Skip to main content


Front. Sustain. Food Syst.
Sec. Crop Biology and Sustainability
Volume 7 - 2023 | doi: 10.3389/fsufs.2023.1238874

Combining ability of extra-early maturing quality protein maize (Zea mays) inbred lines and stability of performance of their hybrids under Striga-infested and low-nitrogen environments

Gbemisola Okunlola1  BAFFOUR BADU-APRAKU2*  Ariyo O. Johnson1 Moninuola Ayo-Vaughan1
  • 1Federal University of Agriculture, Abeokuta, Nigeria
  • 2International Institute of Tropical Agriculture (IITA), Nigeria

The final, formatted version of the article will be published soon.

Receive an email when it is updated
You just subscribed to receive the final version of the article

Maize production in sub-Saharan Africa (SSA) faces challenges due to the damage caused by the parasitic weed, Striga hermonthica (Del.) Benths and low soil nitrogen. To address these constraints and improve food security and nutrition, this study assessed the combining ability of 47 inbred lines and four testers, grouped them into heterotic groups, identified effective testers, and determined the stability of the lines in hybrid combinations under contrasting research conditions. The study was conducted at Mokwa and Abuja during the 2019 and 2020 growing seasons. One hundred and ninety-six hybrids comprising 188 testcrosses, 6 hybrids derived by intermating the four testers, and two commercial checks were evaluated using a 14×14 lattice design with two replicates. Results revealed that under Striga infestation, the best QPM hybrid, TZEEQI 468 × TZEEQI 321 outyielded the best check, TZEEQI 342 × TZEEQI 7 by 24%. Under low-N, QPM hybrid, TZEEQI 515 × TZEEQI 321 outyielded the best check, TZEEQI 507 × TZEEQI 7 by 11% while under optimal conditions the best QPM hybrid, TZEEQI 506 × TZEEQI 321 outyielded the best check, TZEEQI 342 × TZEEQI 7 by 2%. General combining ability (GCA) and specific combining ability (SCA) significantly influenced grain yield and other measured traits across the test environments. These indicated the importance of both additive and non-additive genetic variances in trait inheritance. GCA was more important than SCA for grain yield and most traits in contrasting environments. Four inbred lines had significant and positive GCA effects for grain yield under Striga-infested conditions, while three lines had similar GCA effects under low-nitrogen conditions. These lines demonstrated outstanding potential for developing Striga-resistant and low-nitrogen-tolerant hybrids. The study identified four heterotic groups using the heterotic grouping method based on the general combining ability of multiple traits (HGCMAT). Inbred lines TZEEQI 490 and TZEEQI 460 were identified as testers. The QPM hybrid TZEEQI 515 × TZEEQI 321 exhibited outstanding yield and stability across contrasting environments, highlighting the need for extensive on-farm trials to confirm its superiority and potential for commercialization in SSA.

Keywords: Maize, QPM inbred lines, Striga, low-N, Genetics, stability

Received: 19 Jun 2023; Accepted: 12 Sep 2023.

Copyright: © 2023 Okunlola, BADU-APRAKU, Johnson and Ayo-Vaughan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. BAFFOUR BADU-APRAKU, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria