REVIEW article

Front. Pharmacol., 18 August 2020

Sec. Pharmacology of Ion Channels and Channelopathies

Volume 11 - 2020 | https://doi.org/10.3389/fphar.2020.01276

Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review

  • 1. Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil

  • 2. Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil

  • 3. Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil

Article metrics

View details

132

Citations

32,7k

Views

6,5k

Downloads

Abstract

Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.

Introduction

Epilepsy is a disease known worldwide, affecting around 70 million people in the world (Thijs et al., 2019). It has been considered a disease and no longer a disorder or a family of disorders since 2014 by International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) (Falco-Walter et al., 2018). Epilepsy is conceptually defined as a disease in which an individual has at least two unprovoked or reflex seizures in a period greater than 24 h apart, one unprovoked or reflex seizure and a probability of having another seizure similar to the general recurrence risk after two unprovoked seizures (greater than or equal to 60%) over the next ten years or an epilepsy syndrome (Fisher et al., 2014).

When abnormal brain activity begins in one or more identified regions, epilepsy is called focal, whereas, when it occurs in both hemispheres with a wide distribution, it is called generalized. Finally, when it cannot be classified as either focal or generalized, it is called unknown (Devinsky et al., 2018).

Epilepsy can affect anyone, regardless of gender, age, and income levels (Saxena and Li, 2017). Understanding the etiology of epilepsy is crucial for clinical management of patients and for conducting neurobiological research that will direct future therapies (Thomas and Berkovic, 2014). The ILAE Task Force has defined six etiologic categories; they are not hierarchical and more than one might often apply (structural, genetic, infectious, metabolic, immune, and unknown) (Falco-Walter et al., 2018).

Among those genetically caused, it is possible to identify several epilepsy-related genes (Lindy et al., 2018). For example, voltage-gated potassium channel, voltage-gated calcium channel and voltage-gated chloride channel genes, GABA receptors, nicotinic acetylcholine receptors, polymerase (DNA) Gamma genes and voltage-gated sodium channel genes (Deng et al., 2014).

Voltage-gated sodium channels (NaV) can be found mainly in the central nervous system (CNS), peripheral nervous systems (PNS), skeletal, and cardiac muscles (Huang et al., 2017). NaVs are distributed throughout the body and play an important role in the generation and propagation of action potential (Wang et al., 2017b). Structurally, NaVs are composed by an α subunit organized in four homologous ligated domains (DI-DIV), each domain composed by six transmembrane segments (S1-S6), and one or more β subunits associated by non-covalent interactions or disulfide bond (Abdelsayed and Sokolov, 2013; Gilchrist et al., 2013; Catterall, 2017; Bouza and Isom, 2018; Jiang et al., 2020). The domains of an α subunit present a high degree of conservation with each other, presenting the region known as the voltage sensor domains (VSD) located in transmembranes S1-S4, especially S4 helix, which contains positively charged residues, and the pore-forming (PM) domain located in S5-S6 segments, structuring a four VSD around a central pore (Ahern et al., 2016).

The S4 helix of DI, DII, and DIII domains moves faster than the S4 helix of DIV during membrane depolarization, and this asynchronous movement is an essential feature in the steady activation voltage-dependent process, which provokes movement of S4-S5 intracellular links followed by the displacement of the S6 segments to initiate Na+ influx (Goldschen-Ohm et al., 2013; Oelstrom et al., 2014). The movement of the S4 helix of DIV initiates the process of fast inactivation, since the movement of the voltage sensor in domain DIV is associated with the displacement of an intracellular loop between DIII and DIV within an IFM (isoleucine, phenylalanine, and methionine) motif that binds intracellular to PM and terminate Na+ influx (Capes et al., 2013; Clairfeuille et al., 2019). A second type of reversible inactivation occurs after repetitive or prolonged stimulation and results in steady-state inactivation whose asymmetric movement of S6 segments collapses the pore (Payandeh et al., 2012; Zhang et al., 2012; Gamal El-Din et al., 2013; Silva and Goldstein, 2013; Ghovanloo et al., 2016). Consequently, electrophysiological changes such as increased current density, shifting steady-state activation, and inactivation to negative and positive values, respectively, enhanced persistent current, accelerated recovery from inactivation, and delayed fast inactivation can cause gain-of-function (GoF) in the channel. Also, decreased current density, positive shift in steady-state activation, negative shift in steady-state inactivation, and slower recovery from inactivation can cause loss-of-function (LoF) (Mantegazza et al., 2005; Liao et al., 2010; Lossin et al., 2012; Catterall, 2014b; Vanoye et al., 2014; Wagnon et al., 2017; Yang et al., 2018; Zaman et al., 2018; Wengert et al., 2019; Zhang S. et al., 2020).

Currently, there are nine different alpha subtypes of NaVs (NaV1.1-NaV1.9), and mutations in these channels can cause diseases known as channelopathies (Catterall et al., 2010). NaV1.1 (SCN1A), NaV1.2 (SCN2A), NaV1.3 (SCN3A), NaV1.6 (SCN8A) and NaV1.7 (SCN9A) are genes whose mutations are related to epilepsy. So far, there is no correlation of mutations in NaV1.4 (SCN4A), NaV1.5 (SCN5A), NaV1.8 (SCN10A), and NaV1.9 (SCN11A) with epilepsy, which is to be expected, since these channels are mainly expressed in skeletal muscles, cardiac tissues, dorsal root ganglia, trigeminal sensory neurons, nociceptive neurons of the dorsal root and trigeminal ganglia, respectively (Brunklaus et al., 2014). Both α and β subunits (SCN1B) have been reported as the cause of epilepsy phenotype (Meisler et al., 2010; Kaplan et al., 2016).

NaV channels rank amongst the 2% most conserved proteins in the human genome, with an extremely low rate of coding variation, accounting for nearly 5% of known epileptic encephalopathies (Petrovski et al., 2013; Mercimek-Mahmutoglu et al., 2015; Lek et al., 2016; Heyne et al., 2019). Pathogenic mutated residues are situated in the highly evolutionarily conserved portions of the channel: transmembrane segments, intracellular inactivation gate loop, and the proximal 2/3 of the C-terminal domain (Blanchard et al., 2015; Wagnon and Meisler, 2015). The final 1/3 portion of the C-terminal and cytoplasmic interdomain loops 1 and 2 are less conserved (Denis et al., 2019). The proximal 2/3 of the C-terminal are involved in the interaction of several binding sites for proteins and accessory molecules, like beta subunits β1 and β3, fibroblast growth factors (molecules implicated in neural development), calmodulin (regulatory protein in neuronal function and hyperexcitability) and G protein (Bähler and Rhoads, 2002; Spampanato, 2004; Wittmack et al., 2004; Laezza et al., 2009; Yang et al., 2010). Moreover, the C-terminal has been shown to interact with the inactivated channel via ionic interaction between its positively charged residues and negatively charged residues at the inactivation gate. A shift in any of the charges can brake electrostatic interaction and affect normal channel inactivation (Nguyen and Goldin, 2010; Shen et al., 2017; Johnson et al., 2018).

The N-terminal region seems to play a more important role on protein trafficking than on channel activity. This domain interacts with the light chain of microtubule-associated protein MAP1B, facilitating the traffic of the NaV channel to the neuronal cell surface (O’brien et al., 2012; Blanchard et al., 2015). In addition, mutation in the N-terminal leads to protein retention in the endoplasmic reticulum (Sharkey et al., 2009).

Newer genomic approaches, especially next generation sequencing (NGS), improve the rate and reduce the costs associated with genetic epilepsy diagnosis, since traditional cytogenetic and microarray-based tests are lengthy, expensive, and diagnostic yield is incredibly low (Veeramah et al., 2013; Allen et al., 2016; Sands and Choi, 2017; Orsini et al., 2018). The use of gene panels and whole-exome sequencing (WES) provides a powerful tool to change the paradigm of genetic epilepsy diagnosis (Ng et al., 2010; Clark et al., 2018). These techniques have been widely used to elucidate suspected inherited neurological diseases in the last years, contributing to dramatically increase the number of patients diagnosed with genetic epilepsy. Both mendelian and de novo genetic epilepsy can be detected with these methods, but doubtless, de novo mutations are the most prevalent mutations related to epilepsy-related voltage-gated sodium channel mutations.

Gene therapy is promising as an effective approach to treat genetic diseases. Personalized epilepsy therapies are in development and have shown promising results, ranging from antisense oligonucleotides and small peptides to modulation of gene expression through epigenetics (Riban et al., 2009; Tan et al., 2017; Stoke Therapeutics, 2018; Perucca and Perucca, 2019). Even eating habits may be related to an improvement in the patient's clinical condition. Ketogenic diet has been described as an effective treatment in epilepsy (Gardella et al., 2018). Moreover, the combination of traditional antiepileptic drugs with new compounds displayed a synergic and improved efficacy, since these molecules do not compete for the same interaction site (Bialer et al., 2018). Each specific epilepsy-related NaV isoform will be presented and discussed in detail in the following sections.

NaV Mutations

NaV1.1

The SCN1A gene encodes for the α subunit NaV1.1, and is allocated at the 2q24.3 chromosome between 165,984,641 and 166,149,161 base pairs, same gene cluster of SCN2A-SCN3A genes, being the most frequent target of mutation in genetic epilepsy syndromes (OMIM#182389) (Malo et al., 1991; Malo et al., 1994; Catterall et al., 2010). NaV1.1 is widely expressed in the CNS, predominant in inhibitory GABAergic interneurons, regulating neuronal excitability, and the reduction of its activity is one of the factors that cause epileptic diseases due to imbalance between inhibition and excitation (Yu et al., 2006; Verret et al., 2012; Tai et al., 2014; Rubinstein et al., 2015).

Epilepsy syndromes, such as generalized epilepsy with febrile seizures plus (GEFS+; Online Mendelian Inheritance in Man [OMIM] #604233), severe myoclonic epilepsy (SME) and SMEI, also known as Dravet syndrome (OMIM #607208), are associated with mutations in the SCN1A gene (Escayg and Goldin, 2010; Meng et al., 2015; Huang et al., 2017).

In the SCN1A mutation database (http://www.caae.org.cn/gzneurosci/scn1adatabase/data), among 1727 mutations described for the SCN1A gene, 1528 are related to epileptic diseases (Table 1 and for the full description of mutations in the SCN1A gene, see Supplementary Table S1). Among the epilepsy-related mutations, 945 are related to severe myoclonic epilepsy of infancy (SMEI), 263 are related to severe myoclonic epilepsy (SME), 151 are related to severe myoclonic epilepsy borderline (SMEB), 18 are related to partial epilepsy (PE), 31 are related to partial epilepsy and febrile seizures plus (PEFS +), 8 are related to generalized epilepsy (GE), and 55 are related to generalized epilepsy with febrile seizures plus (GEFS +).

Table 1

Variant Location Mutation Disease Alteration on biophysical properties or/and Clinical report Reference
Inherited mutation
A27T N-terminal Missense GEFS+SMEB Diffuse spikes, prevailing in posterior regions (EEG) (Nicita et al., 2010)
L61P N-terminal Missense DS Febrile seizures (Halvorsen et al., 2016)
F63L N-terminal Missense DS Severe developmental delay
Spike and Waves in right fronto-temporal region with spreading (EEG)
(Nicita et al., 2010)
F90S N-terminal Missense DS Multifocal spikes, frontal-dominant spike-waves complex (EEG) (Sun et al., 2008; Wang et al., 2012; Xu et al., 2014; Butler et al., 2017b)
S103G N-terminal Missense SME
DS
Ataxia
Rare-spike wave complex (EEG)
(Fujiwara, 2003; Ebrahimi et al., 2010; Tonekaboni et al., 2013)
S106F N-terminal Missense Focal epilepsy Right temporal parietal occipital slow-wave and generalized spike-wave complex (EEG) (Barba et al., 2014)
M145T DI (S1) Missense Unidentified epilepsy Decrease current density
Shift steady-state inactivation to more positive values
(Mantegazza et al., 2005; Colosimo et al., 2007)
L193F DI (S3) Missense GEFS+ Generalized tonic–clonic seizures (Cui et al., 2011)
V244L DI (S4-S5) Missense DS Myoclonic seizures
Generalized spikes or spike-and-wave complexes in the interictal (EEG)
(Morimoto et al., 2006)
R377Q DI (S5-S6) Missense GEFS+ Generalized tonic-clonic seizures (Zucca et al., 2008; Xu et al., 2015; Cetica et al., 2017; Lindy et al., 2018)
F412I DI (S6) Missense SMEB
GEFS+
Febrile seizure (Ebrahimi et al., 2010; Tonekaboni et al., 2013)
K488EfsX6 DI-DII FrameShift DS NR (Yang et al., 2017)
R542Q DI-DII Missense GEFS+
SME
NR (Escayg et al., 2001; Weiss et al., 2003; Combi et al., 2009; Orrico et al., 2009; Wang et al., 2012; Lee et al., 2014; Lal et al., 2016)
R618C DI-DII Missense PEFS+ Generalized tonic-clonic seizures
Multifocal epilepsy and bilateral bursts of 3-4 Hz spike and wave (EEG)
(Brunklaus et al., 2015)
Y790C DII (S1-S2) Missense GEFS+ Decreased current density
Decreased of cell surface expression
(Annesi et al., 2003; Orrico et al., 2009; Bechi et al., 2015; Bennett et al., 2017)
R859H DII (S4) Missense GEFS+ Shift steady state activation and inactivation to more negative values
Enhanced Persistent current
(Volkers et al., 2011; Myers et al., 2017a; Lindy et al., 2018)
S1084C DII-DIII Missense Juvenile myoclonic epilepsy
DS
Paroxysmal generalised polyspike-and- wave complexes with myoclonic seizures (EEG) (Jingami et al., 2014)
T1174S DII-DIII Missense FHM
FS
Shift steady state activation to more positive values
Deceleration of recovery from fast inactivation
Increase of persistent current
(Escayg et al., 2001; Gargus and Tournay, 2007; Yordanova et al., 2011; Rilstone et al., 2012; Cestèle et al., 2013; Lal et al., 2016)
V1353L DIII (S5) Missense PEFS+
GEFS+
Non-functional channel (Wallace et al., 2001; Lossin et al., 2003; Bennett et al., 2017)
A1429S DIII
(S5-S6)
Missense Autossomal dominant nocturnal frontal lobe epilepsy No definitive epileptic spikes (EEG) (Sone et al., 2012)
R1596H DIV
(S2-S3)
Missense GEFS+ Generalized spike-wave complexes (EEG)
Normal imaging (MRI)
(Hoffman-Zacharska et al., 2015)
I1656M DIV (S4) Missense GEFS+ Shift steady state activation to more positive values (Lossin et al., 2003)
G1674S DIV (S5) Missense FS+ Febrile seizure
Hemiconvulsion
(Saitoh et al., 2015a)
De novo mutation
Q3X N-terminal Nonsense DS Generalized tonic clonic seizures (Claes et al., 2003; Lim et al., 2011)
G58X N-terminal Nonsense DS
Focal Epilepsy
Autistic characteristics; Hyperactivity
Periventricular nodular heterotopia (MRI)
(Barba et al., 2014)
Y65X N-terminal Nonsense DS Generalized tonic-clonic seizures (Zucca et al., 2008)
E75D N-terminal Missense DS Slow-spike-wave complexes (EEG) (Arafat et al., 2017)
L80_D81del N-terminal Inframe deletion DS Pharmacoresistant (Usluer et al., 2016)
D81N N-terminal Missense DS Severe Motor and mental delay
Multi-focal spike-waves (EEG)
(Usluer et al., 2016)
I91T N-terminal Missense DS Frontal-dominant spike-waves complex (EEG) (Sun et al., 2008; Xu et al., 2014)
G96EfsX24 N-terminal FrameShift NR Genetic generalized epilepsy with intellectual disability (Fry et al., 2016)
R101Q N-terminal Missense DS
SMEB
GEFS+
PEFS+
Psychomotor retardation (Fukuma et al., 2004; Harkin et al., 2007; Marini et al., 2007; Depienne et al., 2008; Sun et al., 2010; Zuberi et al., 2011; Wang et al., 2012; Tonekaboni et al., 2013; Lee et al., 2014; Djémié et al., 2016)
A104V N-terminal Missense DS Epileptic discharges, slow spike and weave; sharp wave, sharp and slow wave complex (EEG) (Kwong et al., 2012; Myers et al., 2017a)
R118S N-terminal Missense DS Generalized tonic-clonic seizures
Severe mental retardation
(Zucca et al., 2008)
F144YfsX5 DI (S1) Frameshift SME
DS
Moderate psychomotor retardation (Fukuma et al., 2004; Zuberi et al., 2011; Wang et al., 2012; Villeneuve et al., 2014)
M145DfsX4 DI (S1) Frameshift PEFS+ Generalized tonic-clonic seizures without any provoked factors (Yu et al., 2010)
G177E DI (S2-S3) Missense SME
DS
Non-functional channel (Nabbout et al., 2003; Ohmori et al., 2006; Usluer et al., 2016)
L180X DI (S2-S3) Nonsense DS Focal spike wave (EEG) (Liu et al., 2018)
W190X DI (S3) Nonsense DS Febrile, partial, generalized tonic-clonic and myo-clonic seizures
Severe intellectual disability
(Marini et al., 2007; Kwong et al., 2012)
S213W DI (S3-S4) Missense Epilepsy Febrile and afebrile seizures
Developmental delay
(Butler et al., 2017a)
R219SfsX57 DI (S4) FrameShift DS Generalized tonic-clonic seizures (Claes et al., 2001)
R222X DI (S4) Nonsense DS
SMEB
No measurable current (Claes et al., 2001; Nabbout et al., 2003; Fukuma et al., 2004; Harkin et al., 2007; Depienne et al., 2008; Orrico et al., 2009; Zuberi et al., 2011; Wang et al., 2012; Xu et al., 2014; Esterhuizen et al., 2018)
I227S DI (S4) Missense SME
SMEB
Epileptiform discharges on both sides and spikes/polyspikes during photic stimulation (EEG)
Low current density (no detectable)
(Nabbout et al., 2003; Ohmori et al., 2006; Depienne et al., 2008; Mak et al., 2011; Wang et al., 2012; Lindy et al., 2018)
A239V DI (S4-S5) Missense SME
DS
Focal right fronto-temporal spikes with spreading (EEG)
Severe developmental delay
(Iannetti et al., 2009; Nicita et al., 2010; Xu et al., 2014)
W280R DI (S5-S6) Missense DS Febrile seizures
Status epilepticus
Myoclonic
Multifocal discharges (EEG)
(Nabbout et al., 2003; Wang et al., 2012; Liu et al., 2018)
P281L DI (S5-S6) Missense DS Moderate mental retardation (Depienne et al., 2008; Gokben et al., 2017; Lindy et al., 2018)
E311X DI (S5-S6) Nonsense DS Haploinsufficiency (Orrico et al., 2009)
G329A DI (S5-S6) Missense GEFS+ Generalized tonic–clonic seizures (Myers et al., 2017a)
G343E DI (S5-S6) Missense SMEB
SME
DS
Spike-wave complex,
Multifocal spikes (EEG)
(Fujiwara, 2003; Depienne et al., 2008; Zuberi et al., 2011)
D366E DI (S5-S6) Missense DS Generalized tonic-clonic seizures (Zucca et al., 2008)
W384R DI (S5-S6) Missense DS
SMEB
SME
Generalized tonic-clonic seizures
Partial seizures
(Zuberi et al., 2011; Wang et al., 2012; Verbeek et al., 2013)
T391P DI (S5-S6) Missense DS Generalized tonic-conic seizures
Partial Seizures
(Reyes et al., 2011)
R393H DI (S5-S6) Missense DS
SMEB
Generalized tonic-clonic seizures
Myoclonus, Febrile seizures
Developmental delay
(Claes et al., 2003; Marini et al., 2007; Sun et al., 2010; Zuberi et al., 2011; Lemke et al., 2012; Rilstone et al., 2012; Wang et al., 2012; Xu et al., 2014; Djémié et al., 2016; Haginoya et al., 2018)
V422L DI (S6) Missense EE Psychomotor developmental delay
Theta activities with right predominance (EEG)
(Ohashi et al., 2014)
Y426N DI-DII Missense DS Decreased current density
shift stead-state inactivation to more negative values
Delayed recovery from inactivation
(Nabbout et al., 2003; Ohmori et al., 2006; Allen et al., 2016)
L433fsX16 DI-DII FrameShift Myoclonic astatic epilepsy Generalized tonic-clonic seizures (Ebach et al., 2005)
E435X DI-DII Nonsense DS Myoclonic seizures
Atypical absence
(Fukuma et al., 2004; Wang et al., 2012)
Q554H DI-DII Missense DS Generalized tonic-clonic seizure
Atonic and myoclonic seizures
(Skjei et al., 2015)
S662X DI-DII Nonsense PEFS+ Generalized tonic-clonic seizures (Yu et al., 2010)
W738X DI-DII Nonsense SME Febrile seizures
Generalized tonic-clonic
Severe intellectual disability
(Kwong et al., 2012; Xu et al., 2014)
T808S DII (S2) Missense ICEGTC Rare sharp waves in left temporal (EEG)
Increase current density
Delay recovery from inactivation
(Fujiwara, 2003; Rhodes et al., 2005)
S843X DII (S3) Nonsense DS Focal spike activity (EEG)
(Buoni et al., 2006)
R862G DII (S4) Missense MMPSI Multifocal epilepsy
Hemiclonic
Cardiac arrest
Severe intellectual disability
(Carranza Rojo et al., 2011; Barba et al., 2014)
T932X DII (S5-S6) Nonsense SME
DS
Generalized tonic-clonic seizures
Severe mental retardation
(Claes et al., 2003; Dhamija et al., 2014)
M934I DII (S5-S6) Missense DS Moderate psychomotor retardation (Fukuma et al., 2004; Depienne et al., 2008; Wang et al., 2012)
H939Q DII (S5-S6) Missense DS Status epilepticus
Generalized tonic-clonic seizures
Complex partial seizures
No measurable current
(Claes et al., 2003; Ohmori et al., 2006)
R946C DII (S5-S6) Missense SME
DS
SMEB
Non- functional Channel (Fukuma et al., 2004; Volkers et al., 2011; Zuberi et al., 2011; Wang et al., 2012; Lee et al., 2014; Xu et al., 2014; Lindy et al., 2018)
R946S DII (S5-S6) Missense Severe idiopathic generalized epilepsy of infancy Short generalized tonic-clonic seizures at night
Seizure onset left temporo-parietal (EEG)
Seizure onset left frontal
Seizure onset right frontocentral,
(Ebach et al., 2005; Tiefes et al., 2019)
R946H DII (S5-S6) Missense PEFS+
SMEB
DS
Non-functional Channel (Fukuma et al., 2004; Harkin et al., 2007; Depienne et al., 2008; Liao et al., 2010a; Verbeek et al., 2011; Volkers et al., 2011; Zuberi et al., 2011; Wang et al., 2012; Verbeek et al., 2013)
C959R DII (S5-S6) Missense DS Post trauma epilepsy
Lateralized tonic-clonic seizures
Severe mental retardation
Non-functional Channel
(Claes et al., 2003; Ohmori et al., 2006)
V971L DII (S6) Missense DS Generalized and unilateral tonic-clonic seizures
Myoclonic seizures
Apneic spells
(Poryo et al., 2017)
V982L DII (S6) Missense SMEB Focal epilepsy (Singh et al., 2009; Saitoh et al., 2012; Saitoh et al., 2015a; Saitoh et al., 2015b)
V983A DII (S6) Missense ICEGTC Multifocal spikes, high voltage slow-waves (EEG)
Reduced current density
Shift steady-state inactivation to more positive values
Accelerated recovery from inactivation
(Fujiwara, 2003; Rhodes et al., 2005)
V983AfsX2 DII (S6) FrameShift DS Enlarged extracerebral gap (MRI) (Wang et al., 2017b)
L986F DII (S6) Missense DS Generalized tonic-clonic seizures
Non-functional channel
(Claes et al., 2001; Lossin et al., 2003)
L991VfsX2 DII (S6) FrameShift DS Febrile, partial, generalized tonic-clonic, myo-clonic seizures
Moderate intellectual disability.
(Kwong et al., 2012)
N1011I DII-DIII Missense ICEGTC Rare sharp waves in lateral-temporal (EEG)
Reduced current density
Shift steady state inactivation to more negative values
(Fujiwara, 2003; Rhodes et al., 2005)
D1046MfsX9 DII-DIII FrameShift DS Diffuse cerebral edema (Computed tomography) (Myers et al., 2017b)
S1100KfsX8 DII-DIII FrameShift DS Generalized clonic seizures

Severe mental retardation
(Claes et al., 2001)
S1104X DII-DIII Missense DS Febrile seizures (Depienne et al., 2008; Hernández Chávez et al., 2014)
E1153X DII-DIII Nonsense DS Focal epilepsy with frontal-lateral activity (EEG) (Hernández Chávez et al., 2014)
E1176NfsX32 DII-DIII FrameShift DS Severe intellectual disability
Intractable seizures despite multiple anti-epileptic drugs
(Willemsen et al., 2012)
R1213X DII-DIII Nonsense SME
DS
LGS
Rare spikes, multifocal spikes and spike-wave complex (EEG)
Severe mental delay
(Fujiwara, 2003; Depienne et al., 2008; Zuberi et al., 2011; Wang et al., 2012; Allen et al., 2013; Xu et al., 2014; Lindy et al., 2018)
L1230P DIII (S1) Missense DS Focal spike-wave complex (EEG)
Febrile seizures

Myoclonic seizures
(Liu et al., 2018)
F1263L DIII (S2) Missense SMEB Rare spike-wave complex and poly spike-waves complex (EEG) (Fujiwara, 2003)
R1636Q DIV (S4) Missense DS
LGS
Epileptic encephalopathy
Myoclonic seizures
(Harkin et al., 2007; Butler et al., 2017b)
V1637E DIV (S4) Missense DS Episodes of status epilepticus
triggered by fever
(Nishri et al., 2010; Zuberi et al., 2011)
F1671fsX8 DIV
(S4-S5)
FrameShift DS Generalized tonic-clonic seizures

Severe mental retardation
(Claes et al., 2001; Sugawara et al., 2002; Depienne et al., 2008; Riva et al., 2009)
A1685D DIV (S5) Missense DS Spike-wave complex (EEG)
Non-functional channel
(Fujiwara, 2003) (Sugiura et al., 2012)
Y1694C DIV (S5) Missense DS Myoclonic seizures
Atypical absence
Severe psychomotor retardation
(Fukuma et al., 2004; Wang et al., 2012; Cetica et al., 2017)
L1717P DIV
(S5-S6)
Missense SME Generalized tonic clonic seizure (Verbeek et al., 2013)
T1722A DIV
(S5-S6)
Missense DS Myoclonic, hemiclonic, focal seizures (Wu et al., 2015)
C1741S DIV
(S5-S6)
Missense TLE-MTS Febrile status epilepticus (Tiefes et al., 2019)
G1754R DIV
(S5-S6)
Missense DS Focal seizures
Hemiconvulsions
(Petrelli et al., 2012)
S1768R DIV (S6) Missense DS Absences and tonic-clonic seizures (Willemsen et al., 2012)
E1881X C-terminal Nonsense DS
SMEB
Febrile and generalized seizures (Villeneuve et al., 2014)
Non genetic origin mutations reported*
G177DfsX4 DI (S2-S3) FrameShift DS Generalized tonic-clonic seizures (Fujiwara, 2003)
V207G DI (S3) Missense EE Early-onset multifocal seizures (Daoud et al., 2016)
D249E DI (S4-S5) Missense DS Generalized tonic seizures

Absences; Mental retardation
(Le Gal et al., 2014)
N275K DI (S5) Missense PEFS+ Hippocampal volume loss (MRI) (Kim et al., 2014)
T363R DI (S5-S6) Missense DS Generalized tonic-clonic seizures (Zuberi et al., 2011; Le Gal et al., 2014)
N416I DI (S6) Missense DS Focal spike-wave (EEG) (Zhou et al., 2018)
S1631C DIV
(S3-S4)
Missense DS Multifocal spikes (EEG) (Haginoya et al., 2018)

SCN1A-related epilepsies identified in clinical patients through WES and/or NGS.

*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Generalized epilepsy with febrile seizures plus (GEFS+); Febrile seizures (FS); Febrile seizures plus (FS+); Lennox-Gastaut syndrome (LGS); Dravet syndrome (DS); Borderline severe myoclonic epilepsy (SMEB); Severe myoclonic epilepsy (SME); Familial hemiplegic migraine (FHM); Partial epilepsy with antecedent FS (PEFS+); Intractable childhood epilepsy with generalized tonic–clonic seizures (ICEGTC); Intractable childhood epilepsy with generalized tonic-clonic seizures (ICE-GTC); Epileptic encephalopathy (EE); Malignant migrating partial seizures of infancy (MMPSI); Temporal lobe epilepsy (TLE); Mesial temporal sclerosis (MTS); Not Reported (NR); Domain (D); Segment (S); Electroencephalography (EEG); Magnetic resonance imaging (MRI).

Mutations in the NaV1.1 channel are described in almost all regions of the protein and may cause GoF or LoF (Goldin and Escayg, 2010; Meng et al., 2015). Among the 52 mutations in SCN1A related to epilepsy with functional studies, 35 mutations (67.30%) exclusively display characteristics of LoF, 6 mutations (11.53%) display characteristics unique to GoF, and 11 mutations (21,15%) display characteristics of GoF+LoF, whereas, in GoF+LoF mutations, the main characteristic that gives GoF features is enhanced persistent current, present in 10 out of the 11 GoF+LoF mutations listed (Tables 1 and S1).

Due to the role of the NaV1.1 channels in the regulation of electrical excitability by the inhibitory interneurons, prescription of AEDs non-selective sodium channel blockers (SCB) for SMEI or GEFS + syndromes is contraindicated, for it may aggravate crises due to the enhanced suppress status of the NaV1.1 channels (Catterall, 2014a; Shi et al., 2016; Knupp and Wirrell, 2018; Ziobro et al., 2018). The first-line drug-based therapy for SCN1A epilepsy diseases is the enhancement of postsynaptic GABAergic transmission with allosteric activation of GABAA receptors as target by Clobazam and/or an increase in GABA concentration in synaptic cleft resulting from increased GABA production and decreased GABA degradation as target by Valproic acid (Catterall, 2014a; Hammer et al., 2016; Knupp and Wirrell, 2018; Musto et al., 2020). Antisense nucleotides (ASO) therapy to increase mRNA of SCN1A for NaV1.1 channel expression in normal levels is a promising strategy for genetic disorders involving haploinsufficiency (Hsiao et al., 2016; Stoke Therapeutics, 2018). Drug-resistant Dravet syndrome cases may thrive on alternative therapeutic strategies based on ketogenic diets (Nabbout et al., 2011; Wu et al., 2018). A recent study with 20 patients with medically intractable Dravet syndrome caused by missense, non-sense, insertion, deletions and splicing mutations presents efficacy during three months of treatment in 17 patients, decreasing seizure frequency in more than 50% (Yan et al., 2018). Besisdes that, Epidiolex is an FDA approved CBD-based drug approved in June 2018 for the treatment of severe forms of epilepsy, as Dravet and Lennox-Gastaut syndromes (U.S. Food and Drug Administration [website]., 2018). Clinical trials using CBD in DS and LGS shown reduced frequency of seizures in monthly average (Lattanzi et al., 2020; Morano et al., 2020). Voltage-gated sodium channel are inhibit by CBD in low micromolar concentrations, IC50 between 1.9 and 3.8 μM, NaV1.4 and NaV1.1 being the most sensitive channels to CBD, 1.9 and 2.0 μM respectively, probably the mechanism of action is reducing channel availability due shift to more hyperpolarized potential in steady-state inactivation (Ghovanloo et al., 2019).

NaV1.2

NaV1.2 is encoded by the SCN2A gene (Wolff et al., 2017). It is located on chromosome 2q24.3 (Shi et al., 2009) and expressed in the CNS (Catterall, 2014a), especially in excitatory neurons (Syrbe et al., 2016) and glutamatergic neurons (Sanders et al., 2018), unlike the NaV1.1 channel, which is highly expressed in the GABAergic interneurons (Catterall, 2014a).

More than 100 mutations have already been described for this gene, with approximately 300 patients studied yet (Reynolds et al., 2020) (Table 2). The most common diseases related with SCN2A mutation are West syndrome (WS; OMIM #308350), epilepsy of infancy with migrating focal seizures (EIMFS; OMIM #616645), and benign familial neonatal-infantile seizures (BFNIS; OMIM #607745) (Perucca and Perucca, 2019). Although epilepsy-related mutations are present throughout the channel, several hotspots such as the ion selectivity filter, the voltage-sensing domain, the intracellular N-terminal, and the C-terminal domain can be highlighted (Sanders et al., 2018).

Table 2

Variant Location Mutation Disease Alteration on biophysical properties or/and Clinical report Reference
Inherited mutation
R19K N-terminal Missense FS+ Febrile seizures
Partial seizure with eye deviation
(Ito et al., 2004)
R36G N-terminal Missense BFIS Focal seizures
Clonic seizures
(Wolff et al., 2017)
I172V DI (S2) Missense FS Fever-induced seizure susceptibility (Saitoh et al., 2015a)
R188W DI Missense FS+ Generalized tonic or tonic clonic seizures
Partial seizures
(Ito et al., 2004)
A202V DI Missense BFNS Focal seizures
Generalized tonic-clonic seizures
(Wolff et al., 2017)
V208E DI Missense BFIS NR (Lemke et al., 2012)
R223Q DI (S4) Missense BFNIS Positive shifts of both activation and inactivation curves (Berkovic et al., 2004; Scalmani et al., 2006; Zara et al., 2013)
D322N DI
(S5-S6)
Missense DS NR (Shi et al., 2009)
F328V DI
(S5-S6)
Missense
SMEB
Status epilepticus
Focal seizures
Lesions in the right parietal, temporal and occipital lobes (MRI)
(Shi et al., 2009; Saitoh et al., 2015a)
Q383E DI Missense BFNIS Seizures in early infancy (Syrbe et al., 2016)
E430Q DI-DII Missense BFNIS Focal spikes and bifrontal slow wave activity (EEG) (Herlenius et al., 2007)
A467T DI-DII Missense GEFS+ Loss of consciousness
Clonic movements of all extremities
High body temperature up to 40 ° Celsius
(Liu et al., 2018)
R524Q DI-DII Missense FS Febrile seizures (Ito et al., 2004)
V892I DII (S5) Missense BFNIS NR (Berkovic et al., 2004)
N1001K DII-DIII Missense BFIS Afebrile seizures
Tonic body extension
Right parietal–occipital sharp waves (EEG)
(Striano et al., 2006)
L1003I DII-DIII Missense BFNIS Generalized tonic-clonic seizures (Berkovic et al., 2004)
R1319Q DIII (S4) Missense
BFNIS
Shift steady state activation and inactivation to more positive values (Berkovic et al., 2004; Scalmani et al., 2006; Misra et al., 2008; Zara et al., 2013)
E1321K DIII Missense BFNS NR (Grinton et al., 2015)
L1330F
DIII
(S4–S5)
Missense BFNIS Shift steady state inactivation to more positive values (Heron et al., 2002; Scalmani et al., 2006; Misra et al., 2008)
L1563V
DIV
Missense BFNIS Increase in neuronal excitability
Accelerated recovery from fast inactivation
(Heron et al., 2002; Scalmani et al., 2006; Xu et al., 2007; Misra et al., 2008; Berecki et al., 2018)
Y1589C DIV
(S2-S3)
Missense BFNIS Increased persistent Na+ current
Delayed fast inactivation
Acceleration of recovery
(Lauxmann et al., 2013)
I1596S DIV (S3) Missense BFNIS Central and posterior focal spikes (EEG) (Herlenius et al., 2007)
K1641N DIV Missense BFIS Focal seizures with secondary generalization (Zara et al., 2013)
De novo mutation
R102X
(Mutation expressed with wild type channel)
N-terminal Nonsense EE Shift steady state inactivation to more negative values
Decrease of available channel
(Kamiya, 2004; Ogiwara et al., 2009)
N132K DI Missense EOEE Tonic-clonic seizures (Matalon et al., 2014)
M136I DI Missense EIMFS Focal seizures
Spasms
(Carvill et al., 2013; Howell et al., 2015)
E169G DI (S2) Missense EOEE Multifocal spikes (EEG)
Febrile seizure
Myoclonic seizure
Focal seizure
(Nakamura et al., 2013)
W191C DI Missense EIMFS Frequent multifocal spikes (EEG) (Su et al., 2018)
F207S DI Missense BNS Tonic-clonic seizures
Clonic seizures
(Wolff et al., 2017)
G211D DI Missense WS NR (Kodera et al., 2013)
N212D
DI
(S3-S4)
Missense OS and WS Eyelid myoclonic
Spasms
Hypsarrhythmia
(Nakamura et al., 2013)
R220G DI Missense EE Generalized tonic-clonic seizures
Generalized spike and slow wave (EEG)
(Mercimek-Mahmutoglu et al., 2015)
T227I DI Missense WS Tonic seizures
Apneic seizures
Spasms
(Wolff et al., 2017)
T236S DI (S4-S5) Missense OS Focal seizure (Nakamura et al., 2013)
A240S DI Missense EIMFS Focal seizures (Howell et al., 2015)
M252V DI (S5) Missense BFNIS Increased persistent current
Accelerated of recovery from fast inactivation
Accelerated of recovery from slow inactivation
(Liao et al., 2010b)
V261M DI (S5) Missense BFNIS Enhanced persistent current
Faster recovery from inactivation
(Liao et al., 2010b)
A263T DI (S5) Missense EOEE Multifocal spikes (EEG) (Nakamura et al., 2013)
V423L
DI (S6)
Missense
OS
Change in slope of steady-state activation curve
Enhanced persistent current
(Wolff et al., 2017)
E430G DI-DII Missense OS Generalized tonic-clonic seizures (Matalon et al., 2014)
E717G.fs*30 DI-DII Splice site EE
Cerebral and cerebellar atrophy
High amplitude sharp waves (EEG) (Horvath et al., 2016)
G828V DII Missense
BNS
Focal seizures
Clonic seizures
Autonomic seizures
Tonic-clonic seizures
Multifocal spikes (EEG)
(Wolff et al., 2017)
R853Q DII (S4) Missense WS Reduced transient current amplitude and densityShift steady state inactivation to more negative values
Decreased persistent current
(Samanta and Ramakrishnaiah, 2015; Wolff et al., 2017; Berecki et al., 2018; Mason et al., 2019)
R856L DII Missense
(During embryogenesis)
EIMFS Focal seizures (Howell et al., 2015)
R856Q DII Missense OS Tonic seizures (Wolff et al., 2017)
S863F DII Missense BNS and Focal epilepsy Generalized tonic-clonic seizures (Wolff et al., 2017)
I873M DII Missense EIEE Abnormal electroretinogram (Trump et al., 2016)
N876T DII
(S4-S5)
Missense OS and WS Spasms
Focal seizure
(Nakamura et al., 2013)

L881P
DII Missense WS and LGS Tonic seizures
Tonic-clonic seizures
Atypical absences
(Wolff et al., 2017)
G882R DII Missense EIMFS Unilateral tonic-clonic (Wolff et al., 2017)

G882E
DII Missense EIMFS Focal seizures
Autonomic seizures
Hemiclonic seizures
Myoclonic seizures
Clonic seizures
(Wolff et al., 2017)
V887A DII Missense OS Spasms (Wolff et al., 2017)
G899S
DII (S5)
Missense Intractable infantile
Childhood epilepsy
Tonic-clonic seizures and absences
Shift steady-state activation to more positive values
Increased slop factor
(Wolff et al., 2017)
K905N DII Missense EIMFS Focal seizures (Carvill et al., 2013; Howell et al., 2015)
F928C DII Missense EIMFS Focal seizures (Carvill et al., 2013; Howell et al., 2015)
H930Q DII Missense
MAE
Tonic-clonic seizures
Atonic seizures
Myoclonic-atonic seizures
Tonic seizures
Atypical absences
(Wolff et al., 2017)
N976K DII Missense EE Focal seizures (Howell et al., 2015)
S987I DII Missense EIEE Focal and tonic seizures (Trump et al., 2016)
G999L DII-DIII Missense Infantile epilepsy Diffuse slowing with high-amplitude bursts of activity (EEG)
Generalized seizures with burst suppression
(Foster et al., 2017)
E999K DII-DIII Missense EIEE NR (Trump et al., 2016)
E999V DII-DIII Missense EIEE
OS
NR (Allen et al., 2016; Trump et al., 2016)
I1021Y.fs*16 DII-DIII Frameshift LGS NR (Carvill et al., 2013)
E1211K
DIII (S1)
Missense WS Shift steady-state activation and inactivation to more negative values
Slower recovery from inactivation
(Ogiwara et al., 2009; Wong et al., 2015)
K1260E and K1260Q (Mosaic) DIII Missense EIEE NR (Trump et al., 2016)
R1312T
DIII (S4)
Missense DS Reduced current density
Shift steady-state activation and inactivation to more negative values
Enhanced closed-state inactivation
Slowed recovery from inactivation
(Shi et al., 2009; Lossin et al., 2012)
M1323V
DIII (S4-S5)
Missense OS and WS Multifocal spikes (EEG) (Nakamura et al., 2013)
V1326D DIII Missense EIMFS Focal seizures (Dhamija et al., 2013)
S1336Y DIII
(S4-S5)
Missense OS and WS Modified hypsarrhythmia (Nakamura et al., 2013)
M1338T DIII
(S4-S5)
Missense OS Spasms
Focal seizure
Multifocal spikes (EEG)
(Nakamura et al., 2013)
L1342P DIII Missense IOEE Progressive brain atrophy
Short tonic seizures
Multifocal sharp wave activity (EEG)
(Hackenberg et al., 2014)
I1473M DIII (S6) Missense SNEE Shift steady-state inactivation to more negative values (Ogiwara et al., 2009)
Q1479P DIII Missense EIEE NR (Trump et al., 2016)
V1528Cfs*7 DIII-DIV Frameshift LGS Tonic-clonic seizures
Tonic seizures
Status epilepticus
(Wolff et al., 2017)
Q1531K DIII-DIV Missense BNS Clonic seizures
Generalized tonic-clonic seizures
(Wolff et al., 2017)
I1537S and M1538I DIV Missense OS and WS Clonic seizures
Frequent seizure activity (EEG)
(Foster et al., 2017)
M1548V DIV Missense
OS and WS
Generalized tonic-clonic seizures (Wolff et al., 2017)
G1593R DIV Missense EIMFS Focal seizures (Howell et al., 2015)
F1597L
DIV (S3)
Missense EIMFS Shift steady-state activation to more negative values
accelerated recovery from fast inactivation
(Wolff et al., 2017)
D1598G DIV (S3) Missense
SME
Severe intellectual disability
Developmental delay Seizures/ infantile spasms
(Need et al., 2012)
P1622S DIV
(S3-S4)
Missense
MAE
Shift steady-state inactivation to more negative values (Wolff et al., 2017)
T1623N DIV
(S3-S4)
Missense OS and WS Multifocal spikes (EEG)
Spasms
Hypsarrhythmia
(Nakamura et al., 2013)
V1627M DIV Missense EIMFS Focal seizures
Apnoeic seizures
(Wolff et al., 2017)
G1634V DIV Missense OS Focal seizures
Spasms
(Howell et al., 2015)
I1640S DIV Missense EE Tonic seizures
Focal seizues
(Wolff et al., 2017)
L1650P DIV Missense EIEE NR (Trump et al., 2016)

A1652P
DIV Missense
WS
Spasms (Wolff et al., 2017)
S1656F DIV Missense LGS Generalized tonic-clonic seizures (Wolff et al., 2017)
L1660T DIV
(S4-S5)
Missense EE Generalized tonic-clonic seizures (Fukasawa et al., 2015)
L1660W DIV Missense Acute encephalopathy Tonic-clonic convulsions
Frequent spikes and sharp waves in the right fronto-temporal regions (EEG)
Cerebellar atrophy (MRI)
(Fukasawa et al., 2015)
Q1811E C-terminal Missense
OS
Generalized tonic-clonic seizures
Focal seizures
(Wolff et al., 2017)
L1829F C-terminal Missense EIEE NR (Trump et al., 2016)
H1853R C-terminal Missense OS Generalized tonic-clonic seizures
Absence seizures
(Martin et al., 2014)
R1882L C-terminal Missense Epilepsy Generalized and irregular spike wave and polyspike wave activity (EEG)
Focal and generalized tonic–clonic seizures with opisthotonus, bradycardia, and cyanosis
(Baasch et al., 2014)
R1882G C-terminal Missense BIS Shift steady-state inactivation to more positive values
Increase current density and protein production
(Carvill et al., 2013; Schwarz et al., 2016; Wolff et al., 2017)
R1882Q C-terminal Missense EIEE Increased current density
Enhanced persistent current
(Trump et al., 2016; Berecki et al., 2018; Mason et al., 2019)
D25Nβ1
β1 subunit mutation*
β subunit Substitution
* human embryonic kidney 293 (HEK) cells co-expressing human Nav1.2 sodium channels and D25Nβ1
GEFS+ Inhibits the increment of functional expression of NaCh currents
Abolishes the shift of the voltage dependence of activation and inactivation
(Baroni et al., 2018)
Chromosome 2q24.3
Portions of the SCN2A and SCN3A genes
Chromosome Deletion
(112-kb)
Mental retardation
Infantile seizures
Anxiety disorders
‘shiver-like’ episodes
(Bartnik et al., 2011)
Chromosome q24.3q31.1
58 known genes including SCN2A, SCN1A, SCN3A, SCN9A and SCN7A
Chromosome Deletion
(10.29 - 10.58 Mb)
Severe epilepsy Focal and generalized seizures
Stereotypic and repetitive hand movements
Slow background with high amplitude delta waves mixed with spikes and sharp waves on the temporo-occipital areas (EEG)
(Pescucci et al., 2007)
Non genetic origin mutations reported*
V213D DI (S4) Missense EOEE Focal seizure
Focal spikes (EEG)
(Nakamura et al., 2013)
T218K DI Missense EIMFS Focal seizures
Spasms
(Howell et al., 2015)
D649N DI-DII Missense DS NR (Wang et al., 2012)
V752F DI-DII Missense Absence epilepsy Increased current density
Shift steady-state activation and inactivation to more negative values
(Oliva et al., 2014)
M1128T DII-DIII Missense AERRPS Generalized convulsive seizure
Slow background activity and rare multifocal spikes over the right temporal and bilateral frontopolar regions (EEG)
Brain edema (Cranial computed tomography)
(Kobayashi et al., 2012)
G1522A DIII-DIV Missense EE Absence seizures
Generalized spike and waves (EEG)
(Mercimek-Mahmutoglu et al., 2015)
R1629L DIV (S4) Missense EOEE Focal seizure
Burst of spikes (EEG)
(Nakamura et al., 2013)
R1918H C-terminus Missense GEFS+ Generalized tonic-clonic seizures (Haug et al., 2001)
GAL879-881QQQ DII (S4-S5) (rat brain) Mutated channel in transgenic mice Epilepsy Delayed fast inactivation
Increased persistent current when expressed in Xenopus oocytes
(Kearney et al., 2001)
R85Cβ1 Extracellular immunoglobulin-like domain
(β1 subunit)
Substitution
*Human embryonic kidney (HEK)-293T cells co-expressing human brain NaV1.2 alpha subunit and R85Cβ1
GEFS+ Fail to modulate fast inactivation kinetics
Fail to modulated steady-state inactivation
(Xu et al., 2007)
R85Hβ1 Extracellular immunoglobulin-like domain
(β1 subunit)
Substitution
*Human embryonic kidney (HEK)-293T cells co-expressing human brain NaV1.2 alpha subunit and R85Hβ1
GEFS+ Fail to modulated fast inactivation kinetics (Xu et al., 2007)
C121Wβ1
β1 subunit mutation*
Ig-like domain
(β1 subunit)
Substitution
* Chinese hamster ovary (CHO) cells co-expressing human Nav1.2 sodium channels and C121Wβ1
GEFS+ Destabilization of steady-state inactivation potentials
Disrupts the thermoprotective role of the β1 subunit on channel availability
(Egri et al., 2012; Abdelsayed and Sokolov, 2013)
Chromosome 2q24.3
Involves the SCN2A and SCN3A genes
Chromosome Duplication
(1.77 Mb)
EOEE Multifocal spikes (EEG)
Epileptic spasms
(Baumer et al., 2015)
Chromosome 2q24.3- q31.1
47 genes involved including SCN1A, SCN2A, SCN3A, SCN7A and SCN9A
Chromosome Deletion
(10.4-Mb)
Severe epilepsy Epileptic seizure with pale, atonic periods followed by a spasm-like out-throwing of both arms
Predominantly right-sided epileptiform activity (EEG)
(Davidsson et al., 2008)

SCN2A-related epilepsies identified in clinical patients through WES and/or NGS.

