. L. (2006). Nonfunctional SCN1A Is Common in Severe Myoclonic Epilepsy of Infancy. Epilepsia47, 1636–1642. doi: 10.1111/j.1528-1167.2006.00643.x
217
Oliva M. Berkovic S. F. Petrou S. (2012). Sodium channels and the neurobiology of epilepsy. Epilepsia53, 1849–1859. doi: 10.1111/j.1528-1167.2012.03631.x
218
Oliva M. K. Mcgarr T. C. Beyer B. J. Gazina E. Kaplan D. II Cordeiro L. et al . (2014). Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsy. Neurobiol. Dis.67, 180–190. doi: 10.1016/j.nbd.2014.03.007
219
Olson H. E. Tambunan D. LaCoursiere C. Goldenberg M. Pinsky R. Martin E. et al . (2015). Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am. J. Med. Genet. Part A167, 2017–2025. doi: 10.1002/ajmg.a.37132
220
Orrico A. Galli L. Grosso S. Buoni S. Pianigiani R. Balestri P. et al . (2009). Mutational analysis of the SCN1A, SCN1B and GABRG2 genes in 150 Italian patients with idiopathic childhood epilepsies. Clin. Genet.75, 579–581. doi: 10.1111/j.1399-0004.2009.01155.x
221
Orsini A. Zara F. Striano P. (2018). Recent advances in epilepsy genetics. Neurosci. Lett.667, 4–9. doi: 10.1016/j.neulet.2017.05.014
222
Ortiz Madinaveitia S. Serrano Madrid M. L. Conejo Moreno D. Sagarra Mur D. Jiménez Corral C. Gutiérrez Álvarez Á.M. (2017). Encefalopatía epiléptica de inicio precoz en un paciente con mutación en SCN8A. Rev. Neurol.65, 572. doi: 10.33588/rn.6512.2017426
223
Pan Y. Cummins T. R. (2020). Distinct functional alterations in SCN8A epilepsy mutant channels. J. Physiol.598, 381–401. doi: 10.1113/JP278952
224
Parrini E. Marini C. Mei D. Galuppi A. Cellini E. Pucatti D. et al . (2017). Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. Hum. Mutat.38, 216–225. doi: 10.1002/humu.23149
225
Patel R. R. Barbosa C. Brustovetsky T. Brustovetsky N. Cummins T. R. (2016). Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain139, 2164–2181. doi: 10.1093/brain/aww129
226
Payandeh J. Gamal El-Din T. M. Scheuer T. Zheng N. Catterall W. A. (2012). Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature486, 135–139. doi: 10.1038/nature11077
227
Perucca P. Perucca E. (2019). Identifying mutations in epilepsy genes:Impact on treatment selection. Epilepsy Res.152, 18–30. doi: 10.1016/j.eplepsyres.2019.03.001
228
Pescucci C. Caselli R. Grosso S. Mencarelli M. A. Mari F. Farnetani M. A. et al . (2007). 2q24–q31 Deletion: Report of a case and review of the literature. Eur. J. Med. Genet.50, 21–32. doi: 10.1016/j.ejmg.2006.09.001
229
Peters C. H. Sokolov S. Rajamani S. Ruben P. C. (2013). Effects of the antianginal drug, ranolazine, on the brain sodium channel NaV1.2 and its modulation by extracellular protons. Br. J. Pharmacol.169, 704–716. doi: 10.1111/bph.12150
230
Petrelli C. Passamonti C. Cesaroni E. Mei D. Guerrini R. Zamponi N. et al . (2012). Early clinical features in Dravet syndrome patients with and without SCN1A mutations. Epilepsy Res.99, 21–27. doi: 10.1016/j.eplepsyres.2011.10.010
231
Pons L. Lesca G. Sanlaville D. Chatron N. Labalme A. Manel V. et al . (2018). Neonatal tremor episodes and hyperekplexia-like presentation at onset in a child with SCN8A developmental and epileptic encephalopathy. Epileptic Disord.20, 289–294. doi: 10.1684/epd.2018.0988
232
Petrovski S. Wang Q. Heinzen E. L. Allen A. S. Goldstein D. B. (2013). Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes. PloS Genet.9, 1–13. doi: 10.1371/journal.pgen.1003709
233
Plummer N. W. McBurney M. W. Meisler M. H. (1997). Alternative Splicing of the Sodium Channel SCN8A Predicts a Truncated Two-domain Protein in Fetal Brain and Non-neuronal Cells. J. Biol. Chem.272, 24008–24015. doi: 10.1074/jbc.272.38.24008
