Frontiers journals are at the top of citation and impact metrics

Original Research ARTICLE Provisionally accepted The full-text will be published soon. Notify me

Front. Robot. AI | doi: 10.3389/frobt.2019.00032

Forecasting climatic trends using neural networks: An experimental study using global historical data

 Takeshi Ise1, 2* and Yurika Oba1
  • 1Kyoto University, Japan
  • 2Japan Science and Technology Agency (JST), Japan

Climate change is undoubtedly one of the biggest problems in the 21st century. Currently, however, most research efforts on climate forecasting are based on mechanistic, bottom-up approaches such as physics-based general circulation models and earth system models. In this study, we explore the performance of a phenomenological, top-down model constructed using a neural network and big data of global mean monthly temperature. By generating graphical images using the monthly temperature data of 30 years, the neural network system successfully predicts the rise and fall of temperatures for the next 10 years. Using LeNet for the convolutional neural network, the accuracy of the best global model is found to be 97.0%; we found that if more training images are used, a higher accuracy can be attained. We also found that the color scheme of the graphical images affects the performance of the model. Moreover, the prediction accuracy differs among climatic zones and temporal ranges. This study illustrated that the performance of the top-down approach is notably high in comparison to the conventional bottom-up approach for decadal-scale forecasting. We suggest using artificial intelligence-based forecasting methods along with conventional physics-based models because these two approaches can work together in a complementary manner.

Keywords: deep neural networks, climate forecast model, Top-down approach, graphical image classification, global environmental change

Received: 08 Jan 2019; Accepted: 10 Apr 2019.

Edited by:

Fabrizio Riguzzi, University of Ferrara, Italy

Reviewed by:

Paweł Pławiak, Tadeusz Kościuszko University of Technology, Poland
Wellington P. Dos Santos, Federal University of Pernambuco, Brazil  

Copyright: © 2019 Ise and Oba. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Prof. Takeshi Ise, Kyoto University, Kyoto, Japan, ise@kais.kyoto-u.ac.jp