*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Generalized epilepsy with febrile seizures plus (GEFS+); Benign familial neonatal-infantile seizures (BFNIS); Benign familial neonatal seizures (BFNS); Benign Familial Infantile Seizures (BFIS); Benign neonatal/infantile seizures (BNIS); Benign neonatal seizures (BNS); Benign infantile seizures (BIS); Febrile seizures (FS); Febrile seizures plus (FS+); Epilepsy of infancy with migrating focal seizures (EIMFS); Ohtahara syndrome (OS); West syndrome (WS); Lennox-Gastaut syndrome (LGS); Dravet syndrome (DS); Borderline severe myoclonic epilepsy (SMEB); Severe myoclonic epilepsy (SME); Early-onset epileptic encephalopathies (EOEE); Acute encephalitis with refractory, repetitive partial seizures (AERRPS); Early infantile epileptic encephalopathy (EIEE); myoclonic-atonic epilepsy; Infantile onset epileptic encephalopathy (IOEE); Sporadic neonatal epileptic encephalopathy (SNEE); Epileptic encephalopathy (EE); Not Reported (NR); Domain (D); Segment (S); Electroencephalography (EEG); Magnetic resonance imaging (MRI).

NaV1.2 channels are expressed in the excitatory neurons; therefore, GoF mutations are related to epilepsy because it causes neuronal hyperexcitability. On the other hand, LoF mutations are related to autism and intellectual disability phenotype (Ben-Shalom et al., 2017). Nevertheless, some studies have already related loss of function to epilepsy, as described by Lossin and co-workers (2012) with R1312T mutation (Lossin et al., 2012). Normally, LoF SCN2A gene mutations for epilepsy are related to late-onset epilepsy; however, the mechanism of action is unclear (Mason et al., 2019).

In some cases, NaV1.2 seizures are not controlled not even by various antiepileptic drugs, as with the patient described by Syrbe and colleagues (2016). The proband, even after being treated with oxcarbazepine (OXC), valproic acid, topiramate, sulthiame, phenytoin, among other drugs, kept on having seizures (Syrbe et al., 2016). Furthermore, the SCB drugs can assist the patient during the treatment as described by Gorman and King (2017). The patient had seizures controlled after administration of phenytoin (Gorman and King, 2017). In addition, Musto et al. (2020) cite benefits treatments using SCB such as carbamazepine, mexiletine, oxcarbazepine, phenytoin, lidocaine, and lamotrigine for patients with early onset epilepsies (Musto et al., 2020). Besides, Peters and colleagues studied a substance commercially used as an antianginal drug (human heart) called ranolazine that has been shown to affect NaV1.2 channels, reducing macroscopic currents and delaying the recovery of fast and slow inactivation of the NaV1.2 channel, consequently with more future studies ranolazine could be a efficacious therapy for epilepsy (Peters et al., 2013).

Drugs can be important to modulate channel kinetics for both GoF and LoF, but some precautions must be observed. For example, the degree of conservation between subtypes, such as NaV1.2 and other sodium channels as NaV1.5 and the excessive decrease in channel function or the excessive increase in function obtained by the drug (Sanders et al., 2018).

Organizations like the FamilieSCN2A Foundation (www.scn2a.org) might be essential in the search for new treatments. Understanding the genotype-phenotype of gain and loss of function is essential because science-patient relationship may be helpful in the search for new therapies (Sanders et al., 2018).

NaV1.3

SCN3A is a gene that encodes for type 3 voltage-gated Na+ channel α subunit, the NaV1.3, located on human chromosome 2q24, in a cluster with SCN1A and SCN2A (Holland et al., 2008). NaV1.3 is expressed predominantly in the CNS during embryonic and neonatal development, being extremely low or sometimes undetectable in postnatal individuals. Subsequently, during infancy, it is gradually replaced by increased expression of the NaV1.1 isoform (Felts et al., 1997; Whitaker et al., 2000; Cheah et al., 2013; Zaman et al., 2018). On the other hand, studies regarding nervous system injury and neuropathic pain showed an increasing presence of NaV1.3 channels in affected tissues, suggesting a pivotal hole of these transmembrane proteins in these processes and diseases (Hains et al., 2003; Waxman and Hains, 2006; Black et al., 2008). For the reasons mentioned above, in the last decades, NaV1.3-associated pathogenesis has been restricted to pain. Recently, a genetic linkage between NaV1.3 mutated variants and epilepsy has been suggested, especially in cryptogenic epilepsy cases (OMIM#182391).

K354Q was the first described NaV1.3 epilepsy-related mutation that revealed harmful electrophysiological alterations (Holland et al., 2008; Estacion et al., 2010). In fact, mutations can change many functional characteristics of NaV1.3 affecting biophysical properties differently; however, these changes result predominantly in neuronal hyper-responsiveness (Table 3) (Cummins and Waxman, 1997; Chen et al., 2000; Cummins et al., 2001; Sun et al., 2007). Previous reports correlate heterozygous variants in SCN3A in association with moderate forms of epilepsy, while homozygosis is related with severe cognitive damage and premature mortality, resulting in a broad range of epileptic phenotypes (Estacion and Waxman, 2013; Vanoye et al., 2014; Lamar et al., 2017).

Table 3

Variant Location Mutation Disease Alteration on biophysical properties or/and Clinical report Reference
Inherited mutation
K354Q DI Missense CCE Enhanced persistent current and current amplitude provokes by ramp protocol (Holland et al., 2008; Estacion et al., 2010)
R357Q DI
(S5-S6)
Missense Focal epilepsy Reduced current density
Enhanced current amplitude provokes by ramp voltage protocol
(Vanoye et al., 2014)
R621C DI-DII Missense BECTS
FS
Centro-temporal spikes (EEG) (Zaman et al., 2018)
E1111K DII-III Missense Focal epilepsy Enhanced current amplitude provokes by ramp voltage protocol
Enhanced persistent current
(Vanoye et al., 2014)
M1323V DIII
(S5-S6)
Missense Focal epilepsy Enhanced current amplitude provokes by ramp voltage protocol (Vanoye et al., 2014)
C121Wβ1
β1 subunit mutation*
Extracellular Ig loop Substitution
* Chinese hamster ovary (CHO) cells co-expressing human Nav1.3 sodium channels and C121Wβ1
GEFS+ Resistant to enter into close-state inactivation
Shift steady state inacativation to more positive values
(Lucas et al., 2005)
Chromosome 2q24.3
Involves the SCN1A,SCN2A, and SCN3A genes
Chromosome Duplication
(1.57 Mb)
BFNS NR (Heron et al., 2010)
Chromosome 2q24.3
Involves the SCN1A,SCN2A, and SCN3A genes
Chromosome Duplication
(2.0 Mb)
Neonatal- infantile epilepsy Facial flushing, head turning to the left, eye deviation, bilateral arm jerking movement (Raymond et al., 2011)
Chromosome
2q23.3q24.3
Involves the SCN2A and SCN3A genes
Chromosome Mosaic duplication
(12 Mb)
DS
BFNIS
Focal seizures with secondary generalization
Atonic seizures (EEG)
(Vecchi et al., 2011)
De novo mutation
L247P DI Missense Childhood focal epilepsy Reduced current density associated with low protein expression (Lamar et al., 2017)
I875T DII
(S4-S5)
Missense EE Enhanced persistente current
Shift steady-state activation and inactivation to more negative values
Generalized convulsion, infantile spasm
(Miyatake et al., 2018; Smith et al., 2018; Zaman et al., 2018)
P1333L DIII Missense EIEE Enhanced persistent current
Increased current density
Shift steady-state activation and inactivation to more negative values
(Trujillano et al., 2017; Zaman et al., 2018)
M1765I DIV Missense Refractory epilepsy Focal and generalized seizures
Myoclonus and epileptic spasms
(Inuzuka et al., 2019)
V1769A DIV (S6) Missense EIEE Enhanced persistent current
Shift steady-state activation to more negative values
Shift steady-state inactivation to more positive values
(Zaman et al., 2018)
chromosome 2q24.3
Involves the SCN1A,SCN2A, and SCN3A genes
chromosome Deletion
(1.1 Mb)
WS Typical hypsarrhythmic pattern (sleeping and awake) (Chong et al., 2018)
Non genetic origin mutations reported*
N302S DI Missense
GEFS+
Shift steady-state activation and inactivation to more positive values
Slower recovery from inactivation with 500 ms duration pre pulse
Faster recovery from inactivation with 20 ms duration pre pulse
(Chen et al., 2015)
D766N DII (S2) Missense Focal epilepsy Increased current amplitude by ramp voltage protocol (Vanoye et al., 2014)

SCN3A-related epilepsies identified in clinical patients through WES and/or NGS.

*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Cryptogenic childhood epilepsy (CCE); Benign epilepsy with centro-temporal spikes (BECTS); Generalized epilepsy with febrile seizures plus (GEFS+); West syndrome (WS); Febrile seizures (FS); Benign familial neonatal-infantile seizures (BFNIS); Benign familial neonatal seizures (BFNS); Dravet syndrome (DS); Epileptic encephalopathy (EE); Early infantile epileptic encephalopathy (EIEE); Not Reported (NR); Domain (D); Segment (S); Electroencephalography (EEG).

Different hereditary mutations on NaV1.3 have been reported to date in patients with epilepsy. In general, the biophysical characterization of these mutations reveals GoF, only one mutation (N302S) is related with LoF (Chen et al., 2015), but both GoF and LoF may lead to an increased seizure susceptibility (Lamar et al., 2017).

Moreover, several de novo mutations in SCN3A have been described in the last three years, related with severe infantile neurological dysfunctions and cognitive impairments. These mutations may alter the functionality of NaV1.3 channels, neurons organization, migration, and proliferation during the embryonic development (Smith et al., 2018). Epileptic encephalopathy and polymicrogyria are the main features related with these pathogenic variants, and, so far, polymicrogyria was not reported in other channelopathies, being an exclusive characteristic of SCN3A mutants (Inuzuka et al., 2019).

There is a lack of clinical data on SCN3A-related epilepsies, especially regarding treatment and the use of specific medication. However, in vitro studies reported that mutations related with GoF effect respond favorably to treatment using SCB, like phenytoin, carbamazepine, lacosamide, and topiramate (Sun et al., 2007; Sheets et al., 2008; Colombo et al., 2013; Zaman et al., 2018). The anticonvulsant valproic acid represents a novel and promising epigenetic therapeutic approach (Tan et al., 2017). The compound modulates the SCN3A gene through methylation, downregulating the expression of NaV1.3 and, consequently, decreasing biophysical alterations in the channel.

NaV1.6

The SCN8A gene encodes for type 8 voltage-gated Na+ channel α subunit, the NaV1.6, located in chromosome 12q13.13. The first case of SCN8A pathogenic variant associated with epilepsy was reported eight years ago (Veeramah et al., 2012). Thereafter, due to advances in genome sequencing technology, especially the WES, the number of epilepsy diagnosis associated with NaV1.6 mutations has increased significantly (OMIM #600702), with more than 300 patients diagnosed with SCN8A epilepsy mutations and nearly 200 different putative spots of mutations described, totaling over 100 published reports (Table 4). A website developed especially to present SCN8A epilepsy and related diseases (www.scn8a.net) was created to provide information to families, clinicians, and researchers, gathering news and recent publications on the subject in a private forum for family interaction, to answer questions, strengthening the ties between the community and the researchers.

Table 4

Variant Location Mutation Alteration on biophysical properties or/and Clinical report Reference
Inherited mutation
K101R N-terminus Missense NR (Butler et al., 2017b)
I137M D1 (S1) Missense NR (Johannesen et al., 2019)
T164M DI (S2) Missense NR (Butler et al., 2017a)
G269R DI (S5) Missense Non-functional channel (Wengert et al., 2019)
R530W DI (S6)-DII (S1) Missense NR (Olson et al., 2015)
N544 fs*39 DI (S6)-DII (S1) Frameshift NR (Johannesen et al., 2019)
S702T DI (S6)-DII (S1) Missense NR (Jang et al., 2019)
G822R DII (S3) Missense Non-functional channel (Wengert et al., 2019)
V891M DII (S5) Missense NR (Johannesen et al., 2019)
L1290V DIII (S3-S4) Missense NR (Carvill et al., 2013)
L1331V DIII (S5) Missense NR (Larsen et al., 2015)
T1360N DIII (S5-S6) Missense Shift steady-state inactivation to more negative values (Wengert et al., 2019)
E1442K DIII (S5-S6) Missense NR (Liu et al., 2018)
I1464T DIII (S6)-DIV (S1) Missense NR (Johannesen et al., 2019)
G1476D DIII (S6)-DIV (S1) Missense NR (Han et al., 2017)
E1483K DIII (S6)-DIV (S1) Missense NR (Gardella et al., 2016)
I1583T DIV (S3) Missense NR (Berghuis et al., 2015)
V1598A DIV (S3) Missense NR (Wang et al., 2017a)
R1638C DIV (S4) Missense Shift steady-state activation to more positive values (Wengert et al., 2019)
V1758A DIV (S6) Missense Shift steady-state activation to more positive values (Zaman et al., 2019)
N1877S C-Terminus Missense NR (Butler et al., 2017b; Johannesen et al., 2019)
R1904C C-Terminus Missense NR (Schreiber et al., 2020)
De novo mutation
Exons 2-14 Deletion NR (Berghuis et al., 2015)
c.-8A > G UTR 5′ UTR Eight base pairs change upstream of start codon NR (Johannesen et al., 2019)
c.4296A>G DIII Splice-site mutation NR (Denis et al., 2019)
M139I D1 (S1) Missense Shift steady-state inactivation to more negative values
Enhanced persistent current
Slightly impaired fast channel inactivation
(Zaman et al., 2019)
I142V D1 (S1) Missense NR (Denis et al., 2019; Kim et al., 2019)
A205E D1 (S1) Missense NR (Lindy et al., 2018)
F210L D1 (S1) Missense NR (Mercimek-Mahmutoglu et al., 2015)
V211L DI (S3) Missense NR (Denis et al., 2019)
V211A DI (S3) Missense NR (Berkovic et al., 2018)
L213P D1 (S3) Missense NR (Denis et al., 2019)
G214D DI
(S3-S4)
Missense NR (Allen et al., 2013)
N215R DI
(S3-S4)
Missense NR (Larsen et al., 2015)
N215D DI
(S3-S4)
Missense NR (Deciphering Developmental Disorders Study, 2015)
V216D DI
(S3-S4)
Missense NR (Ohba et al., 2014)
R223G D1 (S4) Missense Reduced current density
Increased current amplitude provokes by ramp voltage protocol
(de Kovel et al., 2014; Berkovic et al., 2018; Denis et al., 2019)
I231T D1 (S4) Missense NR (Berkovic et al., 2018)
S232P D1 (S4) Missense NR (Wang et al., 2017a)
T239S D1 (S4-S5) Missense NR (Møller et al., 2016)
I240V DI (S4-S5) Missense NR (McNally et al., 2016)
L257V DI (S5) Missense NR (Schreiber et al., 2020)
F260S DI (S5) Missense NR (Larsen et al., 2015; Boerma et al., 2016)
C261F DI (S5) Missense NR (Rim et al., 2018; Kim et al., 2019)
L267S DI (S5) Missense NR (Malcolmson et al., 2016)
G317A DI (S5-S6) Missense NR (Denis et al., 2019)
F360A DI (S5-S6) Missense NR (Rolvien et al., 2017)
M367V DI (S5-S6) Missense NR (Lindy et al., 2018)
N374K DI (S5-S6) Missense Shift steady-state activation to more negative values (Johannesen et al., 2019; Zaman et al., 2019)
T386R DI (S5-S6) Missense NR (Lindy et al., 2018)
Y401H DI (S6) Missense NR (Gardella et al., 2018)
L405M DI (S6) Missense NR (Denis et al., 2019)
L407F DI (S6) Missense NR (Fung et al., 2015; Zhang et al., 2015)
A408T DI (S6) Missense NR (Trump et al., 2016; Denis et al., 2019)
V410L DI (S6) Missense NR (Larsen et al., 2015)
L483F DI (S6) –DII (S1) Missense Slight shift steady-state activation to more negative values (Zaman et al., 2019)
E587Ter DI (S6)-DII (S1) Nonsense NR (Schreiber et al., 2020)
I763V DII (S1) Missense NR (Butler et al., 2017b; Hewson et al., 2018; Lindy et al., 2018; Costain et al., 2019; Johannesen et al., 2019)
T767I DII (S1) Missense Decreased current density
Increased current amplitude provokes by voltage ramp protocol
(Estacion et al., 2014; Gardella et al., 2018; Lindy et al., 2018)
V791F DII (S2) Missense NR (Xie et al., 2019)
V842E DII (S4) Missense NR (Lindy et al., 2018)
S845F DII (S4) Missense NR (Lindy et al., 2018)
F846S DII (S4) Missense NR (Ohba et al., 2014)
L848W DII (S4) Missense NR (Denis et al., 2019)
R850Q DII (S4) Missense Shift steady state inactivation to more negative values
Increased persistent current
Impaired inactivation
(Fung et al., 2015; Zhang et al., 2015; Lindy et al., 2018; Kim et al., 2019; Tsang et al., 2019; Pan and Cummins, 2020; Schreiber et al., 2020)
R850E DII (S4) Missense NR (Wang et al., 2017a)
R850L DII (S4) Missense NR (Gardella et al., 2018)
L864V DII (S4-S5) Missense NR (Gardella et al., 2018)
L875Q DII (S5) Missense NR (Allen et al., 2013)
A890T DII (S5) Missense NR (Fung et al., 2015; Larsen et al., 2015; Zhang et al., 2015)
V891M DII (S5) Missense NR (Wang et al., 2017a)
V960D DII (S6) Missense NR (Larsen et al., 2015)
L971V DII (S6) Missense NR (Kim et al., 2019)
S978R DII (S6)-DIII (S1) Missense NR (Kim et al., 2019)
S978G DII (S6)-DIII (S1) Missense NR (Parrini et al., 2017; Gardella et al., 2018)
N984K DII (S6)-DIII (S1) Missense Shift steady-state activation to more negative values (Blanchard et al., 2015; Boerma et al., 2016)
G1050S DII (S6)-DIII (S1) Missense NR (McMichael et al., 2015)
S1073N DII (S6)-DIII (S1) Missense NR (Lindy et al., 2018)
E1201K DIII (S1) Missense NR (Johannesen et al., 2019)
V1274M DIII (S3) Missense NR (Jang et al., 2019)
V1315M DIII (S4-S5) Missense NR (Trump et al., 2016; Bagnasco et al., 2018; Denis et al., 2019)
N1318S DIII
(S4-S5)
Missense NR (Johannesen et al., 2019; Lin et al., 2019)
A1319S DIII
(S4-S5)
Missense NR (Lindy et al., 2018)
A1319D DIII
(S4-S5)
Missense NR (Johannesen et al., 2019)
A1323S DIII
(S4-S5)
Missense NR (Trump et al., 2016)
A1323T DIII
(S4-S5)
Missense NR (Johannesen et al., 2019)
I1327V DIII
(S4-S5)
Missense NR (Vaher et al., 2013; Singh et al., 2015; Trump et al., 2016)
N1329D DIII (S4-S5) Missense NR (Butler et al., 2017b)
V1330M DIII (S4-S5) Missense NR (Schreiber et al., 2020)
L1332R DIII (S5) Missense NR (Butler et al., 2017b)
P1428_K1473del DIII (S5-S6) Missense NR (Larsen et al., 2015)
G1451S DIII (S6) Missense Non-functional channel (Blanchard et al., 2015; Denis et al., 2019)
N1466K DIII (S6)-DIV (S1) Missense NR (Ohba et al., 2014)
N1466T DIII (S6)-DIV (S1) Missense NR (Ohba et al., 2014)
Q1470K DIII (S6)-DIV (S1) Missense NR (Pons et al., 2018; Denis et al., 2019)
G1475R DIII (S6)-DIV (S1) Missense Enhanced persistent current (Hussain et al., 2016; Ortiz Madinaveitia et al., 2017; Parrini et al., 2017; Wang et al., 2017a; Gardella et al., 2018; Lindy et al., 2018; Xiao et al., 2018; Kim et al., 2019; Trivisano et al., 2019; Zaman et al., 2019; Ranza et al., 2020; Schreiber et al., 2020)
G1476S DIII (S6)-DIV (S1) Missense NR (Lindy et al., 2018)
I1479V DIII (S6)-DIV (S1) Missense NR (Larsen et al., 2015; Lindy et al., 2018; Schreiber et al., 2020)
E1483K DIII (S6)-DIV (S1) Missense NR (Johannesen et al., 2019)
A1491V DIII (S6)-DIV (S1) Missense Shift steady-state activation to more negative values
Increased current amplitude provokes by slow voltage ramp protocol
(Gardella et al., 2018; Lindy et al., 2018; Zaman et al., 2019)
M1494T DIII (S6)-DIV (S1) Missense NR (Kim et al., 2019)
K1498M DIII (S6)-DIV (S1) Missense NR (Gardella et al., 2018)
M1529V DIV (S1) Missense NR (Johannesen et al., 2019)
I1532F DIV (S1) Missense NR (Møller et al., 2016; Gardella et al., 2018)
M1536I DIV (S1) Missense NR (Lindy et al., 2018)
F1547V DIV
(S1-S2)
Missense NR (Gardella et al., 2018)
F1588L DIV (S3) Missense NR (Johannesen et al., 2019)
V1592L DIV (S3) Missense NR (Larsen et al., 2015; Ranza et al., 2020)
S1596C DIV (S3) Missense NR (Fung et al., 2015; Zhang et al., 2015; Boerma et al., 2016)
I1605R DIV
(S3-S4)
Missense NR (Larsen et al., 2015)
T1614A DIV
(S3-S4)
Missense NR (Johannesen et al., 2019)
R1617Q DIV (S4) Missense Increased persistent current
Increased peak current density
Shift steady state activation to more negative values
Shift steady-state inactivation to more positive values
(Rauch et al., 2012; Ohba et al., 2014; Dyment et al., 2015; Fung et al., 2015; Larsen et al., 2015; Zhang et al., 2015; Fung et al., 2017; Lindy et al., 2018; Johannesen et al., 2019; Schreiber et al., 2020)
R1620L DIV (S4) Missense NR (Rossi et al., 2017)
L1621W DIV (S4) Missense NR (Fung et al., 2015)
G1625R DIV (S4) Missense NR (Deciphering Developmental Disorders Study, 2015)
L1630P DIV (S4) Missense NR (Schreiber et al., 2020)
I1631N DIV (S4) Missense NR (Lindy et al., 2018)
M1645I DIV
(S4-S5)
Missense NR (Zhang et al., 2015)
A1650T DIV
(S4-S5)
Missense NR (Ohba et al., 2014; Larsen et al., 2015; Parrini et al., 2017; Gardella et al., 2018; Trivisano et al., 2019)
A1650V DIV
(S4-S5)
Missense NR (Lindy et al., 2018; Johannesen et al., 2019)
F1754S DIV (S6) Missense NR (Trump et al., 2016)
V1758A DIV (S6) Missense Shift steady-state activation to more positive values (Balciuniene et al., 2019; Johannesen et al., 2019; Zaman et al., 2019)
N1759T DIV (S6) Missense NR (Kim et al., 2019)
A1763G DIV (S6) Missense NR (Denis et al., 2019)
I1764M DIV (S6) Missense NR (Gardella et al., 2018)
N1768D C-Terminus Missense Increased spontaneous firing
Paroxysmal depolarizing-shift-like complexes,
Increased firing frequency
Increased persistent current
(Veeramah et al., 2012)
V1771I C-Terminus Missense NR (Johannesen et al., 2019)
Q1801E C-Terminus Missense NR (Larsen et al., 2015)
R1820X C-Terminus Nonsense NR (Møller et al., 2016; Johannesen et al., 2019)
R1831Q C-Terminus Missense NR (Liu et al., 2018)
R1831W C-Terminus Missense NR (Jang et al., 2019)
T1852I C-Terminus Missense NR (Lindy et al., 2018; Heyne et al., 2019)
L1865P C-Terminus Missense NR (Trump et al., 2016)
R1866Q C-Terminus Missense NR (Kothur et al., 2018; Johannesen et al., 2019)
E1870D C-Terminus Missense NR (Boerma et al., 2016)
R1872L C-Terminus Missense Enhanced persistent current
Increased peak current density
Shift steady-state activation to more negative values
Shift steady-state inactivation to more positive values
(Wagnon et al., 2016; Sprissler et al., 2017; Lindy et al., 2018; Zaman et al., 2019; Schreiber et al., 2020)
R1872Q C-Terminus Missense Enhanced persistent current
Increase peak current density
Shift steady-state activation to more negative values
Shift steady-state inactivation to more positive values
(Larsen et al., 2015; Horvath et al., 2016; Hussain et al., 2016; Arafat et al., 2017; Atanasoska et al., 2018; Lindy et al., 2018)
R1872W C-Terminus Missense Enhanced persistent current
Increased peak current density
Shift steady-state activation to more negative values
Shift steady-state inactivation to more positive values
(Ohba et al., 2014; Larsen et al., 2015; Takahashi et al., 2015; Gardella et al., 2018; Denis et al., 2019; Kim et al., 2019; Zaman et al., 2019)
N1877S C-Terminus Missense NR (Anand et al., 2016; Parrini et al., 2017; Wang et al., 2017a; Lindy et al., 2018; Costain et al., 2019; Epifanio et al., 2019; Jain et al., 2019; Ranza et al., 2020)
P1878S C-Terminus Missense NR (Lindy et al., 2018)
Non genetic origin mutations reported*
R45Q N-terminus Missense NR (Encinas et al., 2019; Heyne et al., 2019)
A108fsXTer7 N-terminus Truncated gene NR (Encinas et al., 2019)
T166I DI (S2) Missense NR (Encinas et al., 2019)
I202N DI (S3) Missense NR (Butler et al., 2017a)
V211L DI (S3) Missense NR (Encinas et al., 2019)
V211A DI (S3) Missense NR (Encinas et al., 2019)
R220H D1 (S4) Missense NR (Oates et al., 2018)
R223S DI (S4) Missense NR (Encinas et al., 2019)
T239A DI (S4-S5) Missense NR (Encinas et al., 2019)
I240V DI (S4-S5) Missense NR (Encinas et al., 2019)
I240L DI (S4-S5) Missense NR (Encinas et al., 2019)
L257V DI (S5) Missense NR (Encinas et al., 2019)
L267V DI (S5) Missense NR (Denis et al., 2019)
I268L DI (S5) Missense NR (Encinas et al., 2019)
F360A DI (S5-S6) Missense NR (Encinas et al., 2019)
M367V DI (S5-S6) Missense NR (Encinas et al., 2019)
R381Q DI (S5-S6) Missense NR (Encinas et al., 2019)
T386R DI (S5-S6) Missense NR (Encinas et al., 2019; Schreiber et al., 2020)
S399P DI (S6) Missense NR (Encinas et al., 2019; Heyne et al., 2019)
V410L DI (S6) Missense NR (Encinas et al., 2019)
Y414F DI (S6)-DII (S1) Missense NR (Butler et al., 2017a)
E416K DI (S6)-DII (S1) Missense NR (Encinas et al., 2019)
Q417P DI (S6)-DII (S1) Missense NR (Encinas et al., 2019)
R530Q DI (S6)-DII (S1) Missense NR (Encinas et al., 2019)
E587Ter DI (S6)-DII (S1) Nonsense NR (Encinas et al., 2019)
R598W DI (S6)-DII (S1) Missense NR (Encinas et al., 2019)
G692R DI (S6)-DII (S1) Missense NR (Encinas et al., 2019)
I763V DII (S1) Missense NR (Butler et al., 2017a; Encinas et al., 2019)
T767I DII (S1) Missense Shift steady-state activation to more negative values (Estacion et al., 2014)
L840P DII (S3-S4) Missense NR (Encinas et al., 2019)
L840F DII (S3-S4) Missense NR (Encinas et al., 2019)
S845F DII (S4) Missense NR (Encinas et al., 2019)
L864V DII (S4-S5) Missense NR (Trivisano et al., 2019)
l868T DII (S4-S5) Missense NR (Encinas et al., 2019)
A874T DII (S4-S5) Missense NR (Encinas et al., 2019)
V881A DII (S5) Missense NR (Encinas et al., 2019)
E936K DII (S6) Missense NR (Johannesen et al., 2019)
L969M DII (S6) Missense NR (Encinas et al., 2019)
S979F DII (S6)-DIII (S1) Missense NR (Encinas et al., 2019)
G1050S DII (S6)-DIII (S1) Missense NR (Encinas et al., 2019)
Y1241C DIII (S2) Missense NR (Encinas et al., 2019; Johannesen et al., 2019)
S1308P DIII (S4) Missense NR (Encinas et al., 2019)
V1315M DIII
(S4-S5)
Missense NR (Encinas et al., 2019)
L1320F DIII (S4-S5) Missense NR (Encinas et al., 2019; Schreiber et al., 2020)
A1323P DIII
(S4-S5)
Missense NR (Encinas et al., 2019)
I1327V DIII
(S4-S5)
Missense NR (Oates et al., 2018)
M1328T DIII
(S4-S5)
Missense NR (Encinas et al., 2019)
N1329D DIII
(S4-S5)
Missense NR (Butler et al., 2017a)
G1451S DIII (S6) Missense NR (Encinas et al., 2019)
G1461V DIII (S6) Missense NR (Encinas et al., 2019; Schreiber et al., 2020)
N1466K DIII (S6)-DIV (S1) Missense NR (Encinas et al., 2019)
F1467C DIII (S6)-DIV (S1) Missense NR (Encinas et al., 2019)
Q1470H DIII (S6)-DIV (S1) Missense NR (Trivisano et al., 2019)
I1479V DIII (S6)-DIV (S1) Missense NR (Encinas et al., 2019)
A1491V DIII (S6)-DIV (S1) Missense Shift steady-state activation to more negative values (Johannesen et al., 2018; Trivisano et al., 2019)
M1492V DIII (S6)-DIV (S1) Missense NR (Encinas et al., 2019; Ranza et al., 2020)
Q1501K DIII (S6)-DIV (S1) Missense NR (Encinas et al., 2019)
Splice donor
c.4419+1A>G
DIII (S6)-DIV (S1) Truncated gene NR (Encinas et al., 2019)
M1536I DIV (S1) Missense NR (Encinas et al., 2019)
V1592L DIV (S3) Missense NR (Encinas et al., 2019)
I1594L DIV (S3) Missense NR (Encinas et al., 2019)
S1596C DIV (S3) Missense NR (Encinas et al., 2019)
T1614A DIV
(S3-S4)
Missense NR (Encinas et al., 2019)
R1617Q DIV (S4) Missense Enhanced persistent current
Increased peak current density
Shift steady-state activation to more negative values
Shift steady-state inactivation to more positive values
(Encinas et al., 2019)
R1617P DIV (S4) Missense NR (Encinas et al., 2019)
G1625R DIV (S4) Missense NR (Encinas et al., 2019)
L1630P DIV (S4) Missense NR (Encinas et al., 2019)
F1642C DIV
(S4-S5)
Missense NR (Encinas et al., 2019)
A1650T DIV
(S4-S5)
Missense NR (Trivisano et al., 2019)
A1650V DIV
(S4-S5)
Missense NR (Encinas et al., 2019)
I1654N DIV
(S4-S5)
Missense NR (Johannesen et al., 2019)
N1759S DIV (S6) Missense NR (Encinas et al., 2019; Schreiber et al., 2020)
M1760I DIV (S6) Missense Shift steady-state activation to more negative values
Increase action potential firing frequency
(Liu et al., 2019)
N1768D C-Terminus Missense Increased spontaneous firingParoxysmal depolarizing shift like complexes
Increased firing frequency
Enhanced persistent current
(Veeramah et al., 2012; Encinas et al., 2019)
K1807N C-Terminus Missense NR (Encinas et al., 2019)
R1831W C-Terminus Missense NR (Encinas et al., 2019)
D1833H C-Terminus Missense NR (Johannesen et al., 2019)
T1852I C-Terminus Missense NR (Encinas et al., 2019; Ranza et al., 2020)
R1872L C-Terminus Missense Increased persistent current
Increased peak current density
Shift steady state activation to more negative values
Shift steady inactivation to more positive values
(Encinas et al., 2019)
N1877S C-Terminus Missense NR (Johannesen et al., 2019; Schreiber et al., 2020)
R1904C C-Terminus Missense NR (Encinas et al., 2019)