234
Poryo M. Clasen O. Oehl-Jaschkowitz B. Christmann A. Gortner L. Meyer S. (2017). Dravet syndrome: a new causative SCN1A mutation? Clin. Case Rep.5, 613–615. doi: 10.1002/ccr3.787
235
Ranza E. Z’Graggen W. Lidgren M. Beghetti M. Guipponi M. Antonarakis S. E. et al . (2020). SCN8A heterozygous variants are associated with anoxic-epileptic seizures. Am. J. Med. Genet. Part A.. doi: 10.1002/ajmg.a.61513
236
Rauch A. Wieczorek D. Graf E. Wieland T. Endele S. Schwarzmayr T. et al . (2012). Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet380, 1674–1682. doi: 10.1016/S0140-6736(12)61480-9
237
Raymond G. Wohler E. Dinsmore C. Cox J. Johnston M. Batista D. et al . (2011). An interstitial duplication at 2q24.3 involving the SCN1A, SCN2A, SCN3A genes associated with infantile epilepsy. Am. J. Med. Genet. Part A155, 920–923. doi: 10.1002/ajmg.a.33929
238
Reif P. S. Tsai M. H. Helbig I. Rosenow F. Klein K. M. (2017). Precision medicine in genetic epilepsies: break of dawn? Expert Rev. Neurother.17, 381–392. doi: 10.1080/14737175.2017.1253476
239
Reyes I. S. Hsieh D. T. Laux L. C. Wilfong A. A. (2011). Alleged Cases of Vaccine Encephalopathy Rediagnosed Years Later as Dravet Syndrome. Pediatrics128. doi: 10.1542/peds.2010-0887
240
Reynolds C. King M. D. Gorman K. M. (2020). The phenotypic spectrum of SCN2A-related epilepsy. Eur. J. Paediatr. Neurol.24, 117–122. doi: 10.1016/j.ejpn.2019.12.016
241
Rhodes T. H. Vanoye C. G. Ohmori I. Ogiwara I. Yamakawa K. George A. L. (2005). Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. J. Physiol.569, 433–445. doi: 10.1113/jphysiol.2005.094326
242
Riban V. Fitzsimons H. L. During M. J. (2009). Gene therapy in epilepsy. Epilepsia50, 24–32. doi: 10.1111/j.1528-1167.2008.01743.x
243
Richards K. L. Milligan C. J. Richardson R. J. Jancovski N. Grunnet M. Jacobson L. H. et al . (2018). Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proc. Natl. Acad. Sci. U.S. A.115, E8077–E8085. doi: 10.1073/pnas.1804764115
244
Rilstone J. J. Coelho F. M. Minassian B. A. Andrade D. M. (2012). Dravet syndrome: Seizure control and gait in adults with different SCN1A mutations. Epilepsia53, 1421–1428. doi: 10.1111/j.1528-1167.2012.03583.x
245
Rim J. H. Kim S. H. Hwang I. S. Kwon S. S. Kim J. Kim H. W. et al . (2018). Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing. BMC Med. Genomics11, 6. doi: 10.1186/s12920-018-0320-7
246
Riva D. Vago C. Pantaleoni C. Bulgheroni S. Mantegazza M. Franceschetti S. (2009). Progressive neurocognitive decline in two children with Dravet syndrome, de novo SCN1A truncations and different epileptic phenotypes. Am. J. Med. Genet. Part A149A, 2339–2345. doi: 10.1002/ajmg.a.33029
247
Rolvien T. Butscheidt S. Jeschke A. Neu A. Denecke J. Kubisch C. et al . (2017). Severe bone loss and multiple fractures in SCN8A-related epileptic encephalopathy. Bone103, 136–143. doi: 10.1016/j.bone.2017.06.025
248
Rossi M. El-Khechen D. Black M. H. Farwell Hagman K. D. Tang S. Powis Z. (2017). Outcomes of Diagnostic Exome Sequencing in Patients With Diagnosed or Suspected Autism Spectrum Disorders. Pediatr. Neurol.70, 34–43.e2. doi: 10.1016/j.pediatrneurol.2017.01.033
249
Rubinstein M. Westenbroek R. E. Yu F. H. Jones C. J. Scheuer T. Catterall W. A. (2015). Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiol. Dis.73, 106–117. doi: 10.1016/j.nbd.2014.09.017
250
Rush A. M. Dib-Hajj S. D. Liu S. Cummins T. R. Black J. A. Waxman S. G. (2018). “A Single Sodium Channel Mutation Produces Hyperor Hypoexcitability In Different Types Of Neurons,” in Chasing Men on Fire (PNAS: The MIT Press), 89–101. doi: 10.7551/mitpress/10310.003.0014
