You're viewing our updated article page. If you need more time to adjust, you can return to the old layout.

ORIGINAL RESEARCH article

Front. Astron. Space Sci., 05 March 2025

Sec. Extragalactic Astronomy

Volume 12 - 2025 | https://doi.org/10.3389/fspas.2025.1560380

Searching for nearby diffuse dwarf galaxies in the COSMOS field

    DD

    Dong Dong Shi 1*

    XZ

    Xian Zhong Zheng 2*

    ZP

    Zhizheng Pan 3

    YL

    Yu Luo 4

    HD

    Hongxia Deng 1

    QH

    Qunzhi Hua 1

    XL

    Xinyu Luo 1

    QW

    Qiming Wu 1

  • 1. Center for Fundamental Physics, School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, China

  • 2. Tsung-Dao Lee Institute and Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China

  • 3. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, Jiangsu, China

  • 4. Department of Physics, School of Physics and Electronics, Hunan Normal University, Changsha, China

Article metrics

View details

1,7k

Views

474

Downloads

Abstract

It remains challenging to systematically survey nearby diffuse dwarf galaxies and address the formation mechanism of this population distinguishing from regular ones. We carry out a pilot search for these galaxies in the COSMOS field using the deep HST/F814W imaging data. We report three diffuse dwarf galaxies satisfying the criteria: (1) redshift , (2) effective radius , and (3) central surface brightness mag arcsec−2. Two of the three galaxies, COSMOS-UDG1 and COSMOS-UDG2, are recognized as ultra-diffuse galaxies (UDGs) with redshift and 0.049, respectively. The third galaxy, COSMOS-dw1, is spectroscopically confirmed as a dwarf galaxy at . We derive the physical properties through fitting their spectral energy distributions (SEDs) extracted from deep multiwavelength observations. COSMOS-dw1 has a stellar mass of , harboring neutral hydrogen gas of mass , hinting that this galaxy may be in the nascent stages of quenching. The estimated dynamical mass of further suggests that COSMOS-dw1 is predominantly of dark matter. COSMOS-UDG1 and COSMOS-UDG2 exhibit comparable stellar masses of . Notably, COSMOS-UDG1 is younger and more metal-rich than COSMOS-UDG2 and COSMOS-dw1. Conversely, COSMOS-UDG2 and COSMOS-dw1 have similar stellar metallicities, yet COSMOS-UDG2 is older than COSMOS-dw1. All three galaxies adhere to the stellar mass-metallicity relation (MZR) for dwarf galaxies in the local Universe, implying they belong to the dwarf galaxy population.

1 Introduction

The extremely low surface brightness (LSB) galaxies in the Universe provide crucial insights into galaxy formation and evolution, particularly concerning the role of dark matter and the mechanisms shaping diverse galaxy morphologies (e.g., Impey and Bothun, 1997; Bullock and Boylan-Kolchin, 2017). Ultra-diffuse galaxies (UDGs) are distinguished by their extremely low central surface brightness mag arcsec-2, large half-light radius ( kpc) comparable to that of typical galaxies and relatively low stellar mass (), which is two orders of magnitude smaller than that of galaxies (van Dokkum et al., 2015a). It remains unclear whether these extreme properties arise from distinct formation processes compared to normal galaxies.

UDGs have been found in a variety of environments, including galaxy clusters (e.g., van Dokkum et al., 2015a; Koda et al., 2015; Mihos et al., 2015; Muñoz et al., 2015; Martínez-Delgado et al., 2016; van der Burg et al., 2016; Román and Trujillo, 2017a; Janssens et al., 2017; Lee et al., 2017; Lee et al., 2020; Iodice et al., 2020; Wittmann et al., 2017; Janssens et al., 2019; Gannon et al., 2022; Venhola et al., 2022; La Marca et al., 2022a; b), groups (e.g., Smith Castelli et al., 2016; Merritt et al., 2016; Ordenes-Briceño et al., 2016; Trujillo et al., 2017; Román and Trujillo, 2017b; Shi et al., 2017; van der Burg et al., 2017; Müller et al., 2018; Greco et al., 2018b; Somalwar et al., 2020; Zaritsky et al., 2023; Jones et al., 2023) and the fields (e.g., Bellazzini et al., 2017; Leisman et al., 2017; Bennet et al., 2018; Prole et al., 2019; Barbosa et al., 2020; Fielder et al., 2024; Montes et al., 2024), as well as within cosmic void (Román et al., 2019) and associated with the large-scale structures (e.g., Román and Trujillo, 2017a; Shi et al., 2017). Accumulating observational evidence reveals that UDGs exhibit a diverse range of properties. They can be red and blue in color (e.g., Koda et al., 2015; Román and Trujillo, 2017a; Román and Trujillo, 2017b; Shi et al., 2017; Leisman et al., 2017), gas-poor and gas-rich in H I gas content (e.g., Trujillo et al., 2017; Kadowaki et al., 2017; Bellazzini et al., 2017; Papastergis et al., 2017; Spekkens and Karunakaran, 2018; Karunakaran et al., 2020; Karunakaran et al., 2024), and have prolate and oblate in geometry/intrinsic ellipticity distribution (Burkert, 2017). Some UDGs contain a high fraction of globular clusters (GCs) (e.g., Beasley et al., 2016; Beasley and Trujillo, 2016; Peng and Lim, 2016; van Dokkum et al., 2016; van Dokkum et al., 2017; van Dokkum et al., 2018b; Toloba et al., 2018; Lim et al., 2018; Marleau et al., 2024; Forbes et al., 2025), and many host a compact nucleus in their central regions (e.g., Yagi et al., 2016; Janssens et al., 2017; Lambert et al., 2024; Khim et al., 2024). These observations suggest that the UDG population, selected based on observational criteria, may be composed of different populations formed through different pathways. For instance, UDGs Dragonfly 44 and Dragonfly X1 are likely overwhelmingly dominated by dark matter and are considered as “failed” galaxies with massive halo () (van Dokkum et al., 2015a; van Dokkum et al., 2016; van Dokkum et al., 2017), and UDGs VCC 1287 and Dragonfly 17 are seen as “failed” Large Magellanic Cloud (LMC) or M33 with low halo mass () (Beasley and Trujillo, 2016; Peng and Lim, 2016; Amorisco et al., 2018). In contrast, several UDGs have been reported to be tidally disrupted dwarf galaxies, also known as tidal debris or disturbed UDGs (Mihos et al., 2015; Mihos et al., 2017; Merritt et al., 2016; Greco et al., 2018a; Fielder et al., 2024). These typically exhibit lower dark matter halos compared to what is expected for their stellar mass (van Dokkum et al., 2018a; Toloba et al., 2018; Ogiya, 2018). The UDGs, NGC1052-DF2 and DF4, contain little or no dark matter (van Dokkum et al., 2018a; van Dokkum et al., 2018b, van Dokkum et al., 2019; Shen et al., 2021; van Dokkum et al., 2022), although the controversy still remains (Trujillo et al., 2019; Montes et al., 2020).

Multiple formation scenarios have been proposed to account for the extended nature of UDGs. Galaxy collisions in dense environments are suggested as a mechanism for forming UDGs (Baushev, 2018), often leading to prolate rather than oblate morphologies (Burkert, 2017). Carleton et al. (2019) proposed that tidal stripping and heating are primary drivers of UDG formation in the dense environments. In less-dense environments, such as poor clusters and galaxy groups, the interaction of the interstellar medium (ISM) with the intra-cluster medium (ICM) is believed to play a pivotal role in shaping UDGs (Levy et al., 2007). On the other hand, Amorisco and Loeb (2016) contended that UDGs are predominantly dwarf galaxies with extremely high spins. Leisman et al. (2017) and Spekkens and Karunakaran (2018) reported that gas-rich UDGs tend to reside in halos of high angular momentum traced by H I line width, supporting the high-spin scenario (Amorisco and Loeb, 2016; Rong et al., 2017). Furthermore, gas outflow driven by strong feedback from supernovae and massive star winds in a star-forming galaxy is suggested to cause the expansion of dark matter and stellar disk, ultimately reshaping the galaxy into a faint and extended form (Di Cintio et al., 2017; Chan et al., 2018). In addition, Sales et al. (2020) suggested that UDG population is a mixture of normal LSB galaxies typically found in the low-density environments, along with a distinct population whose expansive size and LSB are a result of the impact of cluster tides (e.g., Tremmel et al., 2020).