SCN8A-related epilepsies identified in clinical patients through WES and/or NGS.

*Non genetic origin mutations reported: Mutations described through clinical diagnosis, but the mutation type (Mendelian or de novo) were not reported, mainly due to the lack of parents to perform genotyping and difficulty in contacting the family. Not Reported (NR); Domain (D); Segment (S).

NaV1.6 is expressed since prenatal, during fetal development (Plummer et al., 1997). Shortly after birth, expression begins to increase, reaching maximum levels during the first years of life. This channel is widely expressed in the nodes of Ranvier of myelinated axons and in the distal part of the axon initial segments (AIS), although they are also ubiquitously present throughout the central and peripheral nervous systems, in both excitatory and inhibitory neurons (Caldwell et al., 2000; Oliva et al., 2012). For these reasons, NaV1.6 is one of the most common subtype of voltage-gated sodium channels found in the central nervous system (Caldwell et al., 2000). In humans, the distal AIS is the specialized membrane region in neurons where action potentials are triggered. Overexpression of Nav1.6 in the AIS has been shown to cause an increase in spontaneous and repetitive firing (Hu et al., 2009; Sun et al., 2013), a possible explanation for why SCN8A mutations in epilepsy patients are predominantly GoF and affect the action potential threshold. On the other hand, the functional importance of Nav1.6 in inhibitory interneurons is not clear yet, but evidence indicates a role for Nav1.6 in establishing synaptic inhibition in the thalamic network (Makinson et al., 2017), supporting the LoF results caused by missense mutations in the mature protein. These attributes lead to different network effects in distinct nervous system circuits. Mutations in SCN8A are associated with early-infantile epileptic encephalopathy type 13 (EIEE13; OMIM #614558), a phenotypically heterogeneous early onset epilepsy, with seizure onset happening before 18 months of age (Hammer et al., 2016). Patients typically develop intellectual disability, developmental delay, and movement disorders (Ohba et al., 2014; Gardella et al., 2016; Johannesen et al., 2018). Co-occurrence of autism spectrum disorders, severe juvenile osteoporosis, bradyarrhythmia, cortical visual impairment, and gastrointestinal disorders have been reported in rare cases (Larsen et al., 2015; Hammer et al., 2016; Rolvien et al., 2017; Gardella et al., 2018). Sudden unexpected death in epilepsy (SUDEP) has also been linked to SCN8A mutations, described as the most common cause of death in epilepsy patients. Reports have suggested that patients with SCN8A-related epilepsy have increased risk of SUDEP, ranging from 1% to 10% (Hammer et al., 2016; Wang et al., 2017a; Gardella et al., 2018; Johannesen et al., 2018). One possible correlation of SUDEP with SCN8A-related epilepsy is the presence of NaV1.6 in heart muscles and tissues, being broadly expressed within ventricular myocytes (Maier et al., 2002). Single mutations may affect heart function, causing failure of the cardiorespiratory system and, consequently, death (Haufe et al., 2005; Noujaim et al., 2012). Most recently, few cases of SCN8A-related epilepsies with “milder” phenotype were associated with benign familial infantile seizures-5 (BFIS5; OMIM #617080) (Anand et al., 2016; Gardella et al., 2016; Han et al., 2017).

An increase in new described variants made some mutation patterns visible. Wagnon and co-workers observed numerous cases of the same epiletogenic mutation, and suggested that CpG dinucleotides are mutation hotspots that, through enzymatic processing and epigenetic methylation, can convert cytosine to thymine, such as arginine residues 1617 and 1872 (Wagnon and Meisler, 2015). The prominent number of new variant cases in Arg850 indicates this residue as a new hotspot, since the arginine codon holds a CpG dinucleotide. In addition to these mutation hotspots, residues I763, I1327, G1475, A1650, and N1877 do not present CpG dinucleotides in their codon; however, they can be considered recurrent mutations in view of its high repetition cases in literature (Table 4).

The mutation at position c.- 8A>G produces a pathogenic variant, despite not being inside the gene, or promoter regions, transcriptional and translational sites. This mutation was detected in an untranslated region outside of the Kozak consensus sequence (Johannesen et al., 2019). Its role in SCN8A-related epilepsy is still unclear; however, it may change RNA stability, modulate transcriptional factors and promoters, modify the initiation of translation, or work as an enhancer or silencer in the splicing pattern. For all the reasons mentioned above, Nav1.6 variants are predominantly harmful, and the same mutation can lead to different phenotypes, hampering the correlation of genotypes with phenotypes (Blanchard et al., 2015).

SCN8A mutations can be both GoF and LoF, which will likely require different approaches and targets. Even in patients with the same SCN8A mutation, the response to the same drug treatment can differ. Surprisingly, most SCN8A-related epilepsies respond favorably to channel blockers. Phenytoin and lacosamide are SBCs widely used in SCN8A mutations with GoF effect, while carbamazepine exhibited positive seizure control in a patient with NaV 1.6 mutation and LoF effect. (Blanchard et al., 2015; Wagnon and Meisler, 2015; Hammer et al., 2016; Perucca and Perucca, 2019). Phenytoin demonstrated effectiveness in decreasing seizure episodes in several patients with SCN8A-related epilepsies, however, side effects during prolonged use are very common (Boerma et al., 2016; Braakman et al., 2017). A recent study of a DS model using zebrafish demonstrated the use of the channel blocking compound MV1312, which is 5–6 fold selectivity of NaV1.6 over NaV1.1–1.7, reduced burst movement phenotype and the number of epileptiform events, activity similar to that described with the use of a selective NaV1.1 activator AA43279 (Weuring et al., 2020). Selective Nav1.6 blockers may represent a new therapeutic strategy for DS patients. In addition, two precise and promising drugs have been described recently: XEN901 and GS967. XEN901 is an arylsulfonamide highly selective and potent NaV1.6 inhibitor that binds specifically in voltage sensor domain IV, avoiding recovery from inactivation. GS967 is a NaV1.6 modulator that inhibits the persistent sodium current and exhibits a protective effect (Baker et al., 2018; Bialer et al., 2018).

NaV1.7

The SCN9A gene encodes for the NaV1.7 channel, located in chromosome 2q24 (Yang et al., 2018). NaV1.7 is expressed preferably in the PNS, but it is also expressed in the CNS (Cen et al., 2017). Consequently, mutations in this channel are generally related to pain disorders (Young, 2007; Han et al., 2009; Doty, 2010; Rush et al., 2018); however, current studies have described a correlation between epilepsy and this channel (OMIM #603415).

Pain disorder mutations with GoF are related with diseases such as erythromelalgia (EMI), small-fiber neuropathy (SFN) and paroxysmal extreme pain disorder (PEPD), and mutations with LoF are related with congenital insensitivity to pain (CIP) (Cen et al., 2017). Epilepsy studies such as Zhang S. et al. (2020) showed mutations with GoF phenotype: W1150R, N641Y, and K655R mutations (Table 5). Being that, after treatment with OXC (120 µmol/L), N641Y and K655R reduced sodium current and decreased the opening time of the channel, while W1150R did not alter that (Zhang S. et al., 2020). However, in a study conducted by Yang et al. (2018), one of the patients presented generalized tonic-clonic seizure with fever, treated with sodium valproic acid, and a LoF mutation I1901fs was observed (Yang et al., 2018) (Table 5).

Table 5

Variant Location Mutation Disease Alteration on biophysical properties or/and Clinical report Reference
Inherited mutation
Q10R N-terminal Missense GEFS+ Febrile and afebrile seizures
Generalized tonic-clonic seizures
(Cen et al., 2017)
G327E DI Missense Epilepsy Generalized tonic-clonic seizure (Yang et al., 2018)
N641Y DI- DII Missense FS Reduced electroconvulsive seizure thresholds (Knocking mice)
Increased corneal kindling acquisition rates (Knocking mice)
Increased current density
Faster recovery from inactivation
More susceptible to clonic and tonic seizures induced by electrical stimulation (mice)
Enhanced persistent current
(Singh et al., 2009; Zhang S. et al., 2020)
I1901fs C-terminal
Frameshift
Epilepsy Generalized tonic-clonic seizure (Yang et al., 2018)
Non genetic origin mutations reported*
K655R DI-DII Missense FS Enhanced persistent current
Faster recovery from inactivation
(Zhang S. et al., 2020)
W1150R DII-DIII Missense FS Increased current density
Enhanced persistent current
Focal seizures with secondary generalization
High-potential spike activity, paroxysmal release, and d frequency power enhancement (EEG)
(Zhang S. et al., 2020)

SCN9A-related epilepsies identified in clinical patients through WES and/or NGS.

Variants of NaV1.7 have been related with febrile seizure or GEFS+ (Cen et al., 2017; Zhang S. et al., 2020) and even as asymptomatic (Singh et al., 2009). However, SCN9A can act as a putative modifier of NaV1.1 gene; consequently, it can elevate the severity of patients’ phenotype (Guerrini et al., 2010; Parihar and Ganesh, 2013). Some NaV1.7 mutations could probably contribute to generate a genetic susceptibility to a known epilepsy disease called Dravet syndrome, in a multifactorial way, as a modifier gene (Singh et al., 2009; Doty, 2010; Mulley et al., 2013; Cen et al., 2017; Zhang T. et al., 2020). That said, some rare cases of DS found in patients can be understood (Mulley et al., 2013). For example, even parents with mild phenotype had children with severe cases (Guerrini et al., 2010).

Conclusion and Future Perspectives

The past two decades have enabled remarkable progress in understanding monogenic epilepsies. NaV-related epilepsies are diseases of phenotypic heterogeneity, since sodium channels are found in both the CNS and the PNS, but with different expression ranges. The lack of a clear genotype-phenotype correlation to help guide patient counseling and management by healthcare professionals makes it very complex, and often expensive, to determine a correct diagnosis. Consequently, identify the monogenic mutation in individual patients with epilepsy is important not only for diagnosis and prognosis, but also for a correct treatment approach (Mei et al., 2017; Reif et al., 2017).

Susceptibility to specific treatments may be different depending on the disease’s features, diverging even in patients who share the same phenotype and/or mutation (Weber et al., 2014). The use of innovative tools that facilitate and prevent diagnostic delay in patients with epilepsy of unknown etiology onset is crucial. WES has proved to be a valuable tool to circumvent the lack of an accurate and fast diagnosis to epilepsies caused by monogenic mutation, and also cheapen and drastically anticipate diagnosis. This genetic diagnostic tool may reduce traditional investigation costs by 55 to 70%, besides avoiding further pre-surgical evaluation and epilepsy surgery (Kothur et al., 2018; Oates et al., 2018). In addition to the financial impact, it can anticipate diagnosis from nearly 3.5 years to 21 days, optimizing management and health care support (Oates et al., 2018).

Effective and safe drugs for the treatment of monogenic epilepsy are still an unmet clinical need. The drugs currently available in the pharmaceutical market are only palliative methods for a temporary control of the disease symptoms, and few patients will benefit from the existing pharmacotherapy, since a great number of patients treated with antiepileptic channel blockers showed no improvement in clinical conditions. Also, most treated patients exhibited manifold side effects, and the prolonged use of these medications proved to be harmful (Boerma et al., 2016; Braakman et al., 2017). Several examples of novel and promising candidate compounds to be used in personalized medicine, such as precision therapies, have been suggested. A previously study demonstrated that CBD at 1μM inhibit preferably resurgent currents than transient current in Nav1.6 WT and also inhibit peak resurgent current in Nav1.6 mutant N1768D, with less effect in current density and without alters voltage dependence of activation (Patel et al., 2016) Possibly the modulation of CBD over mutations in SCN8A that promotes a phenotype with increased resurgent currents would cause a reduction in the causative excitability of epileptic seizures. CBD also showed its ability to preferential inhibit resurgent currents in the NaV1.2 channel (Mason and Cummins, 2020). Due the role of Nav1.2 and Nav1.6 in excitatory neurons, preferentially inhibition in resurgent currents by CBD could possibly reduce the excitability in that subset of neurons and decrease the frequency of seizures by a change in threshold of activation and repetitive fire (Lewis and Raman, 2014). Peptides derived from scorpion and spider venom are well known modulator tools in neuroscience and showed specific capacity to regulate most NaV subtypes related with monogenic epilepsy, unlike the available promiscuous drugs that generally interact with any NaV channel isoform (Schiavon et al., 2006; Israel et al., 2018; Richards et al., 2018; Tibery et al., 2019; Zhang et al., 2019). Bioengineering tools, like antisense oligonucleotides capable to regulate NaV1.1 channels expression, and the peptide Hm1, that modulates the function of this subtype of sodium channel, are some innovative treatment examples (Richards et al., 2018; Stoke Therapeutics, 2018).

However, there is still a long path toward the development of efficacious treatments for NaV-related epilepsies. Recent studies offered a better understanding of the complexity of the phenotypic and genetic spectrum, which has only just begun to be elucidated. Biomolecular diagnostic tools will drastically reduce the developmental and cognitive effects caused by misdiagnosis and late diagnosis, and maybe, in the upcoming years, the treatment for inherited NaV-related epilepsies will be conducted ideally in utero, during the prenatal stage. Moreover, further functional studies, with greater cohorts of patients, represent an urgent medical need for a better understanding of the correlations between genotype and clinical symptoms, as well as the different NaV-related epilepsies mechanisms. These studies will improve clinical efficacy and promote safety diagnostic strategies, as well as develop prognosis prediction in the near future.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) [407625/2013-5] and the Fundação de Apoio à Pesquisa do Distrito Federal (FAPDF) [grants 193.001.202/2016 and 00193.0000109/2019-17].

Statements

Author contributions

All authors made an intellectual and direct contribution for this article and approved it for publication.