251
Saitoh M. Shinohara M. Hoshino H. Kubota M. Amemiya K. Takanashi J. et al . (2012). Mutations of the SCN1A gene in acute encephalopathy. Epilepsia53, 558–564. doi: 10.1111/j.1528-1167.2011.03402.x
252
Saitoh M. Ishii A. Ihara Y. Hoshino A. Terashima H. Kubota M. et al . (2015a). Missense mutations in sodium channel SCN1A and SCN2A predispose children to encephalopathy with severe febrile seizures. Epilepsy Res.117, 1–6. doi: 10.1016/j.eplepsyres.2015.08.001
253
Saitoh M. Shinohara M. Ishii A. Ihara Y. Hirose S. Shiomi M. et al . (2015b). Clinical and genetic features of acute encephalopathy in children taking theophylline. Brain Dev.37, 463–470. doi: 10.1016/j.braindev.2014.07.010
254
Samanta D. Ramakrishnaiah R. (2015). De novo R853Q mutation of SCN2A gene and West syndrome. Acta Neurol. Belg.115, 773–776. doi: 10.1007/s13760-015-0454-8
255
Sanders S. J. Campbell A. J. Cottrell J. R. Moller R. S. Wagner F. F. Auldridge A. L. et al . (2018). Progress in Understanding and Treating SCN2A –Mediated Disorders. Trends Neurosci.41, 442–456. doi: 10.1016/j.tins.2018.03.011
256
Sands T. T. Choi H. (2017). Genetic Testing in Pediatric Epilepsy. Curr. Neurol. Neurosci. Rep.17, 1–11. doi: 10.1007/s11910-017-0753-y
257
Saxena S. Li S. (2017). Defeating epilepsy: A global public health commitment. Epilepsia Open2, 153–155. doi: 10.1002/epi4.12010
258
Scalmani P. Rusconi R. Armatura E. Zara F. Avanzini G. Franceschetti S. et al . (2006). Effects in neocortical neurons of mutations of the Nav1.2 Na+ channel causing benign familial neonatal-infantile seizures. J. Neurosci.26, 10100–10109. doi: 10.1523/JNEUROSCI.2476-06.2006
259
Schreiber J. M. Tochen L. Brown M. Evans S. Ball L. J. Bumbut A. et al . (2020). A multi-disciplinary clinic for SCN8A-related epilepsy. Epilepsy Res.159, 106261. doi: 10.1016/j.eplepsyres.2019.106261
260
Schwarz N. Hahn A. Bast T. Müller S. Löffler H. Maljevic S. et al . (2016). Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J. Neurol.263, 334–343. doi: 10.1007/s00415-015-7984-0
261
Schiavon E. Sacco T. Cassulini R. R. Gurrola G. Tempia F. Possani L. D. et al . (2006). Resurgent Current and Voltage Sensor Trapping Enhanced Activation by a b-Scorpion Toxin Solely in Na v 1.6 Channel. J. Biol. Chem.281, 20326–20337. doi: 10.1074/jbc.M600565200
262
Sharkey L. M. Jones J. M. Hedera P. Meisler M. H. (2009). Evaluation of SCN8A as a candidate gene for autosomal dominant essential tremor. Park. Relat. Disord.15, 321–323. doi: 10.1016/j.parkreldis.2008.06.010
263
Sheets P. L. Heers C. Stoehr T. Cummins T. R. (2008). Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2- (acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J. Pharmacol. Exp. Ther.326, 89–99. doi: 10.1124/jpet.107.133413
264
Shen H. Zhou Q. Pan X. Li Z. Wu J. Yan N. (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science355, 1–12. doi: 10.1126/science.aal4326
265
Shi X. Yasumoto S. Nakagawa E. Fukasawa T. Uchiya S. Hirose S. (2009). Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev.31, 758–762. doi: 10.1016/j.braindev.2009.08.009
266
Shi X. Y. Tomonoh Y. Wang W. Z. Ishii A. Higurashi N. Kurahashi H. et al . (2016). Efficacy of antiepileptic drugs for the treatment of Dravet syndrome with different genotypes. Brain Dev.38, 40–46. doi: 10.1016/j.braindev.2015.06.008
267
Silva J. R. Goldstein S. A. N. (2013). Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: Wild-type skeletal muscle NAv1.4.J. Gen. Physiol.141, 309–321. doi: 10.1085/jgp.201210909