More observational efforts are eagerly demanded to determine the physical properties of UDGs for a better understanding of their origin. Notably, spectroscopic observations are crucial for revealing the properties of stellar populations, metallicity and kinematics. However, it is very expensive to obtain good-quality spectroscopic data for UDGs even with 10 m-class telescopes. To date, only 100 UDGs have been spectroscopically observed, and most of them are cluster UDGs (e.g., van Dokkum et al., 2015b; van Dokkum et al., 2016; Martínez-Delgado et al., 2016; Trujillo et al., 2017; Kadowaki et al., 2017; Gu et al., 2018; Ferré-Mateu et al., 2018; Ruiz-Lara et al., 2018; Buzzo et al., 2022; Buzzo et al., 2024a; Gannon et al., 2024; Shen et al., 2024). These cluster UDGs are mainly dominated by old and metal-poor populations (Kadowaki et al., 2017; Ferré-Mateu et al., 2018; Ruiz-Lara et al., 2018; Iodice et al., 2023). On the other hand, some UDGs (e.g., DGSAT 1 and UGC 2162) in low-density environments seem to consist of relatively young and high-metallicity stellar populations (Martínez-Delgado et al., 2016; Trujillo et al., 2017; Pandya et al., 2018). Moreover, some blue UDGs appear to be gas-rich galaxies so that the 21 cm line can be used to measure the distance of UDGs and test their formation mechanisms (Trujillo et al., 2017; Papastergis et al., 2017; Bellazzini et al., 2017; Leisman et al., 2017; Shi et al., 2017; Spekkens and Karunakaran, 2018). Additionally, only a few UDGs has been observed for measuring their stellar kinematics through spectroscopy (e.g., Chilingarian et al., 2019; van Dokkum et al., 2019; Iodice et al., 2023), revealing that their dark matter content and velocity profile are diverse (e.g., Emsellem et al., 2019; Kravtsov, 2024). Most UDGs have a large dark matter fraction than dwarf galaxies with similar luminosities, but several UDGs contain little or no dark matter (van Dokkum et al., 2018a; van Dokkum et al., 2018b; van Dokkum et al., 2019; Shen et al., 2021; van Dokkum et al., 2022). Buttitta et al. (2025) mapped the stellar kinematics of some UDGs in the Hydra-I cluster, finding that seven UDGs are in a mild rotation and five UDGs show no evidence of rotation. Recently, some works explored the stellar populations of UDGs using the multiwavelength SED fitting, and concluded that their properties are diverse (e.g., Pandya et al., 2018; Gu et al., 2018; Buzzo et al., 2022; Buzzo et al., 2024a). Therefore, further investigation of the physical properties of these diffuse galaxies is imperative.

In this work, we systematically search for extremely LSB galaxies in the COSMOS field. The availability of pre-existing deep multiwavelength observations, spanning from the ultraviolet (UV) to the radio, enables us to delve into the properties of these galaxies in detail. In Section 2, we describe the selection of the three diffuse galaxies and the photometric data. Section 3 presents the photometry and analysis. finally, we discuss and summarize our results in Section 4. We adopt a cosmology with , and km s−1 Mpc−1, and the AB magnitude system throughout this work.

2 Target selection and data

We carry out a search for UDGs within the central region of the COSMOS field, where /ACS F606W and F814W observations are available from the 3D-HST/CANDELS survey (van Dokkum et al., 2013; Momcheva et al., 2016). We made use of the 3D-HST redshift and photometric catalog of 33,879 objects (the v4.1.5 release) based on the detection to select UDG candidates. We limit redshift at , and apply the selection criteria of mag arcsec-2 and effective radius kpc to the catalog, yielding a sample of 20 objects as the UDG candidates. We visually examine the images of these targets to get rid of false sources (e.g., blending and compact sources, contamination light from the outer of saturate stars). Finally, we obtained three diffuse galaxies, named as COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2. Their images are shown in Figure 1. Of them, COSMOS-dw1 is not included in the 3D-HST catalog. It was found when visually checked the images. We cross correlated these objects with the COSMOS2015 catalog (Laigle et al., 2016), finding that the three objects are all included. We note that COSMOS-dw1 has been confirmed by LRIS on Keck I, and the spectroscopic redshift (spec-) is 0.0041 (Polzin et al., 2021). The spec- of COSMOS-dw1 in radio observations with Five-hundred-meter Aperture Spherical radio Telescope (FAST) and MeerKAT GHz Tiered Extragalactic Explorations (MIGHTEE) H survey is 0.004 (Pan et al., 2024; Heywood et al., 2024). No spec- is available for the rest two objects (although COSMOS-UDG1 was observed through the Very Large Telescope (VLT)/VIMOS spectrograph, there is still no spec- due to the low Signal-to-Noise Ratio (SNR) spectrums (Lilly et al., 2007)). The COSMOS2015 catalog provides photo- of the three objects as 0.005 0.0034, 0.158 0.008, 0.044 0.011, respectively.

FIGURE 1

FIGURE 1

The HST/ACS F814W stamps of three COSMOS diffuse galaxies: COSMOS-dw1 (left), COSMOS-UDG1 (middle), and COSMOS-UDG2 (right). The size of the stamps is . The inner box shows a region of for COSMOS-dw1, and for COSMOS-UDG1 and COSMOS-UDG2.

The publicly-available multi-band mosaic science images of COSMOS are used to examine the broad properties of the selected UDGs, including Far-UV (FUV) and Near-UV (NUV) images from the Galaxy Evolution Explorer (GALEX) (Zamojski et al., 2007), and -band images obtained with Canada-France-Hawaii Telescope (CFHT) (McCracken et al., 2010), Subaru and 12 intermediate-band optical images (Taniguchi et al., 2007), deep , and -band images from UltraVISTA (McCracken et al., 2012), IRAC 3.6 m, 4.5 m, 5.8 m, 8 m data from the COSMOS Spitzer survey (Sanders et al., 2007), and 20 cm data obtained with Very Large Array (VLA) (Schinnerer et al., 2007). More details about these archive data in COSMOS are summarized in Laigle et al. (2016). The left panels of Figures 24 show the representative multiwavelength images of the three galaxies.

FIGURE 2

FIGURE 2

Left:The examples of multiwavelength science images of COSMOS-dw1. The size of each stamp is . The red circle in each stamp is the target. Right: The SED fitting of COSMOS-dw1. The green curve presents the best-fit model from Prospector. The grey curves are the filters from optical to NIR. The red points are the observed photometry for COSMOS-dw1, and the green points are the model photometry.

FIGURE 3

FIGURE 3

Left:The examples of multiwavelength science images of COSMOS-UDG1. The size of each stamp is . The red circle in each stamp is the target. Right: The SED fitting of COSMOS-UDG1. The green curve presents the best-fit model from Prospector. The grey curves are the filters from optical to NIR. The red points are the observed photometry for COSMOS-UDG1, and the green points are the model photometry.

FIGURE 4

FIGURE 4

Left:The examples of multiwavelength science images of COSMOS-UDG2. The size of each stamp is . The red circle in each stamp is the target. Right: The SED fitting of COSMOS-UDG2. The green curve presents the best-fit model from Prospector. The grey curves are the filters from optical to NIR. The red points are the observed photometry for COSMOS-UDG2, and the green points are the model photometry.

3 Photometry and analysis

3.1 Aperture-matched photometry

We construct aperture-matched SEDs from the FUV to the NIR for our three UDG targets. The three targets are very extended and removal of the blending fluxes from nearby sources is key to measuring their fluxes. The left panels in Figures 24 are the examples of mosaics in these three galaxies. Below we describe our processes to derive the aperture-matched photometry from the multi-band imaging data.

For each of our three targets, we cut stamp images of centered at the target from mosaic science images for further analysis. We extract the empirical Point Spread Functions (PSF) from the mosaic science images using the software PSF Extractor (PSFEx, version 3.9.1, Bertin, 2011). SExtractor (Bertin and Arnouts, 1996) is used to detect sources and extract their photometric and geometric parameters, including coordinates, magnitude, effective radius , axis ratio (b/a) and position angle (PA). The detection configuration is optimized for individual stamp images. All sources in one stamp image are simultaneously fitted with 2-D Sérsic models using GALFIT (Peng et al., 2002; Peng et al., 2010). The best-fit Sérsic models of detected sources are subtracted from the stamp image and the central target is left. Doing so we obtained clean images of the target. These clean images are used to match PSFs between different bands and derive aperture-matched photometry. The total magnitude in is estimated using the growth curve derived from the -band clean image.

We notice that the total magnitude in HST is systematically lower than that in for all three UDGs. The discrepancy still exists even we measure the total magnitude from the image degraded from a pixel scale of to (the pixel scale of ). We point out that this discrepancy is caused by the background subtraction in data reduction, for which the box size chosen for background estimate is preferentially optimized for faint and compact sources, but too small for extended UDGs. This leads to an oversubtraction of the outskirts of UDGs and therefore the total magnitude to be lower. The magnitude discrepancy is at a level of mag and have marginal effects on the estimate of their geometric parameters. We adopt the parameters from the GALFIT best-fit Sérsic models of images and list total magnitude of , , , Sérsic index , of our three galaxies in Table 1.