Acknowledgments

CNPq, CAPES, and the Molecular Biology postgraduate program of the University of Brasilia. LM received scholarships from CNPq and DT from CAPES. EFS was supported by CNPq.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.01276/full#supplementary-material

References

  • 1

    Abdelsayed M. Sokolov S. (2013). Voltage-gated sodium channels. Channels7, 146152. doi: 10.4161/chan.24380

  • 2

    Ahern C. A. Payandeh J. Bosmans F. Chanda B. (2016). The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol.147, 124. doi: 10.1085/jgp.201511492

  • 3

    Allen A. S. Berkovic S. F. Cossette P. Delanty N. Dlugos D. Eichler E. E. et al . (2013). De novo mutations in epileptic encephalopathies. Nature501, 217221. doi: 10.1038/nature12439

  • 4

    Allen N. M. Conroy J. Shahwan A. Lynch B. Correa R. G. Pena S. D. J. et al . (2016). Unexplained early onset epileptic encephalopathy: Exome screening and phenotype expansion. Epilepsia57, e12e17. doi: 10.1111/epi.13250

  • 5

    Anand G. Collett-White F. Orsini A. Thomas S. Jayapal S. Trump N. et al . (2016). Autosomal dominant SCN8A mutation with an unusually mild phenotype. Eur. J. Paediatr. Neurol.20, 761765. doi: 10.1016/j.ejpn.2016.04.015

  • 6

    Annesi G. Gambardella A. Carrideo S. Incorpora G. Labate A. Pasqua A. A. et al . (2003). Two Novel SCN1A Missense Mutations in Generalized Epilepsy with Febrile Seizures Plus. Epilepsia44, 12571258. doi: 10.1046/j.1528-1157.2003.22503.x

  • 7

    Arafat A. Jing P. Ma Y. Pu M. Nan G. Fang H. et al . (2017). Unexplained Early Infantile Epileptic Encephalopathy in Han Chinese Children: Next-Generation Sequencing and Phenotype Enriching. Sci. Rep.7:46227. doi: 10.1038/srep46227

  • 8

    Atanasoska M. Vazharova R. Ivanov I. Balabanski L. Andonova S. Ivanov S. et al . (2018). SCN8A p.Arg1872Gln mutation in early infantile epileptic encephalopathy type 13: Review and case report. Biotechnol. Biotechnol. Equip.32, 13451351. doi: 10.1080/13102818.2018.1532815

  • 9

    Bähler M. Rhoads A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett.513, 107113. doi: 10.1016/S0014-5793(01)03239-2

  • 10

    Baasch A. L. Hüning I. Gilissen C. Klepper J. Veltman J. A. Gillessen-Kaesbach G. et al . (2014). Exome sequencing identifies a de novo SCN2A mutation in a patient with intractable seizures, severe intellectual disability, optic atrophy, muscular hypotonia, and brain abnormalities. Epilepsia55, e25e29. doi: 10.1111/epi.12554

  • 11

    Bagnasco I. Dassi P. Blé R. Vigliano P. (2018). A relatively mild phenotype associated with mutation of SCN8A. Seizure56, 4749. doi: 10.1016/j.seizure.2018.01.021

  • 12

    Baker E. M. Thompson C. H. Hawkins N. A. Wagnon J. L. Wengert E. R. Patel M. K. et al . (2018). The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia59, 11661176. doi: 10.1111/epi.14196

  • 13

    Balciuniene J. DeChene E. T. Akgumus G. Romasko E. J. Cao K. Dubbs H. A. et al . (2019). Use of a Dynamic Genetic Testing Approach for Childhood-Onset Epilepsy. JAMA Netw. Open2, e192129. doi: 10.1001/jamanetworkopen.2019.2129

  • 14

    Barba C. Parrini E. Coras R. Galuppi A. Craiu D. Kluger G. et al . (2014). Co-occurring malformations of cortical development and SCN1A gene mutations. Epilepsia55, 10091019. doi: 10.1111/epi.12658

  • 15

    Baroni D. Picco C. Moran O. (2018). A mutation of SCN1B associated with GEFS+ causes functional and maturation defects of the voltage-dependent sodium channel. Hum. Mutat.39, 14021415. doi: 10.1002/humu.23589

  • 16

    Bartnik M. Chun-Hui Tsai A. Xia Z. Cheung S. Stankiewicz P. (2011). Disruption of the SCN2A and SCN3A genes in a patient with mental retardation, neurobehavioral and psychiatric abnormalities, and a history of infantile seizures. Clin. Genet.80, 191195. doi: 10.1111/j.1399-0004.2010.01526.x

  • 17

    Baumer F. M. Peters J. M. El Achkar C. M. Pearl P. L. (2015). SCN2A-Related Early-Onset Epileptic Encephalopathy Responsive to Phenobarbital. J. Pediatr. Epilepsy05, 042046. doi: 10.1055/s-0035-1567853

  • 18

    Bechi G. Rusconi R. Cestèle S. Striano P. Franceschetti S. Mantegazza M. (2015). Rescuable folding defective NaV1.1 (SCN1A) mutants in epilepsy: Properties, occurrence, and novel rescuing strategy with peptides targeted to the endoplasmic reticulum. Neurobiol. Dis.75, 100114. doi: 10.1016/j.nbd.2014.12.028

  • 19

    Bennett C. A. Petrovski S. Oliver K. L. Berkovic S. F. (2017). ExACtly zero or once. Neurol. Genet.3, e163. doi: 10.1212/NXG.0000000000000163

  • 20

    Ben-Shalom R. Keeshen C. M. Berrios K. N. An J. Y. Sanders S. J. Bender K. J. (2017). Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol. Psychiatry82, 224232. doi: 10.1016/j.biopsych.2017.01.009

  • 21

    Berecki G. Howell K. B. Deerasooriya Y. H. Cilio M. R. Oliva M. K. Kaplan D. et al . (2018). Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy. Proc. Natl. Acad. Sci. U. S. A.115, E5516E5525. doi: 10.1073/pnas.1800077115

  • 22

    Berghuis B. de Kovel C. G. F. van Iterson L. Lamberts R. J. Sander J. W. Lindhout D. et al . (2015). Complex SCN8A DNA-abnormalities in an individual with therapy resistant absence epilepsy. Epilepsy Res.115, 141144. doi: 10.1016/j.eplepsyres.2015.06.007

  • 23

    Berkovic S. F. Heron S. E. Giordano L. Marini C. Guerrini R. Kaplan R. E. et al . (2004). Benign Familial Neonatal-Infantile Seizures: Characterization of a New Sodium Channelopathy. Ann. Neurol.55, 550557. doi: 10.1002/ana.20029

  • 24

    Berkovic S. F. Grinton B. Dixon-Salazar T. Laughlin B. L. Lubbers L. Milder J. et al . (2018). De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy. Genet. Med.20, 275281. doi: 10.1038/gim.2017.100

  • 25

    Bialer M. Johannessen S. I. I. Koepp M. J. Levy R. H. Perucca E. Tomson T. et al . (2018). Progress report on new antiepileptic drugs: A summary of the Fourteenth Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XIV). I. Drugs preclinical early clinical development. Epilepsia59, 18111841. doi: 10.1111/epi.14557

  • 26

    Black J. A. Nikolajsen L. Kroner K. Jensen T. S. Waxman S. G. (2008). Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann. Neurol.64, 644653. doi: 10.1002/ana.21527

  • 27

    Blanchard M. G. Willemsen M. H. Walker J. B. Dib-Hajj S. D. Waxman S. G. Jongmans M. C. J. et al . (2015). De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet.52, 330337. doi: 10.1136/jmedgenet-2014-102813

  • 28

    Boerma R. S. Braun K. P. van de Broek M. P. H. van Berkestijn F. M. C. Swinkels M. E. Hagebeuk E. O. et al . (2016). Remarkable Phenytoin Sensitivity in 4 Children with SCN8A-related Epilepsy: A Molecular Neuropharmacological Approach. Neurotherapeutics13, 192197. doi: 10.1007/s13311-015-0372-8

  • 29

    Bouza A. A. Isom L. L. (2018). “Voltage-Gated Sodium Channel b Subunits and Their Related Diseases,” in Handbook of experimental pharmacology (Springer International Publishing), 423450. doi: 10.1007/164_2017_48

  • 30

    Braakman H. M. Verhoeven J. S. Erasmus C. E. Haaxma C. A. Willemsen M. H. Schelhaas H. J. (2017). Phenytoin as a last-resort treatment in SCN8A encephalopathy. Epilepsia Open2, 343344. doi: 10.1002/epi4.12059

  • 31

    Brunklaus A. Ellis R. Reavey E. Semsarian C. Zuberi S. M. (2014). Genotype phenotype associations across the voltage-gated sodium channel family. J. Med. Genet.51, 650658. doi: 10.1136/jmedgenet-2014-102608

  • 32

    Brunklaus A. Ellis R. Stewart H. Aylett S. Reavey E. Jefferson R. et al . (2015). Homozygous mutations in the SCN1A gene associated with genetic epilepsy with febrile seizures plus and Dravet syndrome in 2 families. Eur. J. Paediatr. Neurol.19, 484488. doi: 10.1016/j.ejpn.2015.02.001

  • 33

    Buoni S. Orrico A. Galli L. Zannolli R. Burroni L. Hayek J. et al . (2006). SCN1delG) novel truncating mutation with benign outcome of severe myoclonic epilepsy of infancy. Neurology66, 606607. doi: 10.1212/01.WNL.0000198504.41315.B1

  • 34

    Butler K. M. da Silva C. Alexander J. J. Hegde M. Escayg A. (2017a). Diagnostic Yield From 339 Epilepsy Patients Screened on a Clinical Gene Panel. Pediatr. Neurol.77, 6166. doi: 10.1016/j.pediatrneurol.2017.09.003

  • 35

    Butler K. M. da Silva C. Shafir Y. Weisfeld-Adams J. D. Alexander J. J. Hegde M. et al . (2017b). De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis. Epilepsy Res.129, 1725. doi: 10.1016/j.eplepsyres.2016.11.002

  • 36

    Caldwell J. H. Schaller K. L. Lasher R. S. Peles E. Levinson S. R. (2000). Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl. Acad. Sci.97, 56165620. doi: 10.1073/pnas.090034797

  • 37

    Capes D. L. Goldschen-Ohm M. P. Arcisio-Miranda M. Bezanilla F. Chanda B. (2013). Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J. Gen. Physiol.142, 101112. doi: 10.1085/jgp.201310998

  • 38

    Carranza Rojo D. Hamiwka L. McMahon J. M. Dibbens L. M. Arsov T. Suls A. et al . (2011). De novo SCN1A mutations in migrating partial seizures of infancy. Neurology77, 380383. doi: 10.1212/WNL.0b013e318227046d

  • 39

    Carvill G. L. Heavin S. B. Yendle S. C. McMahon J. M. O’Roak B. J. Cook J. et al . (2013). Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat. Genet.45, 825830. doi: 10.1038/ng.2646

  • 40

    Catterall W. A. Kalume F. Oakley J. C. (2010). NaV1.1 channels and epilepsy. J. Physiol.588, 18491859. doi: 10.1113/jphysiol.2010.187484

  • 41

    Catterall W. A. (2014a). Sodium Channels, Inherited Epilepsy, and Antiepileptic Drugs. Annu. Rev. Pharmacol. Toxicol.54, 317338. doi: 10.1146/annurevpharmtox-011112-140232

  • 42

    Catterall W. A. (2014b). Structure and function of voltage-gated sodium channels at atomic resolution. Exp. Physiol.99, 3551. doi: 10.1113/expphysiol.2013.071969

  • 43

    Catterall W. A. (2017). Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem. Res.42, 24952504. doi: 10.1007/s11064-017-2314-9

  • 44

    Cen Z. Lou Y. Guo Y. Wang J. Feng J. (2017). Q10R mutation in SCN9A gene is associated with generalized epilepsy with febrile seizures plus. Seizure50, 186188. doi: 10.1016/j.seizure.2017.06.023

  • 45

    Cheah C. S. Westenbroek R. E. Roden W. H. Kalume F. Oakley J. C. Jansen L. A. et al . (2013). Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels7, 468472. doi: 10.4161/chan.26023

  • 46

    Chen Y. H. Dale T. J. Romanos M. A. Whitaker W. R. J. Xie X. M. Clare J. J. (2000). Cloning, distribution and functional analysis of the type III sodium channel from human brain. Eur. J. Neurosci.12, 42814289. doi: 10.1046/j.1460-9568.2000.01336.x

  • 47

    Cestèle S. Labate A. Rusconi R. Tarantino P. Mumoli L. Franceschetti S. et al . (2013). Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia54, 927935. doi: 10.1111/epi.12123

  • 48

    Cetica V. Chiari S. Mei D. Parrini E. Grisotto L. Marini C. et al . (2017). Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations. Neurology88, 10371044. doi: 10.1212/WNL.0000000000003716

  • 49

    Chen Y. J. Shi Y. W. Xu H. Q. Chen M. L. Gao M. M. Sun W. W. et al . (2015). Electrophysiological Differences between the Same Pore Region Mutation in SCN1A and SCN3A. Mol. Neurobiol.51, 12631270. doi: 10.1007/s12035-014-8802-x

  • 50

    Chong P. F. Saitsu H. Sakai Y. Imagi T. Nakamura R. Matsukura M. et al . (2018). Deletions of SCN2A and SCN3A genes in a patient with West syndrome and autistic spectrum disorder. Seizure60, 9193. doi: 10.1016/j.seizure.2018.06.012

  • 51

    Claes L. Del-Favero J. Ceulemans B. Lagae L. Van Broeckhoven C. De Jonghe P. (2001). De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am. J. Hum. Genet.68, 13271332. doi: 10.1086/320609

  • 52

    Claes L. Ceulemans B. Audenaert D. Smets K. Löfgren A. Del-Favero J. et al . (2003). De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum. Mutat.21, 615621. doi: 10.1002/humu.10217

  • 53

    Clairfeuille T. Cloake A. Infield D. T. Llongueras J. P. Arthur C. P. Li Z. R. et al . (2019). Structural basis of a-scorpion toxin action on Nav channels. Science363, 125. doi: 10.1126/science.aav8573

  • 54

    Clark M. M. Stark Z. Farnaes L. Tan T. Y. White S. M. Dimmock D. et al . (2018). Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genomic Med.3, 16. doi: 10.1038/s41525-018-0053-8

  • 55

    Colombo E. Franceschetti S. Avanzini G. Mantegazza M. (2013). Phenytoin Inhibits the Persistent Sodium Current in Neocortical Neurons by Modifying Its Inactivation Properties. PloS One8, e55329. doi: 10.1371/journal.pone.0055329

  • 56

    Colosimo E. Gambardella A. Mantegazza M. Labate A. Rusconi R. Schiavon E. et al . (2007). Electroclinical Features of a Family with Simple Febrile Seizures and Temporal Lobe Epilepsy Associated with SCN1A Loss-of-Function Mutation. Epilepsia48, 16911696. doi: 10.1111/j.1528-1167.2007.01153.x

  • 57

    Combi R. Grioni D. Contri M. Redaelli S. Redaelli F. Bassi M. T. et al . (2009). Clinical and genetic familial study of a large cohort of Italian children with idiopathic epilepsy. Brain Res. Bull.79, 8996. doi: 10.1016/j.brainresbull.2009.01.008

  • 58

    Costain G. Cordeiro D. Matviychuk D. Mercimek-Andrews S. (2019). Clinical Application of Targeted Next-Generation Sequencing Panels and Whole Exome Sequencing in Childhood Epilepsy. Neuroscience418, 291310. doi: 10.1016/j.neuroscience.2019.08.016

  • 59

    Cui X. Zeng F. Liu Y. Zhang J. Archacki S. Zhan T. et al . (2011). A novel SCN1A missense mutation causes generalized epilepsy with febrile seizures plus in a Chinese family. Neurosci. Lett.503, 2730. doi: 10.1016/j.neulet.2011.08.001

  • 60

    Cummins T. R. Waxman S. G. (1997). Downregulation of tetrodotoxinresistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci.17, 35033514. doi: 10.1523/jneurosci.17-10-03503.1997

  • 61

    Cummins T. R. Aglieco F. Renganathan M. Herzog R. I. I. Dib-Hajj S. D. Waxman S. G. (2001). Nav1.3 sodium channels: Rapid repriming and slow closed-state inactivation display quantitative differences after expression in a mammalian cell line and in spinal sensory neurons. J. Neurosci.21, 59525961. doi: 10.1523/jneurosci.21-16-05952.2001

  • 62

    Daoud H. Luco S. M. Li R. Bareke E. Beaulieu C. Jarinova O. et al . (2016). Next-generation sequencing for diagnosis of Rare diseases in the neonatal intensive care unit. Cmaj188, E254E260. doi: 10.1503/cmaj.150823

  • 63

    Davidsson J. Collin A. Olsson M. E. Lundgren J. Soller M. (2008). Deletion of the SCN gene cluster on 2q24.4 is associated with severe epilepsy: An array-based genotype–phenotype correlation and a comprehensive review of previously published cases. Epilepsy Res.81, 6979. doi: 10.1016/j.eplepsyres.2008.04.018

  • 64

    de Kovel C. G. F. Meisler M. H. Brilstra E. H. van Berkestijn F. M. C. van Lieshout S. et al . (2014). Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res.108, 15111518. doi: 10.1016/j.eplepsyres.2014.08.020

  • 65

    Deciphering Developmental Disorders Study (2015). Large-scale discovery of novel genetic causes of developmental disorders. Nature519, 223228. doi: 10.1038/nature14135

  • 66

    Deng H. Xiu X. Song Z. (2014). The molecular biology of genetic-based epilepsies. Mol. Neurobiol.49, 352367. doi: 10.1007/s12035-013-8523-6

  • 67

    Denis J. Villeneuve N. Cacciagli P. Mignon-Ravix C. Lacoste C. Lefranc J. et al . (2019). Clinical study of 19 patients with SCN8A-related epilepsy: Two modes of onset regarding EEG and seizures. Epilepsia60, 845856. doi: 10.1111/epi.14727

  • 68

    Depienne C. Trouillard O. Saint-Martin C. Gourfinkel-An I. Bouteiller D. Carpentier W. et al . (2008). Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J. Med. Genet.46, 183191. doi: 10.1136/jmg.2008.062323

  • 69

    Devinsky O. Vezzani A. Jette N. De Curtis M. Perucca P. (2018). Epilepsy. Nat. Rev.3, 124. doi: 10.1038/nrdp.2018.24

  • 70

    Dhamija R. Wirrell E. Falcao G. Kirmani S. Wong-Kisiel L. C. (2013). Novel de novo SCN2A Mutation in a Child With Migrating Focal Seizures of Infancy. Pediatr. Neurol.49, 486488. doi: 10.1016/j.pediatrneurol.2013.07.004

  • 71

    Dhamija R. Erickson M. K. St Louis E. K. Wirrell E. Kotagal S. (2014). Sleep Abnormalities in Children With Dravet Syndrome. Pediatr. Neurol.50, 474478. doi: 10.1016/j.pediatrneurol.2014.01.017

  • 72

    Djémié T. Weckhuysen S. von Spiczak S. Carvill G. L. Jaehn J. Anttonen A.-K. et al . (2016). Pitfalls in genetic testing: the story of missed SCN1A mutations. Mol. Genet. Genomic Med.4, 457464. doi: 10.1002/mgg3.217

  • 73

    Doty C. N. (2010). SCN9A: Another sodium channel excited to play a role in human epilepsies. Clin. Genet.77, 326328. doi: 10.1111/j.1399-0004.2009.01366_1.x

  • 74

    Dyment D. A. Tétreault M. Beaulieu C. L. Hartley T. Ferreira P. Chardon J. W. et al . (2015). Whole-exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: A retrospective study. Clin. Genet.88, 3440. doi: 10.1111/cge.12464

  • 75

    Ebach K. Joos H. Doose H. Stephani U. Kurlemann G. Fiedler B. et al . (2005). SCN1A mutation analysis in myoclonic astatic epilepsy and severe idiopathic generalized epilepsy of infancy with generalized tonic-clonic seizures. Neuropediatrics36, 210213. doi: 10.1055/s-2005-865607

  • 76

    Ebrahimi A. Houshmand M. Tonekaboni S. H. Fallah Mahboob Passand M. S. Zainali S. Moghadasi M. (2010). Two Novel Mutations in SCN1A Gene in Iranian Patients with Epilepsy. Arch. Med. Res.41, 207214. doi: 10.1016/j.arcmed.2010.04.007

  • 77

    Egri C. Vilin Y. Y. Ruben P. C. (2012). A thermoprotective role of the sodium channel β 1 subunit is lost with the β 1(C121W) mutation. Epilepsia53, 494505. doi: 10.1111/j.1528-1167.2011.03389.x

  • 78

    Encinas A. C. Moore I. (Ki) M. Watkins J. C. Hammer M. F. (2019). Influence of age at seizure onset on the acquisition of neurodevelopmental skills in an SCN8A cohort. Epilepsia60, 17111720. doi: 10.1111/epi.16288

  • 79

    Epifanio R. Zanotta N. Giorda R. Bardoni A. Zucca C. (2019). Novel epilepsy phenotype associated to a known SCN8A mutation. Seizure67, 1517. doi: 10.1016/j.seizure.2019.01.017

  • 80

    Escayg A. Heils A. MacDonald B. T. Haug K. Sander T. Meisler M. H. (2001). A Novel SCN1A Mutation Associated with Generalized Epilepsy with Febrile Seizures Plus—and Prevalence of Variants in Patients with Epilepsy. Am. J. Hum. Genet.68, 866873. doi: 10.1086/319524

  • 81

    Escayg A. Goldin A. L. (2010). Sodium channel SCN1A and epilepsy : Mutations and mechanisms. Epilepsia51, 16501658. doi: 10.1111/j.1528-1167.2010.02640.x

  • 82

    Estacion M. Gasser A. Dib-Hajj S. D. Waxman S. G. (2010). A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp. Neurol.224, 362368. doi: 10.1016/j.expneurol.2010.04.012

  • 83

    Estacion M. Waxman S. G. (2013). The response of NaV1.3 sodium channels to ramp stimuli: Multiple components and mechanisms. J. Neurophysiol.109, 306314. doi: 10.1152/jn.00438.2012

  • 84

    Estacion M. O’Brien J. E. Conravey A. Hammer M. F. Waxman S. G. Dib-Hajj S. D. et al . (2014). A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol. Dis.69, 117123. doi: 10.1016/j.nbd.2014.05.017

  • 85

    Esterhuizen A. II Mefford H. C. Ramesar R. S. Wang S. Carvill G. L. Wilmshurst J. M. (2018). Dravet syndrome in South African infants: Tools for an early diagnosis. Seizure62, 99105. doi: 10.1016/j.seizure.2018.09.010

  • 86

    Falco-Walter J. J. Scheffer I. E. Fisher R. S. (2018). The new definition and classification of seizures and epilepsy. Epilepsy Res.139, 7379. doi: 10.1016/j.eplepsyres.2017.11.015

  • 87

    Felts P. A. Yokoyama S. Dib-Hajj S. Black J. A. Waxman S. G. (1997). Sodium channel a-subunit mRNAs I, II, III, NaG, Na6 and hNE (PN1): different expression patterns in developing rat nervous system. Mol. Brain Res.45, 7182. doi: 10.1016/S0169-328X(96)00241-0

  • 88

    Fisher R. S. Acevedo C. Arzimanoglou A. Bogacz A. Cross J. H. Elger C. E. et al . (2014). ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia55, 475482. doi: 10.1111/epi.12550

  • 89

    Foster L. A. Johnson M. R. MacDonald J. T. Karachunski P. II Henry T. R. Nascene D. R. et al . (2017). Infantile Epileptic Encephalopathy Associated With SCN2A Mutation Responsive to Oral Mexiletine. Pediatr. Neurol.66, 108111. doi: 10.1016/j.pediatrneurol.2016.10.008

  • 90

    Fry A. E. Rees E. Thompson R. Mantripragada K. Blake P. Jones G. et al . (2016). Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Med. Genet.17, 34. doi: 10.1186/s12881-016-0294-2

  • 91

    Fujiwara T. (2003). Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain126, 531546. doi: 10.1093/brain/awg053

  • 92

    Fukasawa T. Kubota T. Negoro T. Saitoh M. Mizuguchi M. Ihara Y. et al . (2015). A case of recurrent encephalopathy with SCN2A missense mutation. Brain Dev.37, 631634. doi: 10.1016/j.braindev.2014.10.001