268
Singh N. A. Pappas C. Dahle E. J. Claes L. R. F. Pruess T. H. De Jonghe P. et al . (2009). A Role of SCN9A in Human Epilepsies, As a Cause of Febrile Seizures and As a Potential Modifier of Dravet Syndrome. PloS Genet.5, e1000649. doi: 10.1371/journal.pgen.1000649
269
Singh R. Jayapal S. Goyal S. Jungbluth H. Lascelles K. (2015). Early-onset movement disorder and epileptic encephalopathy due to de novo dominant SCN8A mutation. Seizure26, 69–71. doi: 10.1016/j.seizure.2015.01.017
270
Skjei K. L. Church E. W. Harding B. N. Santi M. Holland-Bouley K. D. Clancy R. R. et al . (2015). Clinical and histopathological outcomes in patients with SCN1A mutations undergoing surgery for epilepsy. J. Neurosurg. Pediatr.16, 668–674. doi: 10.3171/2015.5.PEDS14551
271
Smith R. S. Kenny C. J. Ganesh V. Jang A. Borges-Monroy R. Partlow J. N. et al . (2018). Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. Neuron99, 905–913.e7. doi: 10.1016/j.neuron.2018.07.052
272
Spampanato J. (2004). A Novel Epilepsy Mutation in the Sodium Channel SCN1A Identifies a Cytoplasmic Domain for Subunit Interaction. J. Neurosci.24, 10022–10034. doi: 10.1523/JNEUROSCI.2034-04.2004
273
Sone D. Sugawara T. Sakakibara E. Tomioka Y. Taniguchi G. Murata Y. et al . (2012). A case of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) coexisting with pervasive developmental disorder harboring SCN1A mutation in addition to CHRNB2 mutation. Epilepsy Behav.25, 192–195. doi: 10.1016/j.yebeh.2012.07.027
274
Stoke Therapeutics (2018). Stoke Therapeutics Presents Data Showing Single Dose of ASO Therapy Restores Normal Protein Levels in Animal Model of Genetic Epilepsy. Available at: https://www.stoketherapeutics.com/press-releases/stoketherapeutics-presents-data-showing-single-dose-of-aso-therapy-restoresnormal-protein-levels-in-animal-model-of-genetic-epilepsy/ (Accessed December 2, 2020).
275
Sprissler R. S. Wagnon J. L. Bunton-Stasyshyn R. K. Meisler M. H. Hammer M. F. (2017). Altered gene expression profile in a mouse model of SCN8A encephalopathy. Exp. Neurol.288, 134–141. doi: 10.1016/j.expneurol.2016.11.002
276
Striano P. Bordo L. Lispi M. L. Specchio N. Minetti C. Vigevano F. et al . (2006). A novel SCN2A mutation in family with benign familial infantile seizures. Epilepsia47, 218–220. doi: 10.1111/j.1528-1167.2006.00392.x
277
Su D. J. Lu J. F. Lin L. J. Liang J. S. Hung K. L. (2018). SCN2A mutation in an infant presenting with migrating focal seizures and infantile spasm responsive to a ketogenic diet. Brain Dev.40, 724–727. doi: 10.1016/j.braindev.2018.03.005
278
Sugawara T. Mazaki-Miyazaki E. Fukushima K. Shimomura J. Fujiwara T. Hamano S. et al . (2002). Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology58, 1122–1124. doi: 10.1212/WNL.58.7.1122
279
Sugiura Y. Ogiwara I. Hoshi A. Yamakawa K. Ugawa Y. (2012). Different degrees of loss of function between GEFS+ and SMEI Na v1.1 missense mutants at the same residue induced by rescuable folding defects. Epilepsia53, 111–114. doi: 10.1111/j.1528-1167.2012.03467.x
280
Sun G. Werkman T. R. Battefeld A. Clare J. J. Wadman W. J. (2007). Carbamazepine and Topiramate Modulation of Transient and Persistent Sodium Currents Studied in HEK293 Cells Expressing the Na v 1.3?? Subunit. Epilepsia48, 774–782. doi: 10.1111/j.1528-1167.2007.01001.x
281
Sun H. Zhang Y. Liang J. Liu X. Ma X. Qin J. et al . (2008). Seven novel SCN1A mutations in Chinese patients with severe myoclonic epilepsy of infancy. Epilepsia49, 1104–1107. doi: 10.1111/j.1528-1167.2008.01549_2.x
282