TABLE 1

COSMOS-dw1 COSMOS-UDG1 COSMOS-UDG2
R.A. (J2000.0) 10:00:30.069 10:00:37.859 10:00:23.752
Decl. (J2000.0) +02:08:59.07 +02:24:31.86 +02:22:05.87
redshift 0.004 0.130 0.049
(mag) 19.900.03 22.810.11 21.680.06
(mag) 19.790.04 22.560.13 21.550.07
- (mag) 0.110.05 0.250.17 0.130.09
(mag arcsec-2) 24.370.16 24.860.11 24.480.15
(mag arcsec-2) 24.360.19 24.750.13 24.310.12
() 3.420.07 1.140.07 1.770.08
0.290.01 2.640.16 1.700.08
Sérsic index (n) 0.200.02 0.190.07 0.590.08
axis ratio (b/a) 0.650.01 0.810.05 0.610.08
log (/)
SFR ( yr-1)
age (Gyr)
log (/Gyr)
log (Z/)
log (/)

The properties of COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2. The parameters listed from top to bottom rows, refer to coordinates, redshift, magnitude in F606W/F814W, color, central surface brightness in F606W/F814W, effective radius in angular and physical size, Sérsic index (n), axis ratio (b/a), stellar mass log(/), SFR ( yr-1), stellar age (Gyr), log(/Gyr), stellar metallicity log(Z/Z) and H mass, respectively. Note that we correct the extinction, K-correction and cosmological dimming effects.

The Subaru optical images we used are already PSF-matched. We use a fixed aperture of radius two times the -band effective radius to derive the aperture-matched fluxes from the clean images in the , and and other 12 intermediate bands. For other images, we match the images of a given band and the -band to the identical spatial resolution, and then derive aperture-matched flux ratio between the two bands. In practice, we convolve one image with the PSF of the other image and vice versa to match two images to the same spatial resolution. This method works well for our targets because they are extended and relatively bright. Aperture photometry on the PSF-matched images with the same circular aperture (i.e., radius = 2) gives aperture-matched flux ratio of the two bands. We derived flux ratios of CFHT and , UltraVISTA , and to Subaru , flux ratios of FUV/NUV to , and flux ratios of IRAC 3.6 m/4.5 m to . These flux ratios based on aperture-matched photometry describe the observed SED over these bands. The observed SED is then normalized to the total magnitude of . Taken together, we obtained the FUV-to-NIR SEDs for our three UDG targets, as shown in the right panels of Figures 24.

We also examine the dust emission of our three galaxies using the deepest 850 m map obtained with SCUBA-2 on board James Clerk Maxwell Telescope (JCMT) through the S2COSMOS survey (Casey et al., 2013; Geach et al., 2016; Michałowski et al., 2017), finding no detection at a level of 3 mJy. These suggest a very low rate of obscured star formation among our sample objects.

3.2 Modeling of the observed SEDs

Using the software Easy and Accurate Redshifts from Yale (EAZY) (Brammer et al., 2008), we can estimate photometric redshift (photo-) from the multiwavelength photometric data. The default library of galaxy templates in EAZY is adopted. The input parameters (e.g., templates, input file, output files and redshift grid) are set in the configuration file. The redshift range we have set is from 0 to 2, incremented by 0.001 each step. Therefore, the photo- for COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 are 0.010, 0.130 and 0.049, which are fully consistent with the photo- provided by COSMOS2015 catalog. However, considering that COSMOS-dw1 already has a spectral redshift (spec-0.0041), we use the spec- in following SED fitting. The results are listed in Table 1.

We constrain the star formation histories (SFHs) of these three galaxies using the SED fitting technique. The fitting is performed using Prospector (Leja et al., 2017; Leja et al., 2019), which uses the Flexible Stellar Population Synthesis (FSPS) package with fully Bayesian Bayesian Markov chain Monte Carlo (MCMC) code (Conroy et al., 2009). We use the default Stellar Population Synthesis (SPS) parameters in FSPS. For the SED modeling, we adopt the Chabrier (2003) IMF and the Calzetti et al. (2000) dust attenuation law. The delayed exponentially declining SFH (SFR) is used, where is time from the formation. The redshift is fixed by spec- or photo-.

The best-fit models of these three galaxies with Prospector are shown in the right panels of the Figures 24. For COSMOS-dw1, we obtain stellar mass , the same as calculated in Polzin et al. (2021). The estimated stellar metallicity, star formation rate (SFR) and stellar age of COSMOS-dw1 is log (Z) , 0.001 yr-1 and Gyr, respectively. Polzin et al. (2021) claim that COSMOS-dw1 is an isolated quenched low-mass galaxies with strong Balmer absorption lines in the local group, but the specific stellar age and metallicity are not given. Our results support that COSMOS-dw1 has very little star formation at present. For COSMOS-UDG1, we obtain stellar mass , stellar metallicity log (Z) , stellar age Gyr. The parameter of stellar mass, stellar metallicity and stellar age in COSMOS-UDG2 is , log (Z) and Gyr, respectively. We find that these three galaxies exhibit diverse properties. COSMOS-UDG1 and COSMOS-UDG2 have similar stellar masses, but COSMOS-UDG1 is younger and more metal-rich than COSMOS-UDG2 and COSMOS-dw1. COSMOS-UDG2 and COSMOS-dw1 have similar stellar metallicities, but COSMOS-UDG2 is older than COSMOS-dw1.

In Figure 5, we show the stellar mass–metallicity relation (MZR) for these three COSMOS galaxies, compared to the relation found for the dwarfs (Kirby et al., 2013) and giant galaxies in the local Universe (Gallazzi et al., 2005). The MZR with large scatter appears to be continuous from low to high masses. Despite the large uncertainties of metallicity and stellar mass, COSMOS-dw1 obeys the MZR at the low mass end, COSMOS-UDG1 and COSMOS-UDG2 follow the MZR defined by normal dwarf galaxies. This suggests that stellar mass plays an important role in determining stellar metallicities, regardless of the size of a galaxy.

FIGURE 5

FIGURE 5

The stellar mass-metallicity relation. The black solid points are the early-type galaxies (ETGs) in Virgo (Liu et al., 2016), dwarf galaxies in and around the Local group are shown in gray solid squares (McConnachie, 2012), and local group dIrrs/dSphs from Kirby et al. (2013) are shown in dark blue solid points, the blue solid line shows the least-squares line, and the dotted lines are the rms about the best fit. MZR relation could extend to the massive galaxies (Gallazzi et al., 2005), as shown the gray solid curves. The purple solid line is the MZR relation of star-forming galaxies with stellar masses ranging between and at (Zahid et al., 2017). Other UDGs from literatures are presented for comparisons (e.g., Kadowaki et al., 2017; Gu et al., 2018; Pandya et al., 2018; Ruiz-Lara et al., 2018). The red, blue and brown solid points stands for the COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2, respectively.

4 Discussion and summary

We present the physical properties of three nearby diffuse galaxies identified in the central region of the COSMOS field, which is covered by the 3D-HST/CANDELS survey. The primary uncertainty in our analysis is the distances of the three diffuse galaxies. The photometric redshifts derived from the broadband SEDs affirm that these objects are nearby, with redshifts . Nevertheless, given uncertainties associated with photo-, we cannot rule out the possibility that they might be located closer (e.g., in the Local Group), especially for COSMOS-dw1. COSMOS-dw1 has been confirmed by optical spectroscopy and radio observations to have a redshift of 0.004 (Polzin et al., 2021; Pan et al., 2024). For COSMOS-UDG1 and COSMOS-UDG2, we determine their photo-s to be 0.130 and 0.049, respectively, using multiwavelength data. The physical properties of these three galaxies appear to be strikingly different.

Obtaining accurate distance estimates for the ultra-faint and diffuse objects in local Universe is critical to derive correct galaxy physical properties. Polzin et al. (2021) applied the surface brightness fluctuation (SBF) method to COSMOS-dw1 and measured a distance of Mpc, which aligns with its radial velocity of km . However, recent work by Foster et al. (2024) used the SBF method to derive distance estimates for the 20 nearby dwarf galaxies detected in the COSMOS field, with COSMOS-dw1 being one of them. The SBF distance is estimated to be Mpc (Foster et al., 2024), which is three times higher than estimated provided by Polzin et al. (2021). Although Foster et al. (2024) can recover a similar result ( Mpc) as Polzin et al. (2021) by modifying certain methodologies, SBF distance estimates for the rest galaxies will be severely underestimated ( Mpc) after the same modified method is applied to the whole sample. If we adopt the distance of Mpc, the estimated stellar mass of COSMOS-dw1 would be an order of magnitude higher than previously estimated, and its effective radius would be three times larger than estimated in the Table 1. Therefore, we emphasize that there are certain discrepancies in the distances derived using the SBF method.