  • 93

    Fukuma G. Oguni H. Shirasaka Y. Watanabe K. Miyajima T. Yasumoto S. et al . (2004). Mutations of Neuronal Voltage-gated Na+ Channel alpha1 Subunit Gene SCN1A in Core Severe Myoclonic Epilepsy in Infancy (SMEI) and in Borderline SMEI (SMEB). Epilepsia45, 140148. doi: 10.1111/j.0013-9580.2004.15103.x

  • 94

    Fung L.-W. E. Kwok S.-L. J. Tsui K.-W. S. (2015). SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia56, 13191320. doi: 10.1111/epi.12925

  • 95

    Fung C. W. Kwong A. K. Y. Wong V. C. N. (2017). Gene panel analysis for nonsyndromic cryptogenic neonatal/infantile epileptic encephalopathy. Epilepsia Open2, 236243. doi: 10.1002/epi4.12055

  • 96

    Gamal El-Din T. M. Martinez G. Q. Payandeh J. Scheuer T. Catterall W. A. (2013). A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb. J. Gen. Physiol.142, 181190. doi: 10.1085/jgp.201311012

  • 97

    Gardella E. Becker F. Møller R. S. Schubert J. Lemke J. R. Larsen L. H. G. et al . (2016). Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann. Neurol.79, 428436. doi: 10.1002/ana.24580

  • 98

    Gardella E. Marini C. Trivisano M. Fitzgerald M. P. Alber M. Howell K. B. et al . (2018). The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology91, E1112E1124. doi: 10.1212/WNL.0000000000006199

  • 99

    Gargus J. J. Tournay A. (2007). Novel Mutation Confirms Seizure Locus SCN1A is Also Familial Hemiplegic Migraine Locus FHM3. Pediatr. Neurol.37, 407410. doi: 10.1016/j.pediatrneurol.2007.06.016

  • 100

    Ghovanloo M. R. Aimar K. Ghadiry-Tavi R. Yu A. Ruben P. C. (2016). Physiology and Pathophysiology of Sodium Channel Inactivation. Curr. Top. Membr.78, 479509. doi: 10.1016/bs.ctm.2016.04.001

  • 101

    Gokben S. Onay H. Yilmaz S. Atik T. Serdaroglu G. Tekin H. et al . (2017). Targeted next generation sequencing: the diagnostic value in early-onset epileptic encephalopathy. Acta Neurol. Belg.117, 131138. doi: 10.1007/s13760-016-0709-z

  • 102

    Gilchrist J. Das S. Van Petegem F. Bosmans F. (2013). Crystallographic insights into sodium-channel modulation by the b4 subunit. Proc. Natl. Acad. Sci.110, E5016E5024. doi: 10.1073/pnas.1314557110

  • 103

    Goldin A. L. Escayg A. (2010). Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia51:16. doi: 10.1111/j.1528-1167.2010.02640.x

  • 104

    Goldschen-Ohm M. P. Capes D. L. Oelstrom K. M. Chanda B. (2013). Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel. Nat. Commun.4, 1350. doi: 10.1038/ncomms2356

  • 105

    Gorman K. M. King M. D. (2017). SCN2A p.Ala263Val Variant a Phenotype of Neonatal Seizures Followed by Paroxysmal Ataxia in Toddlers. Pediatr. Neurol.67, 111112. doi: 10.1016/j.pediatrneurol.2016.11.008

  • 106

    Grinton B. E. Heron S. E. Pelekanos J. T. Zuberi S. M. Kivity S. Afawi Z. et al . (2015). Familial neonatal seizures in 36 families: Clinical and genetic features correlate with outcome. Epilepsia56, 10711080. doi: 10.1111/epi.13020

  • 107

    Guerrini R. Cellini E. Mei D. Metitieri T. Petrelli C. Pucatti D. et al . (2010). Variable epilepsy phenotypes associated with a familial intragenic deletion of the SCN1A gene. Epilepsia51, 24742477. doi: 10.1111/j.1528-1167.2010.02790.x

  • 108

    Hackenberg A. Baumer A. Sticht H. Schmitt B. Kroell-Seger J. Wille D. et al . (2014). Infantile Epileptic Encephalopathy, Transient Choreoathetotic Movements, and Hypersomnia due to a De Novo Missense Mutation in the SCN2A Gene. Neuropediatrics45, 261264. doi: 10.1055/s-0034-1372302

  • 109

    Haginoya K. Togashi N. Kaneta T. Hino-Fukuyo N. Ishitobi M. Kakisaka Y. et al . (2018). [18F]fluorodeoxyglucose-positron emission tomography study of genetically confirmed patients with Dravet syndrome. Epilepsy Res.147, 914. doi: 10.1016/j.eplepsyres.2018.08.008

  • 110

    Hains B. C. Klein J. P. Saab C. Y. Craner M. J. Black J. A. Waxman S. G. (2003). Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J. Neurosci.23, 88818892. doi: 10.1523/jneurosci.23-26-08881.2003

  • 111

    Halvorsen M. Petrovski S. Shellhaas R. Tang Y. Crandall L. Goldstein D. et al . (2016). Mosaic mutations in early-onset genetic diseases. Genet. Med.18, 746749. doi: 10.1038/gim.2015.155

  • 112

    Han J. Y. Jang J. H. Lee I. G. Shin S. Park J. (2017). A novel inherited mutation of SCN8a in a korean family with benign familial infantile epilepsy using diagnostic exome sequencing. Ann. Clin. Lab. Sci.47, 747753.

  • 113

    Han C. Dib-Hajj S. D. Lin Z. Li Y. Eastman E. M. Tyrrell L. et al . (2009). Early- and late-onset inherited erythromelalgia: genotypephenotype correlation. Brain132, 17111722. doi: 10.1093/brain/awp078

  • 114

    Hammer M. F. Wagnon J. L. Mefford H. C. Meisler M. H. et al . (2016). “SCN8A-Related Epilepsy with Encephalopathy,” in GeneReviews® [Internet]. Eds. AdamM. P.ArdingerH. H.PagonR. A. (Seattle (WA): University of Washington).

  • 115

    Harkin L. A. McMahon J. M. Iona X. Dibbens L. Pelekanos J. T. Zuberi S. M. et al . (2007). The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain130, 843852. doi: 10.1093/brain/awm002

  • 116

    Haug K. Hallmann K. Rebstock J. Dullinger J. Muth S. Haverkamp F. et al . (2001). The voltage-gated sodium channel gene SCN2A and idiopathic generalized epilepsy. Epilepsy Res.47, 243246. doi: 10.1016/S0920-1211(01)00312-6

  • 117

    Haufe V. Camacho J. A. Dumaine R. Günther B. Bollensdorff C. von Banchet G. S. et al . (2005). Expression pattern of neuronal and skeletal muscle voltage-gated Na+ channels in the developing mouse heart. J. Physiol.564, 683696. doi: 10.1113/jphysiol.2004.079681

  • 118

    Herlenius E. Heron S. E. Grinton B. E. Keay D. Scheffer I. E. Mulley J. C. et al . (2007). SCN2A mutations and benign familial neonatal-infantile seizures: The phenotypic spectrum. Epilepsia48, 11381142. doi: 10.1111/j.1528-1167.2007.01049.x

  • 119

    Hernández Chávez M. Mesa Latorre T. Pedraza Herrera M. Troncoso Schifferli M. (2014). ¿Crisis febriles complejas o síndrome de Dravet?: Descripción de 3 casos clínicos. Rev. Chil. pediatría85, 588593. doi: 10.4067/S0370-41062014000500010

  • 120

    Heron S. E. Crossland K. M. Andermann E. Phillips H. A. Hall A. J. Bleasel A. et al . (2002). Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet360, 851852. doi: 10.1016/S0140-6736(02)09968-3

  • 121

    Heron S. E. Scheffer I. E. Grinton B. E. Eyre H. Oliver K. L. Bain S. et al . (2010). Familial neonatal seizures with intellectual disability caused by a microduplication of chromosome 2q24.3. Epilepsia51, 18651869. doi: 10.1111/j.1528-1167.2010.02558.x

  • 122

    Hewson S. Brunga L. Ojeda M. F. Imhof E. Patel J. Zak M. et al . (2018). Prevalence of Genetic Disorders and GLUT1 Deficiency in a Ketogenic Diet Clinic. Can. J. Neurol. Sci.45, 9396. doi: 10.1017/cjn.2017.246

  • 123

    Heyne H. O. Artomov M. Battke F. Bianchini C. Smith D. R. Liebmann N. et al . (2019). Targeted gene sequencing in 6994 individuals with neurodevelopmental disorder with epilepsy. Genet. Med.21, 24962503. doi: 10.1038/s41436-019-0531-0

  • 124

    Hoffman-Zacharska D. Szczepanik E. Terczynska I. Goszczanska-Ciuchta A. Zalewska-Miszkurka Z. Tataj R. et al . (2015). From focal epilepsy to dravet syndrome –heterogeneity of the phenotype due to SCN1A mutations of the p.Arg1596 amino acid residue in the nav1.1 subunit. Neurol. Neurochir. Pol.49, 258266. doi: 10.1016/j.pjnns.2015.06.006

  • 125

    Holland K. D. Kearney J. A. Glauser T. A. Buck G. Keddache M. Blankston J. R. et al . (2008). Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci. Lett.433, 6570. doi: 10.1016/j.neulet.2007.12.064

  • 126

    Horvath G. A. Demos M. Shyr C. Matthews A. Zhang L. Race S. et al . (2016). Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target? Mol. Genet. Metab.117, 4248. doi: 10.1016/j.ymgme.2015.11.008

  • 127

    Howell K. B. McMahon J. M. Carvill G. L. Tambunan D. Mackay M. T. Rodriguez-Casero V. et al . (2015). SCN2A encephalopathy. Neurology85, 958966. doi: 10.1212/WNL.0000000000001926

  • 128

    Hsiao J. Yuan T. Y. Tsai M. S. Lu C. Y. Lin Y. C. Lee M. L. et al . (2016). Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome. EBioMedicine9, 257277. doi: 10.1016/j.ebiom.2016.05.011

  • 129

    Hu W. Tian C. Li T. Yang M. Hou H. Shu Y. (2009). Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci.12, 9961002. doi: 10.1038/nn.2359

  • 130

    Huang W. Liu M. Yan S. F. Yan N. (2017). Structure-based assessment of disease-related mutations in human voltage-gated sodium channels. Protein Cell8, 401438. doi: 10.1007/s13238-017-0372-z

  • 131

    Hussain A. Seinfeld S. Morton L. (2016). Genetic association with ictal cardiorespiratory phenomena: SCN8A case series. J. Pediatr. Neurol.14, 151155. doi: 10.1055/s-0036-1593744

  • 132

    Iannetti P. Parisi P. Spalice A. Ruggieri M. Zara F. (2009). Addition of verapamil in the treatment of severe myoclonic epilepsy in infancy. Epilepsy Res.85, 8995. doi: 10.1016/j.eplepsyres.2009.02.014

  • 133

    Inuzuka L. M. Macedo-Souza L. II Della-Ripa B. Cabral K. S. S. Monteiro F. Kitajima J. P. et al . (2019). Neurodevelopmental disorder associated with de novo SCN3A pathogenic variants: two new cases and review of the literature. Brain Dev.42, 211216. doi: 10.1016/j.braindev.2019.09.004

  • 134

    Israel M. R. Thongyoo P. Deuis J. R. Craik D. J. Vetter I. Durek T. (2018). The E15R Point Mutation in Scorpion Toxin Cn2 Uncouples Its Depressant and Excitatory Activities on Human Na V 1.6. J. Med. Chem.61, 17301736. doi: 10.1021/acs.jmedchem.7b01609

  • 135

    Ito M. Shirasaka Y. Hirose S. Sugawara T. Yamakawa K. (2004). Seizure phenotypes of a family with missense mutations in SCN2A. Pediatr. Neurol.31, 150152. doi: 10.1016/j.pediatrneurol.2004.02.013

  • 136

    Jain P. Gulati P. Morrison-Levy N. Yau I. Alsowat D. Otsubo H. et al . (2019). “Breath holding spells” in a child with SCN8A-related epilepsy: Expanding the clinical spectrum. Seizure65, 129130. doi: 10.1016/j.seizure.2019.01.020

  • 137

    Jang S. S. Kim S. Y. Kim H. Hwang H. Chae J. H. Kim K. J. et al . (2019). Diagnostic Yield of Epilepsy Panel Testing in Patients With Seizure Onset Within the First Year of Life. Front. Neurol.10, 988. doi: 10.3389/fneur.2019.00988

  • 138

    Jiang D. Shi H. Tonggu L. Gamal El-Din T. M. Lenaeus M. J. Zhao Y. et al . (2020). Structure of the Cardiac Sodium Channel. Cell180, 122134.e10. doi: 10.1016/j.cell.2019.11.041

  • 139

    Jingami N. Matsumoto R. Ito H. Ishii A. Ihara Y. Hirose S. et al . (2014). A novel SCN1A mutation in a cytoplasmic loop in intractable juvenile myoclonic epilepsy without febrile seizures. Epileptic Disord.16, 227231. doi: 10.1684/epd.2014.0657

  • 140

    Johannesen K. M. Gardella E. Scheffer I. Howell K. Smith D. M. Helbig I. et al . (2018). Early mortality in SCN8A -related epilepsies. Epilepsy Res.143, 7981. doi: 10.1016/j.eplepsyres.2018.04.008

  • 141

    Johannesen K. M. Gardella E. Encinas A. C. Lehesjoki A. E. Linnankivi T. Petersen M. B. et al . (2019). The spectrum of intermediate SCN8A-related epilepsy. Epilepsia60, 830844. doi: 10.1111/epi.14705

  • 142

    Johnson C. N. Potet F. Thompson M. K. Kroncke B. M. Glazer A. M. Voehler M. W. et al . (2018). A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Structure26, 683694.e3. doi: 10.1016/j.str.2018.03.005

  • 143

    Kamiya K. (2004). A Nonsense Mutation of the Sodium Channel Gene SCN2A in a Patient with Intractable Epilepsy and Mental Decline. J. Neurosci.24, 26902698. doi: 10.1523/JNEUROSCI.3089-03.2004

  • 144

    Kaplan D. I. I. Isom L. L. Petrou S. (2016). Role of sodium channels in epilepsy. Cold Spring Harb. Perspect. Med.6:a022814. doi: 10.1101/cshperspect.a022814

  • 145

    Kearney J. Plummer N. Smith M. Kapur J. Cummins T. Waxman S. et al . (2001). A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience102, 307317. doi: 10.1016/S0306-4522(00)00479-6

  • 146

    Kim Y. O. Bellows S. Mcmahon J. M. Iona X. Damiano J. Dibbens L. et al . (2014). Atypical multifocal Dravet syndrome lacks generalized seizures and may show later cognitive decline. Dev. Med. Child Neurol.56, 8590. doi: 10.1111/dmcn.12322

  • 147

    Kim H. J. Yang D. Kim S. H. Kim B. Kim H. D. Lee J. S. et al . (2019). Genetic and clinical features of SCN8A developmental and epileptic encephalopathy. Epilepsy Res.158, 106222. doi: 10.1016/j.eplepsyres.2019.106222

  • 148

    Knupp K. G. Wirrell E. C. (2018). Treatment Strategies for Dravet Syndrome. CNS Drugs32, 335350. doi: 10.1007/s40263-018-0511-y

  • 149

    Kobayashi K. Ohzono H. Shinohara M. Saitoh M. Ohmori I. Ohtsuka Y. et al . (2012). Acute encephalopathy with a novel point mutation in the SCN2A gene. Epilepsy Res.102, 109112. doi: 10.1016/j.eplepsyres.2012.04.016

  • 150

    Kodera H. Kato M. Nord A. S. Walsh T. Lee M. Yamanaka G. et al . (2013). Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. Epilepsia54, 12621269. doi: 10.1111/epi.12203

  • 151

    Kothur K. Holman K. Farnsworth E. Ho G. Lorentzos M. Troedson C. et al . (2018). Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy. Seizure59, 132140. doi: 10.1016/j.seizure.2018.05.005

  • 152

    Kwong A. K. Y. Fung C. W. Chan S. Y. Wong V. C. N. (2012). Identification of SCN1A and PCDH19 mutations in Chinese children with Dravet syndrome. PloS One7, e41802. doi: 10.1371/journal.pone.0041802

  • 153

    Laezza F. Lampert A. Kozel M. A. Gerber B. R. Rush A. M. Nerbonne J. M. et al . (2009). FGF14 N-terminal splice variants differentially modulate Nav1.2 and Nav1.6-encoded sodium channels. Mol. Cell. Neurosci.42, 90101. doi: 10.1016/j.mcn.2009.05.007

  • 154

    Lal D. Reinthaler E. M. Dejanovic B. May P. Thiele H. Lehesjoki A.-E. et al . (2016). Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes. PloS One11, e0150426. doi: 10.1371/journal.pone.0150426

  • 155

    Lamar T. Vanoye C. G. Calhoun J. Wong J. C. Dutton S. B. Jorge B. S. et al . (2017). SCN3A deficiency associated with increased seizure susceptibility. Neurobiol. Dis.102, 3848. doi: 10.1016/j.nbd.2017.02.006

  • 156

    Larsen J. Carvill G. L. Gardella E. Kluger G. Schmiedel G. Barisic N. et al . (2015). The phenotypic spectrum of SCN8A encephalopathy. Neurology84, 480489. doi: 10.1212/WNL.0000000000001211

  • 157

    Lattanzi S. Brigo F. Trinka E. Zaccara G. Striano P. Del Giovane C. et al . (2020). Adjunctive Cannabidiol in Patients with Dravet Syndrome: A Systematic Review and Meta-Analysis of Efficacy and Safety. CNS Drugs34, 229241. doi: 10.1007/s40263-020-00708-6

  • 158

    Lauxmann S. Boutry-Kryza N. Rivier C. Mueller S. Hedrich U. B. S. Maljevic S. et al . (2013). An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na+ current. Epilepsia54, e117e121. doi: 10.1111/epi.12241

  • 159

    Lek M. Karczewski K. J. Minikel E. V. Samocha K. E. Banks E. Fennell T. et al . (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature536, 285291. doi: 10.1038/nature19057

  • 160

    Le Gal F. Lebon S. Ramelli G. P. Datta A. N. Mercati D. Maier O. et al . (2014). When is a child with status epilepticus likely to have Dravet syndrome? Epilepsy Res.108, 740747. doi: 10.1016/j.eplepsyres.2014.02.019

  • 161

    Lee H.-F. Chi C.-S. Tsai C.-R. Chen C.-H. Wang C.-C. (2014). Electroencephalographic features of patients with SCN1A-positive Dravet syndrome. Brain Dev.37, 599611. doi: 10.1016/j.braindev.2014.10.003

  • 162

    Lemke J. R. Riesch E. Scheurenbrand T. Schubach M. Wilhelm C. Steiner I. et al . (2012). Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia53, 13871398. doi: 10.1111/j.1528-1167.2012.03516.x

  • 163

    Lewis A. H. Raman I. M. (2014). Resurgent current of voltage-gated Na+ channels. J. Physiol.592, 48254838. doi: 10.1113/jphysiol.2014.277582

  • 164

    Liao W.-P. Shi Y.-W. Long Y.-S. Zeng Y. Li T. Yu M.-J. et al . (2010a). Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: Associated with loss of function of Nav1.1. Epilepsia51, 16691678. doi: 10.1111/j.1528-1167.2010.02645.x

  • 165

    Liao Y. Deprez L. Maljevic S. Pitsch J. Claes L. Hristova D. et al . (2010b). Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain133, 14031414. doi: 10.1093/brain/awq057

  • 166

    Lim B. C. Hwang H. Chae J. H. Choi J.-E. Hwang Y. S. Kang S.-H. et al . (2011). SCN1A mutational analysis in Korean patients with Dravet syndrome. Seizure20, 789794. doi: 10.1016/j.seizure.2011.08.002

  • 167

    Lin K. M. Su G. Wang F. Zhang X. Wang Y. Ren J. et al . (2019). A de novo SCN8A heterozygous mutation in a child with epileptic encephalopathy: A case report. BMC Pediatr.19, 400. doi: 10.1186/s12887-019-1796-9

  • 168

    Lindy A. S. Stosser M. B. Butler E. Downtain-Pickersgill C. Shanmugham A. Retterer K. et al . (2018). Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia59, 10621071. doi: 10.1111/epi.14074

  • 169

    Liu J. Tong L. Song S. Niu Y. Li J. Wu X. et al . (2018). Novel and de novo mutations in pediatric refractory epilepsy. Mol. Brain11, 48. doi: 10.1186/s13041-018-0392-5

  • 170

    Liu Y. Schubert J. Sonnenberg L. Helbig K. L. Hoei-Hansen C. E. Koko M. et al . (2019). Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain142, 376390. doi: 10.1093/brain/awy326

  • 171

    Lossin C. Rhodes T. H. Desai R. R. Vanoye C. G. Wang D. Carniciu S. et al . (2003). Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A. J. Neurosci.23, 1128911295. doi: 10.1523/jneurosci.23-36-11289.2003

  • 172

    Lossin C. Shi X. Rogawski M. A. Hirose S. (2012). Compromised function in the Nav1.2 Dravet syndrome mutation R1312T. Neurobiol. Dis.47, 378384. doi: 10.1016/j.nbd.2012.05.017

  • 173

    Lucas P. T. Meadows L. S. Nicholls J. Ragsdale D. S. (2005). An epilepsy mutation in the β1 subunit of the voltage-gated sodium channel results in reduced channel sensitivity to phenytoin. Epilepsy Res.64, 7784. doi: 10.1016/j.eplepsyres.2005.03.003

  • 174

    Maier S. K. G. Westenbroek R. E. Schenkman K. A. Feigl E. O. Scheuer T. Catterall W. A. (2002). An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. U. S. A.99, 40734078. doi: 10.1073/pnas.261705699

  • 175

    Mak C. M. Chan K. Y. W. Yau E. K. C. Chen S. P. L. Siu W. K. Law C. Y. et al . (2011). Genetic diagnosis of severe myoclonic epilepsy of infancy (Dravet syndrome) with SCN1A mutations in the Hong Kong Chinese patients. Hong Kong Med. J. = Xianggang yi xue za zhi17, 500502.