Sun H. Zhang Y. Liu X. Ma X. Yang Z. Qin J. et al . (2010). Analysis of SCN1A mutation and parental origin in patients with Dravet syndrome. J. Hum. Genet.55, 421–427. doi: 10.1038/jhg.2010.39
283
Sun W. Wagnon J. L. Mahaffey C. L. Briese M. Ule J. Frankel W. N. (2013). Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J. Physiol.591, 241–255. doi: 10.1113/jphysiol.2012.240168
284
Syrbe S. Zhorov B. S. Bertsche A. Bernhard M. K. Hornemann F. Mütze U. et al . (2016). Phenotypic Variability from Benign Infantile Epilepsy to Ohtahara Syndrome Associated with a Novel Mutation in SCN2A. Mol. Syndromol.7, 182–188. doi: 10.1159/000447526
285
Tai C. Abe Y. Westenbroek R. E. Scheuer T. Catterall W. A. (2014). Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc. Natl. Acad. Sci. U. S. A.111, 3139–3148. doi: 10.1073/pnas.1411131111
286
Takahashi S. Yamamoto S. Okayama A. Araki A. Saitsu H. Matsumoto N. et al . (2015). Electroclinical features of epileptic encephalopathy caused by SCN8A mutation. Pediatr. Int.57, 758–762. doi: 10.1111/ped.12622
287
Tan N.-N. Tang H.-L. Lin G.-W. Chen Y.-H. Lu P. Li H.-J. et al . (2017). Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity. Mol. Neurobiol.54, 2831–2842. doi: 10.1007/s12035-016-9871-9
288
Thijs R. D. Surges R. O’Brien T. J. Sander J. W. (2019). Epilepsy in adults. Lancet393, 689–701. doi: 10.1016/S0140-6736(18)32596-0
289
Thomas R. H. Berkovic S. F. (2014). The hidden genetics of epilepsy – A clinically important new paradigm. Nat. Rev. Neurol.10, 283–292. doi: 10.1038/nrneurol.2014.62
290
Tibery D. V. Campos L. A. Mourão C. B. F. Peigneur S. Tytgat J. Schwartz E. F. et al . (2019). Electrophysiological characterization of Tityus obscurus b toxin 1 (To1) on Na+-channel isoforms. Biochim. Biophys. Acta - Biomembr.1861, 142–150. doi: 10.1016/j.bbamem.2018.08.005
291
Tiefes A. M. Hartlieb T. Tacke M. von Stülpnagel-Steinbeis C. Larsen L. H. G. Hao Q. et al . (2019). Mesial Temporal Sclerosis in SCN1A -Related Epilepsy: Two Long-Term EEG Case Studies. Clin. EEG Neurosci.50, 267–272. doi: 10.1177/1550059418794347
292
Tonekaboni S. H. Ebrahimi A. Bakhshandeh Bali M. K. Taheri Otaghsara S. M. Houshmand M. Nasehi M. M. et al . (2013). Sodium channel gene mutations in Children with GEFS+ and Dravet syndrome: A cross sectional study. Iran. J. Child Neurol.7, 31–36. doi: 10.22037/ijcn.v7i2.4074
293
Trivisano M. Pavia G. C. Ferretti A. Fusco L. Vigevano F. Specchio N. (2019). Generalized tonic seizures with autonomic signs are the hallmark of SCN8A developmental and epileptic encephalopathy. Epilepsy Behav.96, 219–223. doi: 10.1016/j.yebeh.2019.03.043
294
Trujillano D. Bertoli-Avella A. M. Kumar Kandaswamy K. Weiss M. E. Köster J. Marais A. et al . (2017). Clinical exome sequencing: Results from 2819 samples reflecting 1000 families. Eur. J. Hum. Genet.25, 176–182. doi: 10.1038/ejhg.2016.146
295
Trump N. McTague A. Brittain H. Papandreou A. Meyer E. Ngoh A. et al . (2016). Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J. Med. Genet.53, 310–317. doi: 10.1136/jmedgenet-2015-103263
296
Tsang M. H.-Y. Leung G. K.-C. Ho A. C.-C. Yeung K.-S. Mak C. C.-Y. Pei S. L.-C. et al . (2019). Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open4, 63–72. doi: 10.1002/epi4.12282
297
U.S. Food and Drug Administration [website] (2018). FDA Approves First Drug Comprised of an Active Ingredient Derived from Marijuana to Treat Rare, Severe Forms of Epilepsy. Available at: https://www.fda.gov/news-events/pressannouncements/fda-approves-first-drug-comprised-active-ingredientderived-marijuana-treat-rare-severe-forms (Accessed March 7, 2020).