COSMOS-dw1 exhibits a blue color with , and has been detected in radio observations to possess H gas. The H mass is , with the line width is 18.2 km s-1, as reported by (Pan et al., 2024). The gas fraction is , indicating that this galaxy is not gas-poor and still retains a significant amount of atomic gas despite exhibiting quiescent optical spectra (Polzin et al., 2021, top panel of Figure 2). Given the isolation, COSMOS-dw1 is unlikely to have undergone strong environmental effects (Polzin et al., 2021). Furthermore, the stellar age of COSMOS-dw1 is estimated to be 4.1 Gyr, suggesting this galaxy formed at .

The dynamical mass is estimated using the formula from Spekkens and Karunakaran (2018), where is effective radius kpc and is the line width in units of km s-1. COSMOS-dw1 has (Pan et al., 2024). Therefore, we calculate the dynamical mass of COSMOS-dw1 to be . Additionally, we estimate the baryonic mass of COSMOS-dw1 as (Piña et al., 2019). Assuming the cosmological baryon fraction is 0.16, we derive the virial mass of the dark matter halo to be , which is times higher than the calculated dynamical mass.

The MZR of galaxies offers profound insights into their star formation and chemical enrichment histories. The relatively low scatter in this relation, particularly at the low-mass end (e.g., Kirby et al., 2013), poses a challenge to explain. This relationship is intricately tied to the complex dynamics involving reionization, star formation, gas inflow, outflow, and recycling processes (e.g., Ma et al., 2016).

Recently, numerous researches have unveiled the stellar population properties of some UDGs through optical spectra and multiwavelength photometric data in different environments. These studies have demonstrated the diverse stellar populations of UDGs across different environments. Specifically, UDGs in clusters (e.g., Coma and Virgo) identified by optical spectroscopy are intermediate-to-old age ( Gyr) and metal-poor (e.g., Kadowaki et al., 2017; Ferré-Mateu et al., 2018; Gu et al., 2018; Ruiz-Lara et al., 2018; Villaume et al., 2022; Buzzo et al., 2022; Ferré-Mateu et al., 2023; Gannon et al., 2024; Buzzo et al., 2024a; Buzzo et al., 2024b). In contrast, some star-forming UDGs in low-density environments are significantly more metal-rich and younger ( Gyr) compared to their quiescent counterparts (e.g., Martínez-Delgado et al., 2016; Trujillo et al., 2017; Rong et al., 2020). Using multiwavelength photometric data, several studies have further revealed that UDGs found in clusters are older than those in the field (Pandya et al., 2018; Buzzo et al., 2022). Additionally, some field UDGs showcase stellar populations of intermediate age on average ( Gyr), with some being metal-poor and others metal-rich (Barbosa et al., 2020).

We examine the environments around the three galaxies, and find that COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 do not have obvious luminous companions, suggesting that all three galaxies reside in the low-density environments. In comparison to UDGs in galaxy clusters (e.g., Kadowaki et al., 2017; Gu et al., 2018; Ruiz-Lara et al., 2018; Buzzo et al., 2022), COSMOS-UDG1 shows younger age and higher metallicity, whereas COSMOS-UDG2 is younger but metal-poor. These observations imply that the relative young ages of COSMOS-UDG1 and COSMOS-UDG2 may be associated with their low-density environment (Martínez-Delgado et al., 2016; Trujillo et al., 2017; Pandya et al., 2018). A possible explanation is that COSMOS-UDG1 have relatively massive halos, more metals can be locked, and finally reproduce the metal-rich galaxies. Besides, the non-universal initial mass function (IMF) may provide the constrains (Ferré-Mateu et al., 2013). Interestingly, the gray squares in Figure 5 show the Sagittarius (Sr) dwarf spheroidal (dSph) galaxy, a satellite galaxy in the Milky way, exhibits a relatively high metallicity ([FeH]) despite stellar mass is comparable to those of UDGs (Chou et al., 2007; McConnachie, 2012), which is consistent with the results of COSMOS-UDG1.

COSMOS-UDG1 and COSMOS-UDG2 belong to the dwarf galaxies with large size, and their diffuse nature potentially may be governed by internal mechanisms. UDGs are the extended dwarf galaxies with high spin angular momentum (Amorisco and Loeb, 2016; Rong et al., 2017), and strong feedback from supernova or massive stars driven gas outflow, dark matter halo and stellar disks expansion, and reproduce low luminosity and extended galaxies (Di Cintio et al., 2017; Chan et al., 2018). Furthermore, some UDGs may be tidal disturbed dwarf galaxies and some present tidal feature associated with galaxy mergers (Merritt et al., 2016; Greco et al., 2018a). From the deep multiwavelength imaging, the three COSMOS galaxies we identified appear to be no tidal structures. The multiwavelength photometric data can help constrain the properties of these three galaxies, and we look forward to spatially resolving these diffuse galaxies in subsequent work to understand their formation mechanisms.

We summarize our results as follows:

  • (1) We conducted a search for a low-mass LSB galaxies (COSMOS-dw1) and two new UDGs (COSMOS-UDG1 and COSMOS-UDG2) within the central region of the COSMOS field, and examine their properties using the existing multiwavelength data. We present their UV-to-IR SEDs built through our careful PSF- and aperture-matched photometry. The spec- or photo- in COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 is 0.004, 0.130 and 0.049, respectively.

  • (2) SED fitting reveals that these three galaxies exhibit different physical properties. COSMOS-dw1 is a quenched low-mass galaxy with a stellar mass of . The stellar age and metallicity log (Z) of COSMOS-dw1 is Gyr and , respectively. COSMOS-UDG1 and COSMOS-UDG2 have similar stellar masses , yet COSMOS-UDG1 is younger and more metal-rich than COSMOS-UDG2 and COSMOS-dw1. COSMOS-UDG2 and COSMOS-dw1 exhibit comparable stellar metallicities, but COSMOS-UDG2 is older than COSMOS-dw1. When compared to cluster UDGs (e.g., Kadowaki et al., 2017; Gu et al., 2018; Ruiz-Lara et al., 2018; Buzzo et al., 2022), COSMOS-UDG1 shows younger age and higher metallicity, whereas COSMOS-UDG2 is younger and metal-poor. This hints that the relatively young ages of COSMOS-UDG1 and COSMOS-UDG2 may be associated with their low-density environment.

  • (3) Interestingly, COSMOS-dw1 contains atomic gas with an H mass of , and gas fraction is . This indicates that this galaxy may be in the initial stage of quenching. The estimated dynamical mass is about , implying that COSMOS-dw1 is dominated by dark matter .

  • (4) Despite the significant uncertainties in metallicity measurements, COSMOS-dw1 aligns with the MZR at the low mass end, while COSMOS-UDG1 and COSMOS-UDG2 broadly follow the MZR established by typical dwarf galaxies. This suggests that stellar mass may be a crucial factor in determining stellar metallicities.

Taken together, the detection of low-luminosity LSB galaxies and UDGs in the COSMOS field indicate that UDGs can indeed be found in random fields. These extreme LSB galaxies identified so far are just the tip of the iceberg. In the future, more unknown LSB galaxies and UDGs could be discovered through multiwavelength imaging facilitated by space- (e.g., Euclid, CSST and Roman) (e.g., Zhan, 2011; Montes et al., 2023; Euclid Collaboration et al., 2024) and ground-based (e.g., LSST and WFST) telescopes with a wide field-of-view capabilities (e.g., Robertson et al., 2017; Shi et al., 2018; Martin et al., 2022; Breivik et al., 2022; Wang et al., 2023). By combining these observations with spectroscopic analysis, the real natures of UDGs and LSB structures can be fully unveiled.

5 Appendix: The parameter measurements of three UDGs

Here, we have measured the structure parameters of COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2 using both 1D Sérsic and 2D Sérsic fitting methods. The structure properties obtained are summarized in Table 2. Figures 68 depict the 1D surface brightness profiles and 2D Sérsic fitting results for COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2, respectively. In the upper panels of Figures 7, 8, the blue and red points and curves represent the results from the F606W and F814W filters, respectively. The bottom panels of these figures show, from left to right, the original image, the model, and the residual image for each galaxy. The axial ratios (b/a) of these three diffuse galaxies are greater than 0.5, indicating that they exhibit an ellipsoidal shape. Their Sérsic indices suggest that they are similar to typical disk galaxies. From the deep imaging, we find that the three COSMOS galaxies do not exhibit tidal features.

TABLE 2

Sérsic 1D Sérsic 2D
COSMOS-dw1 COSMOS-UDG1 COSMOS-UDG2 COSMOS-dw1 COSMOS-UDG1 COSMOS-UDG2
R.A. (J2000.0) 10:00:30.066 10:00:37.857 10:00:23.792
Decl. (J2000.0) +02:08:58.880 +02:24:31.990 +02:22:05.660
(mag) 19.95 22.94 21.30 19.95 22.94 21.30
(mag) 19.72 22.82 21.11 19.72 22.82 21.11
- (mag) 0.23 0.12 0.19 0.23 0.12 0.19
(mag arcsec-2) 24.38 24.73 24.57 24.33 24.66 24.38
(mag arcsec-2) 24.27 24.33 24.22 24.14 24.35 24.16
() 3.91 1.03 2.50 3.67 1.22 2.54
Sérsic index (n) 0.55 0.64 0.85 0.53 0.86 0.91
axis ratio (b/a) 0.67 1.0 0.51

The structure properties of COSMOS-dw1, COSMOS-UDG1 and COSMOS-UDG2.