  • 176

    Makinson C. D. Tanaka B. S. Sorokin J. M. Wong J. C. Christian C. A. Goldin A. L. et al . (2017). Regulation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron93, 11651179.e6. doi: 10.1016/j.neuron.2017.01.031

  • 177

    Malcolmson J. Kleyner R. Tegay D. Adams W. Ward K. Coppinger J. et al . (2016). SCN8A mutation in a child presenting with seizures and developmental delays. Cold Spring Harb. Mol. Case Stud.2, a001073. doi: 10.1101/mcs.a001073

  • 178

    Malo D. Schurr E. Dorfman J. Canfield V. Levenson R. Gros P. (1991). Three brain sodium channel a-subunit genes are clustered on the proximal segment of mouse chromosome 2. Genomics10, 666672. doi: 10.1016/0888-7543(91)90450-S

  • 179

    Malo M. S. Blanchard B. J. Andresen J. M. Srivastava K. Chen X.-N. Li X. et al . (1994). Localization of a putative human brain sodium channel gene (SCN1A) to chromosome band 2q24. Cytogenet. Genome Res.67, 178186. doi: 10.1159/000133818

  • 180

    Mantegazza M. Gambardella A. Rusconi R. Schiavon E. Annesi F. Cassulini R. R. et al . (2005). Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. U. S. A.102, 1817718182. doi: 10.1073/pnas.0506818102

  • 181

    Marini C. Mei D. Temudo T. Ferrari A. R. Buti D. Dravet C. et al . (2007). Idiopathic Epilepsies with Seizures Precipitated by Fever and SCN1A Abnormalities. Epilepsia48, 16781685. doi: 10.1111/j.1528-1167.2007.01122.x

  • 182

    Martin H. C. Kim G. E. Pagnamenta A. T. Murakami Y. Carvill G. L. Meyer E. et al . (2014). Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet.23, 32003211. doi: 10.1093/hmg/ddu030

  • 183

    Mason E. R. Wu F. Patel R. R. Xiao Y. Cannon S. C. Cummins T. R. (2019). Resurgent and gating pore currents induced by De Novo SCN2A epilepsy mutations. eNeuro6, 117, ENEURO.014119.2019. doi: 10.1523/ENEURO.0141-19.2019

  • 184

    Mason E. R. Cummins T. R. (2020). Differential inhibition of human Nav1.2 resurgent and persistent sodium currents by cannabidiol and GS967. Int. J. Mol. Sci.21, 121. doi: 10.3390/ijms21072454

  • 185

    Matalon D. Goldberg E. Medne L. Marsh E. D. (2014). Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord.16, 1318. doi: 10.1684/epd.2014.0641

  • 186

    McMichael G. Bainbridge M. N. Haan E. Corbett M. Gardner A. Thompson S. et al . (2015). Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol. Psychiatry20, 176182. doi: 10.1038/mp.2014.189

  • 187

    McNally M. A. Johnson J. Huisman T. A. Poretti A. Baranano K. W. Baschat A. A. et al . (2016). SCN8A Epileptic Encephalopathy: Detection of Fetal Seizures Guides Multidisciplinary Approach to Diagnosis and Treatment. Pediatr. Neurol.64, 8791. doi: 10.1016/j.pediatrneurol.2016.08.003

  • 188

    Mei D. Parrini E. Marini C. Guerrini R. (2017). The Impact of Next- Generation Sequencing on the Diagnosis and Treatment of Epilepsy in Paediatric Patients. Mol. Diagnosis Ther.21, 357373. doi: 10.1007/s40291-017-0257-0

  • 189

    Meisler M. H. O’Brien J. E. Sharkey L. M. (2010). Sodium channel gene family: Epilepsy mutations, gene interactions and modifier effects. J. Physiol.588, 18411848. doi: 10.1113/jphysiol.2010.188482

  • 190

    Meng H. Xu H. Q. Yu L. Lin G. W. He N. Su T. et al . (2015). The SCN1A Mutation Database: Updating Information and Analysis of the Relationships among Genotype, Functional Alteration, and Phenotype. Hum. Mutat.36, 573580. doi: 10.1002/humu.22782

  • 191

    Mercimek-Mahmutoglu S. Patel J. Cordeiro D. Hewson S. Callen D. Donner E. J. et al . (2015). Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia56, 707716. doi: 10.1111/epi.12954

  • 192

    Misra S. N. Kahlig K. M. George A. L. (2008). Impaired Na V 1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia49, 15351545. doi: 10.1111/j.1528-1167.2008.01619.x

  • 193

    Miyatake S. Kato M. Sawaishi Y. Saito T. Nakashima M. Mizuguchi T. et al . (2018). Recurrent SCN3A p.Ile875Thr variant in patients with polymicrogyria. Ann. Neurol.84, 159161. doi: 10.1002/ana.25256

  • 194

    Møller R. S. Larsen L. H. G. Johannesen K. M. Talvik I. Talvik T. Vaher U. et al . (2016). Gene panel testing in epileptic encephalopathies and familial epilepsies. Mol. Syndromol.7, 210219. doi: 10.1159/000448369

  • 195

    Morano A. Fanella M. Albini M. Cifelli P. Palma E. Giallonardo A. T. et al . (2020). Cannabinoids in the treatment of epilepsy: Current status and future prospects. Neuropsychiatr. Dis. Treat.16, 381396. doi: 10.2147/NDT.S203782

  • 196

    Morimoto M. Mazaki E. Nishimura A. Chiyonobu T. Sawai Y. Murakami A. et al . (2006). SCN1A Mutation Mosaicism in a Family with Severe Myoclonic Epilepsy in Infancy. Epilepsia47, 17321736. doi: 10.1111/j.1528-1167.2006.00645.x

  • 197

    Mulley J. C. Hodgson B. McMahon J. M. Iona X. Bellows S. Mullen S. A. et al . (2013). Role of the sodium channel SCN9A in genetic epilepsy with febrile seizures plus and Dravet syndrome. Epilepsia54, e122e126. doi: 10.1111/epi.12323

  • 198

    Musto E. Gardella E. Møller R. S. (2020). Recent advances in treatment of epilepsy-related sodium channelopathies. Eur. J. Paediatr. Neurol.24, 123128. doi: 10.1016/j.ejpn.2019.12.009

  • 199

    Myers K. A. Burgess R. Afawi Z. Damiano J. A. Berkovic S. F. Hildebrand M. S. et al . (2017a). De novo SCN1A pathogenic variants in the GEFS+ spectrum: Not always a familial syndrome. Epilepsia58, e26e30. doi: 10.1111/epi.13649

  • 200

    Myers K. A. McMahon J. M. Mandelstam S. A. Mackay M. T. Kalnins R. M. Leventer R. J. et al . (2017b). Fatal Cerebral Edema With Status Epilepticus in Children With Dravet Syndrome: Report of 5 Cases. Pediatrics139, e20161933. doi: 10.1542/peds.2016-1933

  • 201

    Nabbout R. Gennaro E. Dalla Bernardina B. Dulac O. Madia F. Bertini E. et al . (2003). Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology60, 19611967. doi: 10.1212/01.WNL.0000069463.41870.2F

  • 202

    Nabbout R. Copioli C. Chipaux M. Chemaly N. Desguerre I. Dulac O. et al . (2011). Ketogenic diet also benefits Dravet syndrome patients receiving stiripentol: A prospective pilot study. Epilepsia52, 5457. doi: 10.1111/j.1528-1167.2011.03107.x

  • 203

    Nakamura K. Kato M. Osaka H. Yamashita S. Nakagawa E. Haginoya K. et al . (2013). Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology81, 992998. doi: 10.1212/WNL.0b013e3182a43e57

  • 204

    Need A. C. Shashi V. Hitomi Y. Schoch K. Shianna K. V. McDonald M. T. et al . (2012). Clinical application of exome sequencing in undiagnosed genetic conditions. J. Med. Genet.49, 353361. doi: 10.1136/jmedgenet-2012-100819

  • 205

    Ng S. B. Buckingham K. J. Lee C. Bigham A. W. Tabor H. K. Dent K. M. et al . (2010). Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet.42, 3035. doi: 10.1038/ng.499

  • 206

    Nguyen H. M. Goldin A. L. (2010). Sodium channel carboxyl-terminal residue regulates fast inactivation. J. Biol. Chem.285, 90779089. doi: 10.1074/jbc.M109.054940

  • 207

    Nicita F. Spalice A. Papetti L. Ursitti F. Parisi P. Gennaro E. et al . (2010). Genotype-phenotype correlations in a group of 15 SCN1A-mutated italian patients with GEFS+ spectrum (seizures plus, classical and borderline severe myoclonic epilepsy of infancy). J. Child Neurol.25, 13691376. doi: 10.1177/0883073810365737

  • 208

    Nishri D. Blumkin L. Lev D. Leshinsky-Silver E. Abu-Rashid M. Birch R. et al . (2010). Hepatic coma culminating in severe brain damage in a child with a SCN1A mutation. Eur. J. Paediatr. Neurol.14, 456459. doi: 10.1016/j.ejpn.2010.03.002

  • 209

    Noujaim S. F. Kaur K. Milstein M. Jones J. M. Furspan P. Jiang D. et al . (2012). A null mutation of the neuronal sodium channel Na V 1.6 disrupts action potential propagation and excitation-contraction coupling in the mouse heart. FASEB J.26, 6372. doi: 10.1096/fj.10-179770

  • 210

    Oates S. Tang S. Rosch R. Lear R. Hughes E. F. Williams R. E. et al . (2018). Incorporating epilepsy genetics into clinical practice: A 360°evaluation. NPJ Genomic Med.3, 13. doi: 10.1038/s41525-018-0052-9

  • 211

    O’Brien J. E. Sharkey L. M. Vallianatos C. N. Han C. Blossom J. C. Yu T. et al . (2012). Interaction of Voltage-gated Sodium Channel Na v 1.6 ( SCN8A ) with Microtubule-associated Protein Map1b. J. Biol. Chem.287, 1845918466. doi: 10.1074/jbc.M111.336024

  • 212

    Oelstrom K. Goldschen-ohm M. P. Holmgren M. Chanda B. (2014). Evolutionarily conserved intracellular gate of voltage-dependent sodium channels. Nat. Commun.5, 19. doi: 10.1038/ncomms4420

  • 213

    Ogiwara I. Ito K. Sawaishi Y. Osaka H. Mazaki E. Inoue I. et al . (2009). De novo mutations of voltage-gated sodium channel αiI gene SCN2A in intractable epilepsies. Neurology73, 10461053. doi: 10.1212/WNL.0b013e3181b9cebc

  • 214

    Ohashi T. Akasaka N. Kobayashi Y. Magara S. Kawashima H. Matsumoto N. et al . (2014). Infantile epileptic encephalopathy with a hyperkinetic movement disorder and hand stereotypies associated with a novel SCN1A mutation. Epileptic Disord.16, 208212. doi: 10.1684/epd.2014.0649

  • 215

    Ohba C. Kato M. Takahashi S. Lerman-Sagie T. Lev D. Terashima H. et al . (2014). Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia55, 9941000. doi: 10.1111/epi.12668

  • 216

    Ohmori I. Kahlig K. M. Rhodes T. H. Wang D. W. George A. L. (2006). Nonfunctional SCN1A Is Common in Severe Myoclonic Epilepsy of Infancy. Epilepsia47, 16361642. doi: 10.1111/j.1528-1167.2006.00643.x

  • 217

    Oliva M. Berkovic S. F. Petrou S. (2012). Sodium channels and the neurobiology of epilepsy. Epilepsia53, 18491859. doi: 10.1111/j.1528-1167.2012.03631.x

  • 218

    Oliva M. K. Mcgarr T. C. Beyer B. J. Gazina E. Kaplan D. II Cordeiro L. et al . (2014). Physiological and genetic analysis of multiple sodium channel variants in a model of genetic absence epilepsy. Neurobiol. Dis.67, 180190. doi: 10.1016/j.nbd.2014.03.007

  • 219

    Olson H. E. Tambunan D. LaCoursiere C. Goldenberg M. Pinsky R. Martin E. et al . (2015). Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am. J. Med. Genet. Part A167, 20172025. doi: 10.1002/ajmg.a.37132

  • 220

    Orrico A. Galli L. Grosso S. Buoni S. Pianigiani R. Balestri P. et al . (2009). Mutational analysis of the SCN1A, SCN1B and GABRG2 genes in 150 Italian patients with idiopathic childhood epilepsies. Clin. Genet.75, 579581. doi: 10.1111/j.1399-0004.2009.01155.x

  • 221

    Orsini A. Zara F. Striano P. (2018). Recent advances in epilepsy genetics. Neurosci. Lett.667, 49. doi: 10.1016/j.neulet.2017.05.014

  • 222

    Ortiz Madinaveitia S. Serrano Madrid M. L. Conejo Moreno D. Sagarra Mur D. Jiménez Corral C. Gutiérrez Álvarez Á.M. (2017). Encefalopatía epiléptica de inicio precoz en un paciente con mutación en SCN8A. Rev. Neurol.65, 572. doi: 10.33588/rn.6512.2017426

  • 223

    Pan Y. Cummins T. R. (2020). Distinct functional alterations in SCN8A epilepsy mutant channels. J. Physiol.598, 381401. doi: 10.1113/JP278952

  • 224

    Parrini E. Marini C. Mei D. Galuppi A. Cellini E. Pucatti D. et al . (2017). Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. Hum. Mutat.38, 216225. doi: 10.1002/humu.23149

  • 225

    Patel R. R. Barbosa C. Brustovetsky T. Brustovetsky N. Cummins T. R. (2016). Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain139, 21642181. doi: 10.1093/brain/aww129

  • 226

    Payandeh J. Gamal El-Din T. M. Scheuer T. Zheng N. Catterall W. A. (2012). Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature486, 135139. doi: 10.1038/nature11077

  • 227

    Perucca P. Perucca E. (2019). Identifying mutations in epilepsy genes:Impact on treatment selection. Epilepsy Res.152, 1830. doi: 10.1016/j.eplepsyres.2019.03.001

  • 228

    Pescucci C. Caselli R. Grosso S. Mencarelli M. A. Mari F. Farnetani M. A. et al . (2007). 2q24–q31 Deletion: Report of a case and review of the literature. Eur. J. Med. Genet.50, 2132. doi: 10.1016/j.ejmg.2006.09.001

  • 229

    Peters C. H. Sokolov S. Rajamani S. Ruben P. C. (2013). Effects of the antianginal drug, ranolazine, on the brain sodium channel NaV1.2 and its modulation by extracellular protons. Br. J. Pharmacol.169, 704716. doi: 10.1111/bph.12150

  • 230

    Petrelli C. Passamonti C. Cesaroni E. Mei D. Guerrini R. Zamponi N. et al . (2012). Early clinical features in Dravet syndrome patients with and without SCN1A mutations. Epilepsy Res.99, 2127. doi: 10.1016/j.eplepsyres.2011.10.010

  • 231

    Pons L. Lesca G. Sanlaville D. Chatron N. Labalme A. Manel V. et al . (2018). Neonatal tremor episodes and hyperekplexia-like presentation at onset in a child with SCN8A developmental and epileptic encephalopathy. Epileptic Disord.20, 289294. doi: 10.1684/epd.2018.0988

  • 232

    Petrovski S. Wang Q. Heinzen E. L. Allen A. S. Goldstein D. B. (2013). Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes. PloS Genet.9, 113. doi: 10.1371/journal.pgen.1003709

  • 233

    Plummer N. W. McBurney M. W. Meisler M. H. (1997). Alternative Splicing of the Sodium Channel SCN8A Predicts a Truncated Two-domain Protein in Fetal Brain and Non-neuronal Cells. J. Biol. Chem.272, 2400824015. doi: 10.1074/jbc.272.38.24008

  • 234

    Poryo M. Clasen O. Oehl-Jaschkowitz B. Christmann A. Gortner L. Meyer S. (2017). Dravet syndrome: a new causative SCN1A mutation? Clin. Case Rep.5, 613615. doi: 10.1002/ccr3.787

  • 235

    Ranza E. Z’Graggen W. Lidgren M. Beghetti M. Guipponi M. Antonarakis S. E. et al . (2020). SCN8A heterozygous variants are associated with anoxic-epileptic seizures. Am. J. Med. Genet. Part A.. doi: 10.1002/ajmg.a.61513

  • 236

    Rauch A. Wieczorek D. Graf E. Wieland T. Endele S. Schwarzmayr T. et al . (2012). Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet380, 16741682. doi: 10.1016/S0140-6736(12)61480-9

  • 237

    Raymond G. Wohler E. Dinsmore C. Cox J. Johnston M. Batista D. et al . (2011). An interstitial duplication at 2q24.3 involving the SCN1A, SCN2A, SCN3A genes associated with infantile epilepsy. Am. J. Med. Genet. Part A155, 920923. doi: 10.1002/ajmg.a.33929

  • 238

    Reif P. S. Tsai M. H. Helbig I. Rosenow F. Klein K. M. (2017). Precision medicine in genetic epilepsies: break of dawn? Expert Rev. Neurother.17, 381392. doi: 10.1080/14737175.2017.1253476

  • 239

    Reyes I. S. Hsieh D. T. Laux L. C. Wilfong A. A. (2011). Alleged Cases of Vaccine Encephalopathy Rediagnosed Years Later as Dravet Syndrome. Pediatrics128. doi: 10.1542/peds.2010-0887

  • 240

    Reynolds C. King M. D. Gorman K. M. (2020). The phenotypic spectrum of SCN2A-related epilepsy. Eur. J. Paediatr. Neurol.24, 117122. doi: 10.1016/j.ejpn.2019.12.016

  • 241

    Rhodes T. H. Vanoye C. G. Ohmori I. Ogiwara I. Yamakawa K. George A. L. (2005). Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. J. Physiol.569, 433445. doi: 10.1113/jphysiol.2005.094326

  • 242

    Riban V. Fitzsimons H. L. During M. J. (2009). Gene therapy in epilepsy. Epilepsia50, 2432. doi: 10.1111/j.1528-1167.2008.01743.x

  • 243

    Richards K. L. Milligan C. J. Richardson R. J. Jancovski N. Grunnet M. Jacobson L. H. et al . (2018). Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proc. Natl. Acad. Sci. U.S. A.115, E8077E8085. doi: 10.1073/pnas.1804764115

  • 244

    Rilstone J. J. Coelho F. M. Minassian B. A. Andrade D. M. (2012). Dravet syndrome: Seizure control and gait in adults with different SCN1A mutations. Epilepsia53, 14211428. doi: 10.1111/j.1528-1167.2012.03583.x

  • 245

    Rim J. H. Kim S. H. Hwang I. S. Kwon S. S. Kim J. Kim H. W. et al . (2018). Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing. BMC Med. Genomics11, 6. doi: 10.1186/s12920-018-0320-7

  • 246

    Riva D. Vago C. Pantaleoni C. Bulgheroni S. Mantegazza M. Franceschetti S. (2009). Progressive neurocognitive decline in two children with Dravet syndrome, de novo SCN1A truncations and different epileptic phenotypes. Am. J. Med. Genet. Part A149A, 23392345. doi: 10.1002/ajmg.a.33029

  • 247

    Rolvien T. Butscheidt S. Jeschke A. Neu A. Denecke J. Kubisch C. et al . (2017). Severe bone loss and multiple fractures in SCN8A-related epileptic encephalopathy. Bone103, 136143. doi: 10.1016/j.bone.2017.06.025

  • 248

    Rossi M. El-Khechen D. Black M. H. Farwell Hagman K. D. Tang S. Powis Z. (2017). Outcomes of Diagnostic Exome Sequencing in Patients With Diagnosed or Suspected Autism Spectrum Disorders. Pediatr. Neurol.70, 3443.e2. doi: 10.1016/j.pediatrneurol.2017.01.033

  • 249

    Rubinstein M. Westenbroek R. E. Yu F. H. Jones C. J. Scheuer T. Catterall W. A. (2015). Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiol. Dis.73, 106117. doi: 10.1016/j.nbd.2014.09.017

  • 250

    Rush A. M. Dib-Hajj S. D. Liu S. Cummins T. R. Black J. A. Waxman S. G. (2018). “A Single Sodium Channel Mutation Produces Hyperor Hypoexcitability In Different Types Of Neurons,” in Chasing Men on Fire (PNAS: The MIT Press), 89101. doi: 10.7551/mitpress/10310.003.0014

  • 251

    Saitoh M. Shinohara M. Hoshino H. Kubota M. Amemiya K. Takanashi J. et al . (2012). Mutations of the SCN1A gene in acute encephalopathy. Epilepsia53, 558564. doi: 10.1111/j.1528-1167.2011.03402.x

  • 252

    Saitoh M. Ishii A. Ihara Y. Hoshino A. Terashima H. Kubota M. et al . (2015a). Missense mutations in sodium channel SCN1A and SCN2A predispose children to encephalopathy with severe febrile seizures. Epilepsy Res.117, 16. doi: 10.1016/j.eplepsyres.2015.08.001

  • 253

    Saitoh M. Shinohara M. Ishii A. Ihara Y. Hirose S. Shiomi M. et al . (2015b). Clinical and genetic features of acute encephalopathy in children taking theophylline. Brain Dev.37, 463470. doi: 10.1016/j.braindev.2014.07.010

  • 254

    Samanta D. Ramakrishnaiah R. (2015). De novo R853Q mutation of SCN2A gene and West syndrome. Acta Neurol. Belg.115, 773776. doi: 10.1007/s13760-015-0454-8

  • 255

    Sanders S. J. Campbell A. J. Cottrell J. R. Moller R. S. Wagner F. F. Auldridge A. L. et al . (2018). Progress in Understanding and Treating SCN2A –Mediated Disorders. Trends Neurosci.41, 442456. doi: 10.1016/j.tins.2018.03.011

  • 256

    Sands T. T. Choi H. (2017). Genetic Testing in Pediatric Epilepsy. Curr. Neurol. Neurosci. Rep.17, 111. doi: 10.1007/s11910-017-0753-y

  • 257

    Saxena S. Li S. (2017). Defeating epilepsy: A global public health commitment. Epilepsia Open2, 153155. doi: 10.1002/epi4.12010

  • 258

    Scalmani P. Rusconi R. Armatura E. Zara F. Avanzini G. Franceschetti S. et al . (2006). Effects in neocortical neurons of mutations of the Nav1.2 Na+ channel causing benign familial neonatal-infantile seizures. J. Neurosci.26, 1010010109. doi: 10.1523/JNEUROSCI.2476-06.2006

  • 259

    Schreiber J. M. Tochen L. Brown M. Evans S. Ball L. J. Bumbut A. et al . (2020). A multi-disciplinary clinic for SCN8A-related epilepsy. Epilepsy Res.159, 106261. doi: 10.1016/j.eplepsyres.2019.106261

  • 260

    Schwarz N. Hahn A. Bast T. Müller S. Löffler H. Maljevic S. et al . (2016). Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with late-onset episodic ataxia. J. Neurol.263, 334343. doi: 10.1007/s00415-015-7984-0

  • 261

    Schiavon E. Sacco T. Cassulini R. R. Gurrola G. Tempia F. Possani L. D. et al . (2006). Resurgent Current and Voltage Sensor Trapping Enhanced Activation by a b-Scorpion Toxin Solely in Na v 1.6 Channel. J. Biol. Chem.281, 2032620337. doi: 10.1074/jbc.M600565200

  • 262

    Sharkey L. M. Jones J. M. Hedera P. Meisler M. H. (2009). Evaluation of SCN8A as a candidate gene for autosomal dominant essential tremor. Park. Relat. Disord.15, 321323. doi: 10.1016/j.parkreldis.2008.06.010

  • 263

    Sheets P. L. Heers C. Stoehr T. Cummins T. R. (2008). Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2- (acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J. Pharmacol. Exp. Ther.326, 8999. doi: 10.1124/jpet.107.133413

  • 264

    Shen H. Zhou Q. Pan X. Li Z. Wu J. Yan N. (2017). Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science355, 112. doi: 10.1126/science.aal4326

  • 265

    Shi X. Yasumoto S. Nakagawa E. Fukasawa T. Uchiya S. Hirose S. (2009). Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev.31, 758762. doi: 10.1016/j.braindev.2009.08.009

  • 266

    Shi X. Y. Tomonoh Y. Wang W. Z. Ishii A. Higurashi N. Kurahashi H. et al . (2016). Efficacy of antiepileptic drugs for the treatment of Dravet syndrome with different genotypes. Brain Dev.38, 4046. doi: 10.1016/j.braindev.2015.06.008

  • 267

    Silva J. R. Goldstein S. A. N. (2013). Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: Wild-type skeletal muscle NAv1.4.J. Gen. Physiol.141, 309–321. doi: 10.1085/jgp.201210909

  • 268

    Singh N. A. Pappas C. Dahle E. J. Claes L. R. F. Pruess T. H. De Jonghe P. et al . (2009). A Role of SCN9A in Human Epilepsies, As a Cause of Febrile Seizures and As a Potential Modifier of Dravet Syndrome. PloS Genet.5, e1000649. doi: 10.1371/journal.pgen.1000649

  • 269

    Singh R. Jayapal S. Goyal S. Jungbluth H. Lascelles K. (2015). Early-onset movement disorder and epileptic encephalopathy due to de novo dominant SCN8A mutation. Seizure26, 6971. doi: 10.1016/j.seizure.2015.01.017

  • 270

    Skjei K. L. Church E. W. Harding B. N. Santi M. Holland-Bouley K. D. Clancy R. R. et al . (2015). Clinical and histopathological outcomes in patients with SCN1A mutations undergoing surgery for epilepsy. J. Neurosurg. Pediatr.16, 668674. doi: 10.3171/2015.5.PEDS14551

  • 271

    Smith R. S. Kenny C. J. Ganesh V. Jang A. Borges-Monroy R. Partlow J. N. et al . (2018). Sodium Channel SCN3A (NaV1.3) Regulation of Human Cerebral Cortical Folding and Oral Motor Development. Neuron99, 905913.e7. doi: 10.1016/j.neuron.2018.07.052

  • 272

    Spampanato J. (2004). A Novel Epilepsy Mutation in the Sodium Channel SCN1A Identifies a Cytoplasmic Domain for Subunit Interaction. J. Neurosci.24, 1002210034. doi: 10.1523/JNEUROSCI.2034-04.2004

  • 273

    Sone D. Sugawara T. Sakakibara E. Tomioka Y. Taniguchi G. Murata Y. et al . (2012). A case of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) coexisting with pervasive developmental disorder harboring SCN1A mutation in addition to CHRNB2 mutation. Epilepsy Behav.25, 192195. doi: 10.1016/j.yebeh.2012.07.027

  • 274

    Stoke Therapeutics (2018). Stoke Therapeutics Presents Data Showing Single Dose of ASO Therapy Restores Normal Protein Levels in Animal Model of Genetic Epilepsy. Available at: https://www.stoketherapeutics.com/press-releases/stoketherapeutics-presents-data-showing-single-dose-of-aso-therapy-restoresnormal-protein-levels-in-animal-model-of-genetic-epilepsy/ (Accessed December 2, 2020).