298
Usluer S. Salar S. Arslan M. Yiş U. Kara B. Tektürk P. et al . (2016). SCN1A gene sequencing in 46 Turkish epilepsy patients disclosed 12 novel mutations. Seizure39, 34–43. doi: 10.1016/j.seizure.2016.05.008
299
Vaher U. Nõukas M. Nikopensius T. Kals M. Annilo T. Nelis M. et al . (2013). De Novo SCN8A Mutation Identified by Whole-Exome Sequencing in a Boy With Neonatal Epileptic Encephalopathy, Multiple Congenital Anomalies, and Movement Disorders. J. Child Neurol.29, NP202–NP206. doi: 10.1177/0883073813511300
300
Vanoye C. G. Gurnett C. A. Holland K. D. George A. L. Kearney J. A. (2014). Novel SCN3A variants associated with focal epilepsy in children. Neurobiol. Dis.62, 313–322. doi: 10.1016/j.nbd.2013.10.015
301
Vecchi M. Cassina M. Casarin A. Rigon C. Drigo P. De Palma L. et al . (2011). Infantile epilepsy associated with mosaic 2q24 duplication including SCN2A and SCN3A. Seizure20, 813–816. doi: 10.1016/j.seizure.2011.07.008
302
Veeramah K. R. O’Brien J. E. Meisler M. H. Cheng X. Dib-Hajj S. D. Waxman S. G. et al . (2012). De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet.90, 502–510. doi: 10.1016/j.ajhg.2012.01.006
303
Veeramah K. R. Johnstone L. Karafet T. M. Wolf D. Sprissler R. Salogiannis J. et al . (2013). Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia54, 1270–1281. doi: 10.1111/epi.12201
304
Verbeek N. E. van Kempen M. Gunning W. B. Renier W. O. Westland B. Lindhout D. et al . (2011). Adults with a history of possible Dravet syndrome: An illustration of the importance of analysis of the SCN1A gene. Epilepsia52, e23–e25. doi: 10.1111/j.1528-1167.2011.02982.x
305
Verbeek N. E. van der Maas N. A. T. Jansen F. E. van Kempen M. J. A. Lindhout D. Brilstra E. H. (2013). Prevalence of SCN1A-Related Dravet Syndrome among Children Reported with Seizures following Vaccination: A Population-Based Ten-Year Cohort Study. PloS One8, e65758. doi: 10.1371/journal.pone.0065758
306
Verret L. Mann E. O. Hang G. B. Barth A. M. I. I. Cobos I. Ho K. et al . (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in alzheimer model. Cell149, 708–721. doi: 10.1016/j.cell.2012.02.046
307
Villeneuve N. Laguitton V. Viellard M. Lépine A. Chabrol B. Dravet C. et al . (2014). Cognitive and adaptive evaluation of 21 consecutive patients with Dravet syndrome. Epilepsy Behav.31, 143–148. doi: 10.1016/j.yebeh.2013.11.021
308
Volkers L. Kahlig K. M. Verbeek N. E. Das J. H. G. van Kempen M. J. A. Stroink H. et al . (2011). Na v1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome. Eur. J. Neurosci.34, 1268–1275. doi: 10.1111/j.1460-9568.2011.07826.x
309
Wagnon J. L. Meisler M. H. (2015). Recurrent and non-recurrent mutations of SCN8A in epileptic encephalopathy. Front. Neurol.6, 104. doi: 10.3389/fneur.2015.00104
310
Wagnon J. L. Barker B. S. Hounshell J. A. Haaxma C. A. Shealy A. Moss T. et al . (2016). Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann. Clin. Transl. Neurol.3, 114–123. doi: 10.1002/acn3.276
311
Wagnon J. L. Barker B. S. Ottolini M. Park Y. Volkheimer A. Valdez P. et al . (2017). Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol. Genet.3, e170. doi: 10.1212/NXG.0000000000000170
312
Wallace R. H. Scheffer I. E. Barnett S. Richards M. Dibbens L. Desai R. R. et al . (2001). Neuronal sodium-channel β1-subunit mutations in generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet.68, 859–865. doi: 10.1086/319516
313
Wang J. W. Shi X. Y. Kurahashi H. Hwang S. K. Ishii A. Higurashi N. et al . (2012). Prevalence of SCN1A mutations in children with suspected Dravet syndrome and intractable childhood epilepsy. Epilepsy Res.102, 195–200. doi: 10.1016/j.eplepsyres.2012.06.006
314
Wang J. Gao H. Bao X. Zhang Q. Li J. Wei L. et al . (2017a). SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures. BMC Med. Genet.18, 104. doi: 10.1186/s12881-017-0460-1
315
Wang Y. Du X. Bin R. Yu S. Xia Z. Zheng G. et al . (2017b). Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing. Sci. Rep.7, 40319. doi: 10.1038/srep40319
316
Waxman S. G. Hains B. C. (2006). Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci.29, 207–215. doi: 10.1016/j.tins.2006.02.003
317
Weber Y. G. Nies A. T. Schwab M. Lerche H. (2014). Genetic Biomarkers in Epilepsy. Neurotherapeutics11, 324–333. doi: 10.1007/s13311-014-0262-5
318
Weiss L. A. Escayg A. Kearney J. A. Trudeau M. MacDonald B. T. Mori M. et al . (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol. Psychiatry8, 186–194. doi: 10.1038/sj.mp.4001241
319
Wengert E. R. Tronhjem C. E. Wagnon J. L. Johannesen K. M. Petit H. Krey I. et al . (2019). Biallelic inherited SCN8A variants, a rare cause of SCN8A -related developmental and epileptic encephalopathy. Epilepsia60, 2277–2285. doi: 10.1111/epi.16371
320
Weuring W. J. Singh S. Volkers L. Rook M. B. Van’t Slot R. H. Bosma M. et al . (2020). NaV1.1 and NaV1.6 selective compounds reduce the behavior phenotype and epileptiform activity in a novel zebrafish model for Dravet syndrome. PloS One15, 1–17. doi: 10.1371/journal.pone.0219106
321
Whitaker W. R. J. Clare J. J. Powell A. J. Chen Y. H. Faull R. L. M. Emson P. C. (2000). Distribution of voltage-gated sodium channel?-subunit and?-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J. Comp. Neurol.422, 123–139. doi: 10.1002/(SICI)1096-9861(20000619)422:1<123::AID-CNE8>3.0.CO;2-X
322
Willemsen M. H. Rensen J. H. M. van Schrojenstein-Lantman de Valk H. M. J. Hamel B. C. J. Kleefstra T. (2012). Adult Phenotypes in Angelman- and Rett-Like Syndromes. Mol. Syndromol.2, 217–234. doi: 10.1159/000335661
323
Wittmack E. K. Rush A. M. Craner M. J. Goldfarb M. Waxman S. G. Dib-Hajj S. D. (2004). Fibroblast growth factor homologous factor 2B: Association with Na v1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J. Neurosci.24, 6765–6775. doi: 10.1523/JNEUROSCI.1628-04.2004
324
Wolff M. Johannesen K. M. Hedrich U. B. S. Masnada S. Rubboli G. Gardella E. et al . (2017). Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain140, 1316–1336. doi: 10.1093/brain/awx054
325
Wong V. C. N. Fung C. W. Kwong A. K. Y. (2015). SCN2A mutation in a Chinese boy with infantile spasm - response to Modified Atkins Diet. Brain Dev.37, 729–732. doi: 10.1016/j.braindev.2014.10.008
326
Wu Y. W. Sullivan J. McDaniel S. S. Meisler M. H. Walsh E. M. Li S. X. et al . (2015). Incidence of dravet syndrome in a US population. Pediatrics136, e1310–e1315. doi: 10.1542/peds.2015-1807
327
Wu Q. Wang H. Fan Y. Y. Zhang J. M. Liu X. Y. Fang X. Y. et al . (2018). Ketogenic diet effects on 52 children with pharmacoresistant epileptic encephalopathy: A clinical prospective study. Brain Behav.8, 1–8. doi: 10.1002/brb3.973
328
Xiao Y. Xiong J. Mao D. Liu L. Li J. Li X. et al . (2018). Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Res.139, 9–13. doi: 10.1016/j.eplepsyres.2017.10.017
329
Xie H. Su W. Pei J. Zhang Y. Gao K. Li J. et al . (2019). De novo SCN1A, SCN8A, and CLCN2 mutations in childhood absence epilepsy. Epilepsy Res.154, 55–61. doi: 10.1016/j.eplepsyres.2019.04.005
330
Xu R. Thomas E. A. Gazina E. V. Richards K. L. Quick M. Wallace R. H. et al . (2007). Generalized epilepsy with febrile seizures plus-associated sodium channel β1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function. Neuroscience148, 164–174. doi: 10.1016/j.neuroscience.2007.05.038
331
Xu X. Zhang Y. Sun H. Liu X. Yang X. Xiong H. et al . (2014). Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev.36, 676–681. doi: 10.1016/j.braindev.2013.10.004
332
Xu X. Yang X. Wu Q. Liu A. Yang X. Ye A. Y. et al . (2015). Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of “ de novo “ SCN1A Mutations in Children with Dravet Syndrome. Hum. Mutat.36, 861–872. doi: 10.1002/humu.22819
333
Yan N. Xin-Hua W. Lin-Mei Z. Yi-Ming C. Wen-Hui L. Yuan-Feng Z. et al . (2018). Prospective study of the efficacy of a ketogenic diet in 20 patients with Dravet syndrome. Seizure60, 144–148. doi: 10.1016/j.seizure.2018.06.023
334
Yang Y.-C. Huang C.-S. Kuo C.-C. (2010). Lidocaine, Carbamazepine, and Imipramine Have Partially Overlapping Binding Sites and Additive Inhibitory Effect on Neuronal Na+ Channels. Anesthesiology113, 160–174. doi: 10.1097/ALN.0b013e3181dc1dd6
335
Yang X. Liu A. Xu X. Yang X. Zeng Q. Ye A. Y. et al . (2017). Genomic mosaicism in paternal sperm and multiple parental tissues in a Dravet syndrome cohort. Sci. Rep.7, 15677. doi: 10.1038/s41598-017-15814-7
336
Yang C. Hua Y. Zhang W. Xu J. Xu L. Gao F. et al . (2018). Variable epilepsy phenotypes associated with heterozygous mutation in the SCN9A gene: report of two cases. Neurol. Sci.39, 1113–1115. doi: 10.1007/s10072-018-3300-y
337
Yordanova I. Todorov T. Dimova P. Hristova D. Tincheva R. Litvinenko I. et al . (2011). One novel Dravet syndrome causing mutation and one recurrent MAE causing mutation in SCN1A gene. Neurosci. Lett.494, 180–183. doi: 10.1016/j.neulet.2011.03.008
338
Young F. (2007). When adaptive processes go awry: gain-of-function in SCN9A. Clin. Genet.73, 34–36. doi: 10.1111/j.1399-0004.2007.00922.x
339
Yu F. H. Mantegazza M. Westenbroek R. E. Robbins C. A. Kalume F. Burton K. A. et al . (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci.9, 1142–1149. doi: 10.1038/nn1754
340
Yu M.-J. Shi Y.-W. Gao M.-M. Deng W.-Y. Liu X.-R. Chen L. et al . (2010). Milder phenotype with SCN1A truncation mutation other than SMEI. Seizure19, 443–445. doi: 10.1016/j.seizure.2010.06.010
341
Zaman T. Helbig I. Božović I. B. DeBrosse S. D. Bergqvist A. C. Wallis K. et al . (2018). Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann. Neurol.83, 703–717. doi: 10.1002/ana.25188
342
Zaman T. Abou Tayoun A. Goldberg E. M. (2019). A single-center SCN8A- related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann. Clin. Transl. Neurol.6. doi: 10.1002/acn3.50839. acn3.50839.
343
Zara F. Specchio N. Striano P. Robbiano A. Gennaro E. Paravidino R. et al . (2013). Genetic testing in benign familial epilepsies of the first year of life: Clinical and diagnostic significance. Epilepsia54, 425–436. doi: 10.1111/epi.12089
344
Zhang X. Ren W. Decaen P. Yan C. Tao X. Tang L. et al . (2012). Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature486, 130–135. doi: 10.1038/nature11054
345
Zhang Y. Kong W. Gao Y. Liu X. Gao K. Xie H. et al . (2015). Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities. PloS One10, e0141782. doi: 10.1371/journal.pone.0141782
346
Zhang S. Zhang Z. Shen Y. Zhu Y. Du K. Guo J. et al . (2020). SCN9A Epileptic Encephalopathy Mutations Display a Gain-of-function Phenotype and Distinct Sensitivity to Oxcarbazepine. Neurosci. Bull.36, 11–24. doi: 10.1007/s12264-019-00413-5
347
Zhang F. Wu Y. Zou X. Tang Q. Zhao F. Cao Z. (2019). BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int. J. Mol. Sci.20, 729. doi: 10.3390/ijms20030729
348
Zhang T. Chen M. Zhu A. Zhang X. Fang T. (2020). Novel mutation of SCN9A gene causing generalized epilepsy with febrile seizures plus in a Chinese family. Neurol. Sci.41, 1913–1917. doi: 10.1007/s10072-020-04284-x
349
Zhou P. He N. Zhang J. W. Lin Z. J. Wang J. Yan L. M. et al . (2018). Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes Brain Behav.17, e12456. doi: 10.1111/gbb.12456
350
Ziobro J. Eschbach K. Sullivan J. E. Knupp K. G. (2018). Current Treatment Strategies and Future Treatment Options for Dravet Syndrome. Curr. Treat. Options Neurol.20, 1–15. doi: 10.1007/s11940-018-0537-y
351
Zuberi S. M. Brunklaus A. Birch R. Reavey E. Duncan J. Forbes G. H. (2011). Genotype-phenotype associations in SCN1A-related epilepsies. Neurology76, 594–600. doi: 10.1212/WNL.0b013e31820c309b
352
Zucca C. Redaelli F. Epifanio R. Zanotta N. Romeo A. Lodi M. et al . (2008). Cryptogenic Epileptic Syndromes Related to SCN1A. Arch. Neurol.65, 489. doi: 10.1001/archneur.65.4.489
Summary
Keywords
channelopathies, epilepsy, ion channel, mutation, sodium channel
Citation
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LdA and Schwartz EF (2020) Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front. Pharmacol. 11:1276. doi: 10.3389/fphar.2020.01276
Received
21 April 2020
Accepted
31 July 2020
Published
18 August 2020
Volume
11 - 2020
Edited by
Jean-Marc Sabatier, Aix-Marseille Université, France
Reviewed by
Rikke Steensbjerre Møller, Filadelfia, Denmark; Roope Mannikko, University College London, United Kingdom; Theodore R. Cummins, Indiana University Bloomington, United States
Updates
Copyright
© 2020 Menezes, Sabiá Júnior, Tibery, Carneiro and Schwartz.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: Elisabeth Ferroni Schwartz, efschwa@unb.br
This article was submitted to Pharmacology of Ion Channels and Channelopathies, a section of the journal Frontiers in Pharmacology
Disclaimer
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.