FIGURE 6

FIGURE 6

The 1D surface brightness profile (Upper panel) and 2D Sérsic fitting (Bottom panel) of COSMOS-dw1. The size of each stamp is .

FIGURE 7

FIGURE 7

The 1D surface brightness profile (Upper panel) and 2D Sérsic fitting (Bottom panel) of COSMOS-UDG1. The size of each stamp is .

FIGURE 8

FIGURE 8

The 1D surface brightness profile (Upper panel) and 2D Sérsic fitting (Bottom panel) of COSMOS-UDG2. The size of each stamp is .

Statements

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

Author contributions

DS: Methodology, Writing–original draft, Writing–review and editing, Funding acquisition, Visualization, Investigation, Software. XZ: Funding acquisition, Supervision, Writing–review and editing, Visualization. ZP: Writing–review and editing, Formal Analysis, Visualization. YL: Visualization, Writing–review and editing. HD: Visualization, Writing–review and editing. QH: Visualization, Writing–review and editing. XL: Visualization, Writing–review and editing. QW: Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work is supported by the National Key Research and Development Program of China (2023YFA1608100), Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (2024yjrc104), the National Science Foundation of China (12303015 and 12173088), and the National Science Foundation of Jiangsu Province (BK20231106).

Acknowledgments

We thank the referees for the valuable and helpful comments and suggestions, which improve our manuscript. We acknowledgment support from Anhui University of Science and Technology and China Manned Space Project.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

  • 1

    Amorisco N. C. Loeb A. (2016). Ultradiffuse galaxies: the high-spin tail of the abundant dwarf galaxy population. Ultradiffuse galaxies high-spin tail Abund. dwarf galaxy Popul.459, L51L55. 10.1093/mnrasl/slw055

  • 2

    Amorisco N. C. Monachesi A. Agnello A. White S. D. M. (2018). The globular cluster systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data, Mon. Not. R. Astron. Soc., 475, 42354251. 10.1093/mnras/sty116

  • 3

    Barbosa C. E. Zaritsky D. Donnerstein R. Zhang H. Dey A. Mendes de Oliveira C. et al (2020). One hundred SMUDGes in S-plus: ultra-diffuse galaxies flourish in the field, Astrophys. J. Suppl. Ser., 247, 46. 10.3847/1538-4365/ab7660

  • 4

    Baushev A. N. (2018). Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation. Galaxy collisions as a Mech. ultra diffuse galaxy (UDG) Form.60, 6973. 10.1016/j.newast.2017.10.008

  • 5

    Beasley M. A. Romanowsky A. J. Pota V. Navarro I. M. Martinez Delgado D. Neyer F. et al (2016). An overmassive dark halo around an ultra-diffuse galaxy in the virgo clusterAstrophys. J. Lett., 819, L20. 10.3847/2041-8205/819/2/L20

  • 6

    Beasley M. A. Trujillo I. (2016). Globular clusters indicate that ultra-diffuse galaxies are dwarfs, Astrophys. J., 830, 23. 10.3847/0004-637X/830/1/23

  • 7

    Bellazzini M. Belokurov V. Magrini L. Fraternali F. Testa V. Beccari G. et al (2017). Redshift, metallicity size two Ext. dwarf Irregul. galaxies a link between dwarf Irregulars ultra diffuse galaxies?467, 37513758. 10.1093/mnras/stx236

  • 8

    Bennet P. Sand D. J. Zaritsky D. Crnojević D. Spekkens K. Karunakaran A. (2018). Evidence for ultra-diffuse galaxy “formation” through galaxy interactions. “Formation” through Galaxy Interact.866, L11. 10.3847/2041-8213/aadedf

  • 9

    Bertin E. (2011). “Automated morphometry with SExtractor and PSFEx,”. . Editors EvansI. N.AccomazziA.MinkD. J.RotsA. H. (Astronomical Society of the Pacific Conference Series), 442, 435.

  • 10

    Bertin E. Arnouts S. (1996). SExtractor: software for source extraction, Astron. Astrophys. Suppl. Ser., 117, 393404. 10.1051/aas:1996164

  • 11

    Brammer G. B. van Dokkum P. G. Coppi P. (2008). Eazy: a fast, public photometric redshift code. ApJ686, 15031513. 10.1086/591786

  • 12

    Breivik K. Connolly A. J. Ford K. E. S. Jurić M. Mandelbaum R. Miller A. A. et al (2022). From data to software to science with the rubin observatory LSST. arXiv e-prints. 10.48550/arXiv.2208.02781

  • 13

    Bullock J. S. Boylan-Kolchin M. (2017). Small-scale challenges to the λcdm paradigm. Annu. Rev. Astron. Astrophys.55, 343387. 10.1146/annurev-astro-091916-055313

  • 14

    Burkert A. (2017). The geometry and origin of ultra-diffuse ghost galaxies. Galaxies838, 93. 10.3847/1538-4357/aa671c

  • 15

    Buttitta C. Iodice E. Doll G. Hartke J. Hilker M. Forbes D. A. et al (2025). “Looking into the faintEst WIth MUSE (LEWIS): exploring the nature of ultra-diffuse galaxies in the Hydra-I cluster II,” in Stellar kinematics and dynamical masses. arXiv e-prints , arXiv:2501.16190. 10.48550/arXiv.2501.16190

  • 16

    Buzzo M. L. Forbes D. A. Brodie J. P. Romanowsky A. J. Cluver M. E. Jarrett T. H. et al (2022). The stellar populations of quiescent ultra-diffuse galaxies from optical to mid-infrared spectral energy distribution fitting, Mon. Not. R. Astron. Soc., 517, 22312250. 10.1093/mnras/stac2442

  • 17

    Buzzo M. L. Forbes D. A. Jarrett T. H. Marleau F. R. Duc P.-A. Brodie J. P. et al (2024a). Constraining the stellar populations of ultra-diffuse galaxies in the MATLAS survey using spectral energy distribution fitting, Mon. Not. R. Astron. Soc., 529, 32103234. 10.1093/mnras/stae564

  • 18

    Buzzo M. L. Forbes D. A. Jarrett T. H. Marleau F. R. Duc P.-A. Brodie J. P. et al (2024b). The multiple classes of ultra-diffuse galaxies: can we tell them apart?Mon. Not. R. Astron. Soc.536, 25362557. 10.1093/mnras/stae2700

  • 19

    Calzetti D. Armus L. Bohlin R. C. Kinney A. L. Koornneef J. Storchi-Bergmann T. (2000). The dust content and opacity of actively star‐forming galaxies. Galaxies533, 682695. 10.1086/308692

  • 20

    Carleton T. Errani R. Cooper M. Kaplinghat M. Peñarrubia J. Guo Y. (2019). The formation of ultra-diffuse galaxies in cored dark matter haloes through tidal stripping and heating, Mon. Not. R. Astron. Soc., 485, 382395. 10.1093/mnras/stz383

  • 21

    Casey C. M. Chen C.-C. Cowie L. L. Barger A. J. Capak P. Ilbert O. et al (2013). Characterization of scuba-2 450m and 850m selected galaxies in the cosmos field. MNRAS436, 19191954. 10.1093/mnras/stt1673

  • 22

    Chabrier G. (2003). Galactic stellar and substellar initial mass function. Publ. Astronomical Soc. Pac.115, 763795. 10.1086/376392

  • 23

    Chan T. K. Kereš D. Wetzel A. Hopkins P. F. Faucher-Giguère C. A. El-Badry K. et al (2018). The origin of ultra diffuse galaxies: stellar feedback and quenching. Mon. Not. R. Astron. Soc.478, 906925. 10.1093/mnras/sty1153

  • 24

    Chilingarian I. V. Afanasiev A. V. Grishin K. A. Fabricant D. Moran S. (2019). Internal dynamics and stellar content of nine ultra-diffuse galaxies in the coma cluster prove their evolutionary link with dwarf early-type galaxies*. Galaxies884, 79. 10.3847/1538-4357/ab4205

  • 25

    Chou M.-Y. Majewski S. R. Cunha K. Smith V. V. Patterson R. J. Martínez-Delgado D. et al (2007). A 2MASS all‐sky view of the Sagittarius dwarf galaxy. V. Variation of the metallicity distribution function along the Sagittarius stream. V. Var. Metallicity Distribution Funct. along Sagittarius Stream670, 346362. 10.1086/522483

  • 26

    Conroy C. Gunn J. E. White M. (2009). The propagation of uncertainties in stellar population synthesis modeling. i. the relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. ApJ699, 486506. 10.1088/0004-637X/699/1/486