  • 275

    Sprissler R. S. Wagnon J. L. Bunton-Stasyshyn R. K. Meisler M. H. Hammer M. F. (2017). Altered gene expression profile in a mouse model of SCN8A encephalopathy. Exp. Neurol.288, 134141. doi: 10.1016/j.expneurol.2016.11.002

  • 276

    Striano P. Bordo L. Lispi M. L. Specchio N. Minetti C. Vigevano F. et al . (2006). A novel SCN2A mutation in family with benign familial infantile seizures. Epilepsia47, 218220. doi: 10.1111/j.1528-1167.2006.00392.x

  • 277

    Su D. J. Lu J. F. Lin L. J. Liang J. S. Hung K. L. (2018). SCN2A mutation in an infant presenting with migrating focal seizures and infantile spasm responsive to a ketogenic diet. Brain Dev.40, 724727. doi: 10.1016/j.braindev.2018.03.005

  • 278

    Sugawara T. Mazaki-Miyazaki E. Fukushima K. Shimomura J. Fujiwara T. Hamano S. et al . (2002). Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy. Neurology58, 11221124. doi: 10.1212/WNL.58.7.1122

  • 279

    Sugiura Y. Ogiwara I. Hoshi A. Yamakawa K. Ugawa Y. (2012). Different degrees of loss of function between GEFS+ and SMEI Na v1.1 missense mutants at the same residue induced by rescuable folding defects. Epilepsia53, 111114. doi: 10.1111/j.1528-1167.2012.03467.x

  • 280

    Sun G. Werkman T. R. Battefeld A. Clare J. J. Wadman W. J. (2007). Carbamazepine and Topiramate Modulation of Transient and Persistent Sodium Currents Studied in HEK293 Cells Expressing the Na v 1.3?? Subunit. Epilepsia48, 774782. doi: 10.1111/j.1528-1167.2007.01001.x

  • 281

    Sun H. Zhang Y. Liang J. Liu X. Ma X. Qin J. et al . (2008). Seven novel SCN1A mutations in Chinese patients with severe myoclonic epilepsy of infancy. Epilepsia49, 11041107. doi: 10.1111/j.1528-1167.2008.01549_2.x

  • 282

    Sun H. Zhang Y. Liu X. Ma X. Yang Z. Qin J. et al . (2010). Analysis of SCN1A mutation and parental origin in patients with Dravet syndrome. J. Hum. Genet.55, 421427. doi: 10.1038/jhg.2010.39

  • 283

    Sun W. Wagnon J. L. Mahaffey C. L. Briese M. Ule J. Frankel W. N. (2013). Aberrant sodium channel activity in the complex seizure disorder of Celf4 mutant mice. J. Physiol.591, 241255. doi: 10.1113/jphysiol.2012.240168

  • 284

    Syrbe S. Zhorov B. S. Bertsche A. Bernhard M. K. Hornemann F. Mütze U. et al . (2016). Phenotypic Variability from Benign Infantile Epilepsy to Ohtahara Syndrome Associated with a Novel Mutation in SCN2A. Mol. Syndromol.7, 182188. doi: 10.1159/000447526

  • 285

    Tai C. Abe Y. Westenbroek R. E. Scheuer T. Catterall W. A. (2014). Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc. Natl. Acad. Sci. U. S. A.111, 31393148. doi: 10.1073/pnas.1411131111

  • 286

    Takahashi S. Yamamoto S. Okayama A. Araki A. Saitsu H. Matsumoto N. et al . (2015). Electroclinical features of epileptic encephalopathy caused by SCN8A mutation. Pediatr. Int.57, 758762. doi: 10.1111/ped.12622

  • 287

    Tan N.-N. Tang H.-L. Lin G.-W. Chen Y.-H. Lu P. Li H.-J. et al . (2017). Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity. Mol. Neurobiol.54, 28312842. doi: 10.1007/s12035-016-9871-9

  • 288

    Thijs R. D. Surges R. O’Brien T. J. Sander J. W. (2019). Epilepsy in adults. Lancet393, 689701. doi: 10.1016/S0140-6736(18)32596-0

  • 289

    Thomas R. H. Berkovic S. F. (2014). The hidden genetics of epilepsy – A clinically important new paradigm. Nat. Rev. Neurol.10, 283292. doi: 10.1038/nrneurol.2014.62

  • 290

    Tibery D. V. Campos L. A. Mourão C. B. F. Peigneur S. Tytgat J. Schwartz E. F. et al . (2019). Electrophysiological characterization of Tityus obscurus b toxin 1 (To1) on Na+-channel isoforms. Biochim. Biophys. Acta - Biomembr.1861, 142150. doi: 10.1016/j.bbamem.2018.08.005

  • 291

    Tiefes A. M. Hartlieb T. Tacke M. von Stülpnagel-Steinbeis C. Larsen L. H. G. Hao Q. et al . (2019). Mesial Temporal Sclerosis in SCN1A -Related Epilepsy: Two Long-Term EEG Case Studies. Clin. EEG Neurosci.50, 267272. doi: 10.1177/1550059418794347

  • 292

    Tonekaboni S. H. Ebrahimi A. Bakhshandeh Bali M. K. Taheri Otaghsara S. M. Houshmand M. Nasehi M. M. et al . (2013). Sodium channel gene mutations in Children with GEFS+ and Dravet syndrome: A cross sectional study. Iran. J. Child Neurol.7, 3136. doi: 10.22037/ijcn.v7i2.4074

  • 293

    Trivisano M. Pavia G. C. Ferretti A. Fusco L. Vigevano F. Specchio N. (2019). Generalized tonic seizures with autonomic signs are the hallmark of SCN8A developmental and epileptic encephalopathy. Epilepsy Behav.96, 219223. doi: 10.1016/j.yebeh.2019.03.043

  • 294

    Trujillano D. Bertoli-Avella A. M. Kumar Kandaswamy K. Weiss M. E. Köster J. Marais A. et al . (2017). Clinical exome sequencing: Results from 2819 samples reflecting 1000 families. Eur. J. Hum. Genet.25, 176182. doi: 10.1038/ejhg.2016.146

  • 295

    Trump N. McTague A. Brittain H. Papandreou A. Meyer E. Ngoh A. et al . (2016). Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J. Med. Genet.53, 310317. doi: 10.1136/jmedgenet-2015-103263

  • 296

    Tsang M. H.-Y. Leung G. K.-C. Ho A. C.-C. Yeung K.-S. Mak C. C.-Y. Pei S. L.-C. et al . (2019). Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open4, 6372. doi: 10.1002/epi4.12282

  • 297

    U.S. Food and Drug Administration [website] (2018). FDA Approves First Drug Comprised of an Active Ingredient Derived from Marijuana to Treat Rare, Severe Forms of Epilepsy. Available at: https://www.fda.gov/news-events/pressannouncements/fda-approves-first-drug-comprised-active-ingredientderived-marijuana-treat-rare-severe-forms (Accessed March 7, 2020).

  • 298

    Usluer S. Salar S. Arslan M. Yiş U. Kara B. Tektürk P. et al . (2016). SCN1A gene sequencing in 46 Turkish epilepsy patients disclosed 12 novel mutations. Seizure39, 3443. doi: 10.1016/j.seizure.2016.05.008

  • 299

    Vaher U. Nõukas M. Nikopensius T. Kals M. Annilo T. Nelis M. et al . (2013). De Novo SCN8A Mutation Identified by Whole-Exome Sequencing in a Boy With Neonatal Epileptic Encephalopathy, Multiple Congenital Anomalies, and Movement Disorders. J. Child Neurol.29, NP202NP206. doi: 10.1177/0883073813511300

  • 300

    Vanoye C. G. Gurnett C. A. Holland K. D. George A. L. Kearney J. A. (2014). Novel SCN3A variants associated with focal epilepsy in children. Neurobiol. Dis.62, 313322. doi: 10.1016/j.nbd.2013.10.015

  • 301

    Vecchi M. Cassina M. Casarin A. Rigon C. Drigo P. De Palma L. et al . (2011). Infantile epilepsy associated with mosaic 2q24 duplication including SCN2A and SCN3A. Seizure20, 813816. doi: 10.1016/j.seizure.2011.07.008

  • 302

    Veeramah K. R. O’Brien J. E. Meisler M. H. Cheng X. Dib-Hajj S. D. Waxman S. G. et al . (2012). De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet.90, 502510. doi: 10.1016/j.ajhg.2012.01.006

  • 303

    Veeramah K. R. Johnstone L. Karafet T. M. Wolf D. Sprissler R. Salogiannis J. et al . (2013). Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia54, 12701281. doi: 10.1111/epi.12201

  • 304

    Verbeek N. E. van Kempen M. Gunning W. B. Renier W. O. Westland B. Lindhout D. et al . (2011). Adults with a history of possible Dravet syndrome: An illustration of the importance of analysis of the SCN1A gene. Epilepsia52, e23e25. doi: 10.1111/j.1528-1167.2011.02982.x

  • 305

    Verbeek N. E. van der Maas N. A. T. Jansen F. E. van Kempen M. J. A. Lindhout D. Brilstra E. H. (2013). Prevalence of SCN1A-Related Dravet Syndrome among Children Reported with Seizures following Vaccination: A Population-Based Ten-Year Cohort Study. PloS One8, e65758. doi: 10.1371/journal.pone.0065758

  • 306

    Verret L. Mann E. O. Hang G. B. Barth A. M. I. I. Cobos I. Ho K. et al . (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in alzheimer model. Cell149, 708721. doi: 10.1016/j.cell.2012.02.046

  • 307

    Villeneuve N. Laguitton V. Viellard M. Lépine A. Chabrol B. Dravet C. et al . (2014). Cognitive and adaptive evaluation of 21 consecutive patients with Dravet syndrome. Epilepsy Behav.31, 143148. doi: 10.1016/j.yebeh.2013.11.021

  • 308

    Volkers L. Kahlig K. M. Verbeek N. E. Das J. H. G. van Kempen M. J. A. Stroink H. et al . (2011). Na v1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome. Eur. J. Neurosci.34, 12681275. doi: 10.1111/j.1460-9568.2011.07826.x

  • 309

    Wagnon J. L. Meisler M. H. (2015). Recurrent and non-recurrent mutations of SCN8A in epileptic encephalopathy. Front. Neurol.6, 104. doi: 10.3389/fneur.2015.00104

  • 310

    Wagnon J. L. Barker B. S. Hounshell J. A. Haaxma C. A. Shealy A. Moss T. et al . (2016). Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann. Clin. Transl. Neurol.3, 114123. doi: 10.1002/acn3.276

  • 311

    Wagnon J. L. Barker B. S. Ottolini M. Park Y. Volkheimer A. Valdez P. et al . (2017). Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol. Genet.3, e170. doi: 10.1212/NXG.0000000000000170

  • 312

    Wallace R. H. Scheffer I. E. Barnett S. Richards M. Dibbens L. Desai R. R. et al . (2001). Neuronal sodium-channel β1-subunit mutations in generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet.68, 859865. doi: 10.1086/319516

  • 313

    Wang J. W. Shi X. Y. Kurahashi H. Hwang S. K. Ishii A. Higurashi N. et al . (2012). Prevalence of SCN1A mutations in children with suspected Dravet syndrome and intractable childhood epilepsy. Epilepsy Res.102, 195200. doi: 10.1016/j.eplepsyres.2012.06.006

  • 314

    Wang J. Gao H. Bao X. Zhang Q. Li J. Wei L. et al . (2017a). SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures. BMC Med. Genet.18, 104. doi: 10.1186/s12881-017-0460-1

  • 315

    Wang Y. Du X. Bin R. Yu S. Xia Z. Zheng G. et al . (2017b). Genetic Variants Identified from Epilepsy of Unknown Etiology in Chinese Children by Targeted Exome Sequencing. Sci. Rep.7, 40319. doi: 10.1038/srep40319

  • 316

    Waxman S. G. Hains B. C. (2006). Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci.29, 207215. doi: 10.1016/j.tins.2006.02.003

  • 317

    Weber Y. G. Nies A. T. Schwab M. Lerche H. (2014). Genetic Biomarkers in Epilepsy. Neurotherapeutics11, 324333. doi: 10.1007/s13311-014-0262-5

  • 318

    Weiss L. A. Escayg A. Kearney J. A. Trudeau M. MacDonald B. T. Mori M. et al . (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Mol. Psychiatry8, 186194. doi: 10.1038/sj.mp.4001241

  • 319

    Wengert E. R. Tronhjem C. E. Wagnon J. L. Johannesen K. M. Petit H. Krey I. et al . (2019). Biallelic inherited SCN8A variants, a rare cause of SCN8A -related developmental and epileptic encephalopathy. Epilepsia60, 22772285. doi: 10.1111/epi.16371

  • 320

    Weuring W. J. Singh S. Volkers L. Rook M. B. Van’t Slot R. H. Bosma M. et al . (2020). NaV1.1 and NaV1.6 selective compounds reduce the behavior phenotype and epileptiform activity in a novel zebrafish model for Dravet syndrome. PloS One15, 117. doi: 10.1371/journal.pone.0219106

  • 321

    Whitaker W. R. J. Clare J. J. Powell A. J. Chen Y. H. Faull R. L. M. Emson P. C. (2000). Distribution of voltage-gated sodium channel?-subunit and?-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J. Comp. Neurol.422, 123139. doi: 10.1002/(SICI)1096-9861(20000619)422:1<123::AID-CNE8>3.0.CO;2-X

  • 322

    Willemsen M. H. Rensen J. H. M. van Schrojenstein-Lantman de Valk H. M. J. Hamel B. C. J. Kleefstra T. (2012). Adult Phenotypes in Angelman- and Rett-Like Syndromes. Mol. Syndromol.2, 217234. doi: 10.1159/000335661

  • 323

    Wittmack E. K. Rush A. M. Craner M. J. Goldfarb M. Waxman S. G. Dib-Hajj S. D. (2004). Fibroblast growth factor homologous factor 2B: Association with Na v1.6 and selective colocalization at nodes of Ranvier of dorsal root axons. J. Neurosci.24, 67656775. doi: 10.1523/JNEUROSCI.1628-04.2004

  • 324

    Wolff M. Johannesen K. M. Hedrich U. B. S. Masnada S. Rubboli G. Gardella E. et al . (2017). Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain140, 13161336. doi: 10.1093/brain/awx054

  • 325

    Wong V. C. N. Fung C. W. Kwong A. K. Y. (2015). SCN2A mutation in a Chinese boy with infantile spasm - response to Modified Atkins Diet. Brain Dev.37, 729732. doi: 10.1016/j.braindev.2014.10.008

  • 326

    Wu Y. W. Sullivan J. McDaniel S. S. Meisler M. H. Walsh E. M. Li S. X. et al . (2015). Incidence of dravet syndrome in a US population. Pediatrics136, e1310e1315. doi: 10.1542/peds.2015-1807

  • 327

    Wu Q. Wang H. Fan Y. Y. Zhang J. M. Liu X. Y. Fang X. Y. et al . (2018). Ketogenic diet effects on 52 children with pharmacoresistant epileptic encephalopathy: A clinical prospective study. Brain Behav.8, 18. doi: 10.1002/brb3.973

  • 328

    Xiao Y. Xiong J. Mao D. Liu L. Li J. Li X. et al . (2018). Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Res.139, 913. doi: 10.1016/j.eplepsyres.2017.10.017

  • 329

    Xie H. Su W. Pei J. Zhang Y. Gao K. Li J. et al . (2019). De novo SCN1A, SCN8A, and CLCN2 mutations in childhood absence epilepsy. Epilepsy Res.154, 5561. doi: 10.1016/j.eplepsyres.2019.04.005

  • 330

    Xu R. Thomas E. A. Gazina E. V. Richards K. L. Quick M. Wallace R. H. et al . (2007). Generalized epilepsy with febrile seizures plus-associated sodium channel β1 subunit mutations severely reduce beta subunit-mediated modulation of sodium channel function. Neuroscience148, 164174. doi: 10.1016/j.neuroscience.2007.05.038

  • 331

    Xu X. Zhang Y. Sun H. Liu X. Yang X. Xiong H. et al . (2014). Early clinical features and diagnosis of Dravet syndrome in 138 Chinese patients with SCN1A mutations. Brain Dev.36, 676681. doi: 10.1016/j.braindev.2013.10.004

  • 332

    Xu X. Yang X. Wu Q. Liu A. Yang X. Ye A. Y. et al . (2015). Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of “ de novo “ SCN1A Mutations in Children with Dravet Syndrome. Hum. Mutat.36, 861872. doi: 10.1002/humu.22819

  • 333

    Yan N. Xin-Hua W. Lin-Mei Z. Yi-Ming C. Wen-Hui L. Yuan-Feng Z. et al . (2018). Prospective study of the efficacy of a ketogenic diet in 20 patients with Dravet syndrome. Seizure60, 144148. doi: 10.1016/j.seizure.2018.06.023

  • 334

    Yang Y.-C. Huang C.-S. Kuo C.-C. (2010). Lidocaine, Carbamazepine, and Imipramine Have Partially Overlapping Binding Sites and Additive Inhibitory Effect on Neuronal Na+ Channels. Anesthesiology113, 160174. doi: 10.1097/ALN.0b013e3181dc1dd6

  • 335

    Yang X. Liu A. Xu X. Yang X. Zeng Q. Ye A. Y. et al . (2017). Genomic mosaicism in paternal sperm and multiple parental tissues in a Dravet syndrome cohort. Sci. Rep.7, 15677. doi: 10.1038/s41598-017-15814-7

  • 336

    Yang C. Hua Y. Zhang W. Xu J. Xu L. Gao F. et al . (2018). Variable epilepsy phenotypes associated with heterozygous mutation in the SCN9A gene: report of two cases. Neurol. Sci.39, 11131115. doi: 10.1007/s10072-018-3300-y

  • 337

    Yordanova I. Todorov T. Dimova P. Hristova D. Tincheva R. Litvinenko I. et al . (2011). One novel Dravet syndrome causing mutation and one recurrent MAE causing mutation in SCN1A gene. Neurosci. Lett.494, 180183. doi: 10.1016/j.neulet.2011.03.008

  • 338

    Young F. (2007). When adaptive processes go awry: gain-of-function in SCN9A. Clin. Genet.73, 3436. doi: 10.1111/j.1399-0004.2007.00922.x

  • 339

    Yu F. H. Mantegazza M. Westenbroek R. E. Robbins C. A. Kalume F. Burton K. A. et al . (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci.9, 11421149. doi: 10.1038/nn1754

  • 340

    Yu M.-J. Shi Y.-W. Gao M.-M. Deng W.-Y. Liu X.-R. Chen L. et al . (2010). Milder phenotype with SCN1A truncation mutation other than SMEI. Seizure19, 443445. doi: 10.1016/j.seizure.2010.06.010

  • 341

    Zaman T. Helbig I. Božović I. B. DeBrosse S. D. Bergqvist A. C. Wallis K. et al . (2018). Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann. Neurol.83, 703717. doi: 10.1002/ana.25188

  • 342

    Zaman T. Abou Tayoun A. Goldberg E. M. (2019). A single-center SCN8A- related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann. Clin. Transl. Neurol.6. doi: 10.1002/acn3.50839. acn3.50839.

  • 343

    Zara F. Specchio N. Striano P. Robbiano A. Gennaro E. Paravidino R. et al . (2013). Genetic testing in benign familial epilepsies of the first year of life: Clinical and diagnostic significance. Epilepsia54, 425436. doi: 10.1111/epi.12089

  • 344

    Zhang X. Ren W. Decaen P. Yan C. Tao X. Tang L. et al . (2012). Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature486, 130135. doi: 10.1038/nature11054

  • 345

    Zhang Y. Kong W. Gao Y. Liu X. Gao K. Xie H. et al . (2015). Gene Mutation Analysis in 253 Chinese Children with Unexplained Epilepsy and Intellectual/Developmental Disabilities. PloS One10, e0141782. doi: 10.1371/journal.pone.0141782

  • 346

    Zhang S. Zhang Z. Shen Y. Zhu Y. Du K. Guo J. et al . (2020). SCN9A Epileptic Encephalopathy Mutations Display a Gain-of-function Phenotype and Distinct Sensitivity to Oxcarbazepine. Neurosci. Bull.36, 1124. doi: 10.1007/s12264-019-00413-5

  • 347

    Zhang F. Wu Y. Zou X. Tang Q. Zhao F. Cao Z. (2019). BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int. J. Mol. Sci.20, 729. doi: 10.3390/ijms20030729

  • 348

    Zhang T. Chen M. Zhu A. Zhang X. Fang T. (2020). Novel mutation of SCN9A gene causing generalized epilepsy with febrile seizures plus in a Chinese family. Neurol. Sci.41, 19131917. doi: 10.1007/s10072-020-04284-x

  • 349

    Zhou P. He N. Zhang J. W. Lin Z. J. Wang J. Yan L. M. et al . (2018). Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes Brain Behav.17, e12456. doi: 10.1111/gbb.12456

  • 350

    Ziobro J. Eschbach K. Sullivan J. E. Knupp K. G. (2018). Current Treatment Strategies and Future Treatment Options for Dravet Syndrome. Curr. Treat. Options Neurol.20, 115. doi: 10.1007/s11940-018-0537-y

  • 351

    Zuberi S. M. Brunklaus A. Birch R. Reavey E. Duncan J. Forbes G. H. (2011). Genotype-phenotype associations in SCN1A-related epilepsies. Neurology76, 594600. doi: 10.1212/WNL.0b013e31820c309b

  • 352

    Zucca C. Redaelli F. Epifanio R. Zanotta N. Romeo A. Lodi M. et al . (2008). Cryptogenic Epileptic Syndromes Related to SCN1A. Arch. Neurol.65, 489. doi: 10.1001/archneur.65.4.489

Summary

Keywords

channelopathies, epilepsy, ion channel, mutation, sodium channel

Citation

Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LdA and Schwartz EF (2020) Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front. Pharmacol. 11:1276. doi: 10.3389/fphar.2020.01276

Received

21 April 2020

Accepted

31 July 2020

Published

18 August 2020

Volume

11 - 2020

Edited by

Jean-Marc Sabatier, Aix-Marseille Université, France

Reviewed by

Rikke Steensbjerre Møller, Filadelfia, Denmark; Roope Mannikko, University College London, United Kingdom; Theodore R. Cummins, Indiana University Bloomington, United States

Updates

Copyright

*Correspondence: Elisabeth Ferroni Schwartz,

This article was submitted to Pharmacology of Ion Channels and Channelopathies, a section of the journal Frontiers in Pharmacology

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics