@ARTICLE{10.3389/fphar.2022.846683, AUTHOR={Alrashdi, Ibrahim and Alsubaiyel, Amal and Chan, Michele and Battell, Emma E. and Ennaceur, Abdel and Nunn, Miles A. and Weston-Davies, Wayne and Chazot, Paul L. and Obara, Ilona}, TITLE={Votucalis, a Novel Centrally Sparing Histamine-Binding Protein, Attenuates Histaminergic Itch and Neuropathic Pain in Mice}, JOURNAL={Frontiers in Pharmacology}, VOLUME={13}, YEAR={2022}, URL={https://www.frontiersin.org/articles/10.3389/fphar.2022.846683}, DOI={10.3389/fphar.2022.846683}, ISSN={1663-9812}, ABSTRACT={Votucalis is a biologically active protein in tick (R. appendiculatus) saliva, which specifically binds histamine with high affinity and, therefore, has the potential to inhibit the host’s immunological responses at the feeding site. We hypothesized that scavenging of peripherally released endogenous histamine by Votucalis results in both anti-itch and anti-nociceptive effects. To test this hypothesis, adult male mice were subjected to histaminergic itch, as well as peripheral nerve injury that resulted in neuropathic pain. Thus, we selected models where peripherally released histamine was shown to be a key regulator. In these models, the animals received systemic (intraperitoneal, i.p.) or peripheral transdermal (subcutaneous, s.c. or intraplantar, i.pl.) administrations of Votucalis and itch behavior, as well as mechanical and thermal hypersensitivity, were evaluated. Selective histamine receptor antagonists were used to determine the involvement of histamine receptors in the effects produced by Votucalis. We also used the spontaneous object recognition test to confirm the centrally sparing properties of Votucalis. Our main finding shows that in histamine-dependent itch and neuropathic pain models peripheral (s.c. or i.pl.) administration of Votucalis displayed a longer duration of action for a lower dose range, when compared with Votucalis systemic (i.p.) effects. Stronger anti-itch effect was observed after co-administration of Votucalis (s.c.) and antagonists that inhibited peripheral histamine H1 and H2 receptors as well as central histamine H4 receptors indicating the importance of these histamine receptors in itch. In neuropathic mice, Votucalis produced a potent and complete anti-nociceptive effect on mechanical hypersensitivity, while thermal (heat) hypersensitivity was largely unaffected. Overall, our findings further emphasize the key role for histamine in the regulation of histaminergic itch and chronic neuropathic pain. Given the effectiveness of Votucalis after peripheral transdermal administration, with a lack of central effects, we provide here the first evidence that scavenging of peripherally released histamine by Votucalis may represent a novel therapeutically effective and safe long-term strategy for the management of these refractory health conditions.} }