  • 27

    Di Cintio A. Brook C. B. Dutton A. A. Macciò A. V. Obreja A. Dekel A. (2017). NIHAO – XI. Formation of ultra-diffuse galaxies by outflows. Form. ultra-diffuse galaxies by outflows466, L1L6. 10.1093/mnrasl/slw210

  • 28

    Emsellem E. van der Burg R. F. J. Fensch J. Jeřábková T. Zanella A. Agnello A. et al (2019). The ultra-diffuse galaxy NGC 1052-DF2 with MUSE: I. Kinematics of the stellar body. Kinemat. stellar body625, A76. 10.1051/0004-6361/201834909

  • 29

    Euclid Collaboration Mellier Y. Acevedo Barroso J. A. Achúcarro A. Adamek J. et al (2024). Euclid. I. Overview of the Euclid mission. arXiv e-prints , arXiv:2405.13491. 10.48550/arXiv.2405.13491

  • 30

    Ferré-Mateu A. Alabi A. Forbes D. A. Romanowsky A. J. Brodie J. Pandya V. et al (2018). Origins of ultradiffuse galaxies in the Coma cluster – II. Constraints from their stellar populations. Constraints their stellar populations479, 48914906. 10.1093/mnras/sty1597

  • 31

    Ferré-Mateu A. Gannon J. S. Forbes D. A. Buzzo M. L. Romanowsky A. J. Brodie J. P. (2023). The star formation histories of quiescent ultra-diffuse galaxies and their dependence on environment and globular cluster richness, Mon. Not. R. Astron. Soc., 526, 47354754. 10.1093/mnras/stad3102

  • 32

    Ferré-Mateu A. Vazdekis A. de la Rosa I. G. (2013). The impact of a non-universal Initial Mass Function on the star formation histories of early-type galaxies. Mon. Not. R. Astron. Soc.431, 440454. 10.1093/mnras/stt193

  • 33

    Fielder C. Jones M. G. Sand D. J. Bennet P. Crnojević D. Karunakaran A. et al (2024). All puffed up: exploring ultra-diffuse galaxy origins through galaxy interactions, Astron. J., 168, 212. 10.3847/1538-3881/ad74f6

  • 34

    Forbes D. A. Buzzo M. L. Ferre-Mateu A. Romanowsky A. J. Gannon J. Brodie J. P. et al (2025). Mon. Not. R. Astron. Soc., 536, 12171225. 10.1093/mnras/stae2675

  • 35

    Foster L. M. Taylor J. E. Blakeslee J. P. (2024). Testing the surface brightness fluctuation method on dwarf galaxies in the COSMOS field, Mon. Not. R. Astron. Soc., 527, 16561673. 10.1093/mnras/stad3235

  • 36

    Gallazzi A. Charlot S. Brinchmann J. White S. D. M. Tremonti C. A. (2005). The ages and metallicities of galaxies in the local universe. Mon. Notices R. Astronomical Soc.362, 4158. 10.1111/j.1365-2966.2005.09321.x

  • 37

    Gannon J. S. Ferré-Mateu A. Forbes D. A. Brodie J. P. Buzzo M. L. Romanowsky A. J. (2024). A catalogue and analysis of ultra-diffuse galaxy spectroscopic properties. Mon. Notices R. Astronomical Soc.531, 18561869. 10.1093/mnras/stae1287

  • 38

    Gannon J. S. Forbes D. A. Romanowsky A. J. Ferré-Mateu A. Couch W. J. Brodie J. P. et al (2022). Ultra-diffuse galaxies in the perseus cluster: comparing galaxy properties with globular cluster system richness, Mon. Not. R. Astron. Soc., 510, 946958. 10.1093/mnras/stab3297

  • 39

    Geach J. E. Dunlop J. S. Halpern M. Smail I. van der Werf P. Alexander D. M. et al (2016). The scuba-2 cosmology legacy survey: 850 m maps, catalogues and number counts. MNRAS465, 17891806. 10.1093/mnras/stw2721

  • 40

    Greco J. P. Greene J. E. Price-Whelan A. M. Leauthaud A. Huang S. Goulding A. D. et al (2018a). Publ. Astron. Soc. Jpn. Nihon. Tenmon. Gakkai., 70, S19. 10.1093/pasj/psx051

  • 41

    Greco J. P. Greene J. E. Strauss M. A. Macarthur L. A. Flowers X. Goulding A. D. et al (2018b). Illuminating low surface brightness galaxies with the hyper suprime-cam survey. Survey857, 104. 10.3847/1538-4357/aab842

  • 42

    Gu M. Conroy C. Law D. van Dokkum P. Yan R. Wake D. et al (2018). Low metallicities and old ages for three ultra-diffuse galaxies in the coma cluster, Astrophys. J., 859, 37. 10.3847/1538-4357/aabbae

  • 43

    Heywood I. Ponomareva A. A. Maddox N. Jarvis M. J. Frank B. S. Adams E. A. K. et al (2024). Mightee-hi: deep spectral line observations of the cosmos field. Mon. Notices R. Astronomical Soc.534, 7696. 10.1093/mnras/stae2081

  • 44

    Impey C. Bothun G. (1997). Low surface brightness. Galaxies35, 267307. 10.1146/annurev.astro.35.1.267

  • 45

    Iodice E. Cantiello M. Hilker M. Rejkuba M. Arnaboldi M. Spavone M. et al (2020). The first detection of ultra-diffuse galaxies in the Hydra I cluster from the VEGAS survey. first Detect. ultra-diffuse galaxies Hydra I Clust. VEGAS Surv.642, A48. 10.1051/0004-6361/202038523

  • 46

    Iodice E. Hilker M. Doll G. Mirabile M. Buttitta C. Hartke J. et al (2023). Looking into the faintEst WIth MUSE (LEWIS): exploring the nature of ultra-diffuse galaxies in the Hydra-I cluster. I. Project description and preliminary results. 679, A69. 10.1051/0004-6361/202347129

  • 47

    Janssens S. Abraham R. Brodie J. Forbes D. Romanowsky A. J. van Dokkum P. (2017). Ultra-diffuse and ultra-compact galaxies in the frontier fields cluster abell 2744, Astrophys. J. Lett., 839, L17. 10.3847/2041-8213/aa667d

  • 48

    Janssens S. R. Abraham R. Brodie J. Forbes D. A. Romanowsky A. J. (2019). The distribution of ultra-diffuse and ultra-compact galaxies in the frontier fields, Astrophys. J., 887, 92. 10.3847/1538-4357/ab536c

  • 49

    Jones M. G. Verdes-Montenegro L. Moldon J. Damas Segovia A. Borthakur S. Luna S. et al (2023). Disturb. diffuse, or just missing? A Glob. study H I content Hickson compact groups670, A21. 10.1051/0004-6361/202244622

  • 50

    Kadowaki J. Zaritsky D. Donnerstein R. L. (2017). Spectroscopy of ultra-diffuse galaxies in the coma cluster, Astrophys. J. Lett., 838, L21. 10.3847/2041-8213/aa653d

  • 51

    Karunakaran A. Motiwala K. Spekkens K. Zaritsky D. Donnerstein R. L. Dey A. (2024). Systematically measuring ultradiffuse galaxies. VII. The H i survey overview. VII. H I Surv. Overv.975, 91. 10.3847/1538-4357/ad77cf

  • 52

    Karunakaran A. Spekkens K. Zaritsky D. Donnerstein R. L. Kadowaki J. Dey A. (2020). Systematically measuring ultradiffuse galaxies in H i: results from the pilot survey, Astrophys. J., 902, 39. 10.3847/1538-4357/abb464

  • 53

    Khim D. J. Zaritsky D. Lambert M. Donnerstein R. (2024). Properties of nuclear star clusters in low surface brightness galaxies. Galaxies168, 45. 10.3847/1538-3881/ad4ed3

  • 54

    Kirby E. N. Cohen J. G. Guhathakurta P. Cheng L. Bullock J. S. Gallazzi A. (2013). The universal stellar mass-stellar metallicity relation for dwarf. Galaxies779, 102. 10.1088/0004-637X/779/2/102

  • 55

    Koda J. Yagi M. Yamanoi H. Komiyama Y. (2015). Astrophys. J., 807, L2. 10.1088/2041-8205/807/1/L2

  • 56

    Kravtsov A. (2024). On the dark matter content of ultra-diffuse galaxies. Open J. Astrophysics7, 117. 10.33232/001c.127487

  • 57

    Laigle C. McCracken H. J. Ilbert O. Hsieh B. C. Davidzon I. Capak P. et al (2016). The cosmos2015 catalog: exploring the 1 < z < 6 universe with half a million galaxies, Astrophys. J. Suppl. Ser., 224, 24. 10.3847/0067-0049/224/2/24

  • 58

    La Marca A. Iodice E. Cantiello M. Forbes D. A. Rejkuba M. Hilker M. et al (2022a). Galaxy populations in the Hydra I cluster from the VEGAS survey. II. ultra-diffuse galaxy Popul.665, A105. 10.1051/0004-6361/202142367

  • 59

    La Marca A. Peletier R. Iodice E. Paolillo M. Choque Challapa N. Venhola A. et al (2022b). Galaxy populations in the Hydra I cluster from the VEGAS survey: I. Optical properties of a large sample of dwarf galaxies. Opt. Prop. a large sample dwarf galaxies659, A92. 10.1051/0004-6361/202141901

  • 60

    Lambert M. Khim D. J. Zaritsky D. Donnerstein R. (2024). Systematically measuring ultra-diffuse galaxies (SMUDGes). VI. Nuclear star clusters. Vi. Nucl. Star. Clust.167, 61. 10.3847/1538-3881/ad0f25

  • 61

    Lee J. H. Kang J. Lee M. G. Jang I. S. (2020). The nature of ultra-diffuse galaxies in distant massive galaxy clusters: a370 in the hubble frontier fields, Astrophys. J., 894, 75. 10.3847/1538-4357/ab8632

  • 62

    Lee M. G. Kang J. Lee J. H. Jang I. S. (2017). Detection of a large population of ultradiffuse galaxies in massive galaxy clusters: abell S1063 and abell 2744, Astrophys. J., 844, 157. 10.3847/1538-4357/aa78fb

  • 63

    Leisman L. Haynes M. P. Janowiecki S. Hallenbeck G. Józsa G. Giovanelli R. et al (2017). (Almost) dark galaxies in the ALFALFA survey: isolated H i-bearing ultra-diffuse galaxies. Galaxies842, 133. 10.3847/1538-4357/aa7575

  • 64

    Leja J. Johnson B. D. Conroy C. van Dokkum P. Speagle J. S. Brammer G. et al (2019). An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Survey877, 140. 10.3847/1538-4357/ab1d5a

  • 65

    Leja J. Johnson B. D. Conroy C. van Dokkum P. G. Byler N. (2017). Deriving physical properties from broadband photometry with prospector: description of the model and a demonstration of its accuracy using 129 galaxies in the local universe, Astrophys. J., 837, 170. 10.3847/1538-4357/aa5ffe

  • 66

    Levy L. Rose J. A. van Gorkom J. H. Chaboyer B. (2007). The effect of cluster environment on galaxy evolution in the pegasus I cluster, Astron. J., 133, 11041124. 10.1086/510723

  • 67

    Lilly S. J. Le Fèvre O. Renzini A. Zamorani G. Scodeggio M. Contini T. et al (2007). zCOSMOS: a large VLT/VIMOS redshift survey covering 0 <z< 3 in the COSMOS field, Astrophys. J. Suppl. Ser., 172, 7085. 10.1086/516589

  • 68

    Lim S. Peng E. W. Côté P. Sales L. V. den Brok M. Blakeslee J. P. et al (2018). The globular cluster systems of ultra-diffuse galaxies in the coma cluster, Astrophys. J., 862, 82. 10.3847/1538-4357/aacb81

  • 69

    Liu Y. Peng E. W. Blakeslee J. Côté P. Ferrarese L. Jordán A. et al (2016). Evidence for the rapid formation of low-mass early-type galaxies in dense. Environments818, 179. 10.3847/0004-637X/818/2/179

  • 70

    Ma X. Hopkins P. F. Faucher-Giguère C.-A. Zolman N. Muratov A. L. Kereš D. et al (2016). The origin and evolution of the galaxy mass–metallicity relation, Mon. Not. R. Astron. Soc., 456, 21402156. 10.1093/mnras/stv2659

  • 71

    Marleau F. R. Duc P.-A. Poulain M. Müller O. Lim S. Durrell P. R. et al (2024). Dwarf galaxies in the MATLAS Survey: hubble Space Telescope observations of the globular cluster systems of 74 ultra-diffuse galaxies. Dwarf galaxies MATLAS Surv. Hubble Space Telesc. observations Globul. Clust. Syst. 74 ultra-diffuse galaxies690, A339. 10.1051/0004-6361/202449617

  • 72

    Martin G. Bazkiaei A. E. Spavone M. Iodice E. Mihos J. C. Montes M. et al (2022). Preparing for low surface brightness science with the Vera C. Rubin Observatory: characterization of tidal features from mock images. Rubin Observatory Charact. tidal Featur. mock images513, 14591487. 10.1093/mnras/stac1003

  • 73

    Martínez-Delgado D. Läsker R. Sharina M. Toloba E. Fliri J. Beaton R. et al (2016). Astron. J., 151, 96. 10.3847/0004-6256/151/4/96

  • 74

    McConnachie A. W. (2012). Astron. J., 144, 4. 10.1088/0004-6256/144/1/4

  • 75

    McCracken H. J. Capak P. Salvato M. Aussel H. Thompson D. Daddi E. et al (2010). The COSMOS-WIRCam NEAR-INFRARED imaging survey. I.BzK-SELECTED passive and STAR-FORMING galaxy candidates ATz- 1.4. BzK-Selected Passive Star-Forming Galaxy Candidates A. T. z gsim 1.4708, 202217. 10.1088/0004-637X/708/1/202

  • 76

    McCracken H. J. Milvang-Jensen B. Dunlop J. Franx M. Fynbo J. P. U. Le Fèvre O. et al (2012). UltraVISTA: a new ultra-deep near-infrared survey in COSMOS. UltraVISTA a new ultra-deep near-infrared Surv. COSMOS544, A156. 10.1051/0004-6361/201219507

  • 77

    Merritt A. van Dokkum P. Danieli S. Abraham R. Zhang J. Karachentsev I. D. et al (2016). The dragonfly nearby galaxies survey. II. Ultra-Diffuse Galaxies near Elliptical Galaxy NGC833, 168. 10.3847/1538-4357/833/2/168

  • 78

    Michałowski M. J. Dunlop J. S. Koprowski M. P. Cirasuolo M. Geach J. E. Bowler R. A. A. et al (2017). The scuba-2 cosmology legacy survey: the nature of bright submm galaxies from 2 deg2 of 850-m imaging. MNRAS469, 492515. 10.1093/mnras/stx861

  • 79

    Mihos J. C. Durrell P. R. Ferrarese L. Feldmeier J. J. Côté P. Peng E. W. et al (2015). Astrophys. J., 809, L21. 10.1088/2041-8205/809/2/L21

  • 80

    Mihos J. C. Harding P. Feldmeier J. J. Rudick C. Janowiecki S. Morrison H. et al (2017). The burrell schmidt deep Virgo survey: tidal debris, galaxy halos, and diffuse intracluster light in the Virgo cluster. Astrophys. J.834, 16. 10.3847/1538-4357/834/1/16

  • 81

    Momcheva I. G. Brammer G. B. van Dokkum P. G. Skelton R. E. Whitaker K. E. Nelson E. J. et al (2016). The 3d-hst survey: hubble space telescope wfc3/g141 grism spectra, redshifts, and emission line measurements for -100,000 galaxies. 000 Galaxies225, 27. 10.3847/0067-0049/225/2/27

  • 82

    Montes M. Annibali F. Bellazzini M. Borlaff A. S. Brough S. Buitrago F. et al (2023). Optimizing roman’s high latitude wide area survey for low surface brightness astronomy. 10.48550/arXiv.2306.09414

  • 83

    Montes M. Infante-Sainz R. Madrigal-Aguado A. Román J. Monelli M. Borlaff A. S. et al (2020). The galaxy “missing dark matter” NGC 1052-DF4 is undergoing tidal disruption. NGC 1052-DF4 is Undergoing Tidal Disrupt.904, 114. 10.3847/1538-4357/abc340

  • 84

    Montes M. Trujillo I. Karunakaran A. Infante-Sainz R. Spekkens K. Golini G. et al (2024). An almost dark galaxy with the mass of the Small Magellanic Cloud. 681, A15. 10.1051/0004-6361/202347667

  • 85

    Müller O. Jerjen H. Binggeli B. (2018). The Leo-I group: new dwarf galaxy and ultra diffuse galaxy candidates. Leo-I group new dwarf galaxy ultra diffuse galaxy candidates615, A105. 10.1051/0004-6361/201832897

  • 86

    Muñoz R. P. Eigenthaler P. Puzia T. H. Taylor M. A. Ordenes-Briceño Y. Alamo-Martínez K. et al (2015). Astrophys. J., 813, L15. 10.1088/2041-8205/813/1/L15

  • 87

    Ogiya G. (2018). Tidal stripping as a possible origin of the ultra diffuse galaxy lacking dark matter. Tidal stripping as a possible Orig. ultra diffuse galaxy lacking dark matter480, L106L110. 10.1093/mnrasl/sly138

  • 88

    Ordenes-Briceño Y. Taylor M. A. Puzia T. H. Muñoz R. P. Eigenthaler P. Georgiev I. Y. et al (2016). Faint dwarf galaxies in hickson compact group 90, Mon. Not. R. Astron. Soc., 463, 12841290. 10.1093/mnras/stw2066

  • 89

    Pan H. Jarvis M. J. Zhu M. Ma Y.-Z. Santos M. G. Ponomareva A. A. et al (2024). Deep extragalactic H i survey of the COSMOS field with FAST, Mon. Not. R. Astron. Soc., 534, 202214. 10.1093/mnras/stae2054

  • 90

    Pandya V. Romanowsky A. J. Laine S. Brodie J. P. Johnson B. D. Glaccum W. et al (2018). The stellar populations of two ultra-diffuse galaxies from optical and near-infrared photometry, Astrophys. J., 858, 29. 10.3847/1538-4357/aab498

  • 91

    Papastergis E. Adams E. A. K. Romanowsky A. J. (2017). HI content Isol. ultra-diffuse galaxies A sign multiple Form. mechanisms?601, L10. 10.1051/0004-6361/201730795

  • 92

    Peng C. Y. Ho L. C. Impey C. D. Rix H.-W. (2002). Detailed structural decomposition of galaxy images, Astron. J., 124, 266293. 10.1086/340952

  • 93

    Peng C. Y. Ho L. C. Impey C. D. Rix H.-W. (2010). Detailed decomposition of galaxy images. II. Beyond Axisymmetric Models139, 20972129. 10.1088/0004-6256/139/6/2097

  • 94

    Peng E. W. Lim S. (2016). A rich globular cluster system in dragonfly 17: are ultra-diffuse galaxies pure stellar halos?*Astrophys. J. Lett., 822, L31. 10.3847/2041-8205/822/2/L31

  • 95

    Piña P. E. M. Fraternali F. Adams E. A. K. Marasco A. Oosterloo T. Oman K. A. et al (2019). Off the baryonic tully–Fisher relation: a population of baryon-dominated ultra-diffuse galaxies. Astrophysical J. Lett.883, L33. 10.3847/2041-8213/ab40c7

  • 96

    Polzin A. van Dokkum P. Danieli S. Greco J. P. Romanowsky A. J. (2021). A recently quenched isolated dwarf galaxy outside of the local group environment, Astrophys. J. Lett., 914, L23. 10.3847/2041-8213/ac024f

  • 97

    Prole D. J. van der Burg R. F. J. Hilker M. Davies J. I. (2019). Observational properties of ultra-diffuse galaxies in low-density environments: field UDGs are predominantly blue and star forming, 488, 21432157. 10.1093/mnras/stz1843

  • 98

    Robertson B. E. Banerji M. Cooper M. C. Davies R. Driver S. P. Ferguson A. M. N. et al (2017). Large synoptic survey telescope galaxies science roadmap. arXiv e-prints. arXiv:1708.01617. 10.48550/arXiv.1708.01617

  • 99

    Román J. Beasley M. A. Ruiz-Lara T. Valls-Gabaud D. (2019). Discovery of a red ultra-diffuse galaxy in a nearby void based on its globular cluster luminosity function, Mon. Not. R. Astron. Soc., 486, 823835. 10.1093/mnras/stz835

  • 100

    Román J. Trujillo I. (2017a). Spatial distribution of ultra-diffuse galaxies within large-scale structures. scale Struct.468, 703716. 10.1093/mnras/stx438

  • 101

    Román J. Trujillo I. (2017b). Ultra-diffuse galaxies outside clusters: clues to their formation and evolution, Mon. Not. R. Astron. Soc., 468, 40394047. 10.1093/mnras/stx694

  • 102

    Rong Y. Guo Q. Gao L. Liao S. Xie L. Puzia T. H. et al (2017). A Universe of ultradiffuse galaxies: theoretical predictions from ΛCDM simulations, Mon. Not. R. Astron. Soc., 470, 42314240. 10.1093/mnras/stx1440

  • 103

    Rong Y. Zhu K. Johnston E. J. Zhang H.-X. Cao T. Puzia T. H. et al (2020). Lessons on star-forming ultra-diffuse galaxies from the stacked spectra of the sloan digital sky survey. Survey899, L12. 10.3847/2041-8213/aba8aa

  • 104

    Ruiz-Lara T. Beasley M. A. Falcón-Barroso J. Román J. Pinna F. Brook C. et al (2018). Spectroscopic characterization of the stellar content of ultra-diffuse galaxies, Mon. Not. R. Astron. Soc., 478, 20342045. 10.1093/mnras/sty1112

  • 105

    Sales L. V. Navarro J. F. Peñafiel L. Peng E. W. Lim S. Hernquist L. (2020). The formation of ultradiffuse galaxies in clusters, Mon. Not. R. Astron. Soc., 494, 18481858. 10.1093/mnras/staa854

  • 106

    Sanders D. B. Salvato M. Aussel H. Ilbert O. Scoville N. Surace J. A. et al (2007). S‐COSMOS: the spitzer legacy survey of the hubble space telescope ACS 2 deg 2 COSMOS field I: survey strategy and first analysis, Astrophys. J. Suppl. Ser., 172, 8698. 10.1086/517885

  • 107

    Schinnerer E. Smolčić V. Carilli C. L. Bondi M. Ciliegi P. Jahnke K. et al (2007). The vla-cosmos survey. ii. source catalog of the large project. ApJS172, 4669. 10.1086/516587

  • 108

    Shen Z. Bowman W. P. van Dokkum P. Abraham R. G. Pasha I. Keim M. A. et al (2024). First results from the dragonfly ultrawide survey: the largest 11 quenched diffuse dwarf galaxies in 3100 deg2 with spectroscopic confirmation, Astrophys. J., 976, 75. 10.3847/1538-4357/ad84e2

  • 109

    Shen Z. Danieli S. van Dokkum P. Abraham R. Brodie J. P. Conroy C. et al (2021). A tip of the red giant branch distance of 22.1 ± 1.2 Mpc to the dark matter deficient galaxy NGC 1052–DF2 from 40 orbits of hubble space telescope imaging, Astrophys. J. Lett., 914, L12. 10.3847/2041-8213/ac0335

  • 110

    Shi D. D. Zheng X. Z. Zhao H. B. Lou Z. Wang H. R. Qian Y. et al (2018). A study of detector response and filter optimization for the wide field survey telescope. Acta Astron. Sin.59, 22. 10.15940/j.cnki.0001-5245.2018.03.001

  • 111

    Shi D. D. Zheng X. Z. Zhao H. B. Pan Z. Z. Li B. Zou H. et al (2017). Deep imaging of the HCG 95 field. I. Ultra-Diffuse galaxies. I. Ultra-diffuse Galaxies846, 26. 10.3847/1538-4357/aa8327

  • 112

    Smith Castelli A. V. Faifer F. R. Escudero C. G. (2016). Stellar systems in the direction of the Hickson Compact Group 44: I. Low surface brightness galaxies. Low. Surf. Bright. galaxies596, A23. 10.1051/0004-6361/201628969

  • 113

    Somalwar J. J. Greene J. E. Greco J. P. Huang S. Beaton R. L. Goulding A. D. et al (2020). Hyper suprime-cam low surface brightness galaxies. II. A hubble space telescope study of the globular cluster systems of ultradiffuse galaxies in groups*. A Hubble Space Telesc. Study Globul. Clust. Syst. Ultradiffuse Galaxies Groups902, 45. 10.3847/1538-4357/abb1b2

  • 114

    Spekkens K. Karunakaran A. (2018). Atomic gas in blue ultra diffuse galaxies around hickson compact groups. Astrophys. J.855, 28. 10.3847/1538-4357/aa94be

  • 115

    Taniguchi Y. Scoville N. Murayama T. Sanders D. B. Mobasher B. Aussel H. et al (2007). The cosmic evolution survey (COSMOS): Subaru observations of the HST cosmos field. Astrophys. J. Suppl. Ser.172, 928. 10.1086/516596

  • 116

    Toloba E. Lim S. Peng E. Sales L. V. Guhathakurta P. Mihos J. C. et al (2018). Dark matter in ultra-diffuse galaxies in the Virgo cluster from their globular cluster populations. Astrophys. J. Lett.856, L31. 10.3847/2041-8213/aab603

  • 117

    Tremmel M. Wright A. C. Brooks A. M. Munshi F. Nagai D. Quinn T. R. (2020). The formation of ultradiffuse galaxies in the RomulusC galaxy cluster simulation. Mon. Not. R. Astron. Soc.497, 27862810. 10.1093/mnras/staa2015

  • 118

    Trujillo I. Beasley M. A. Borlaff A. Carrasco E. R. Di Cintio A. Filho M. et al (2019). A distance of 13 Mpc resolves the claimed anomalies of the galaxy lacking dark matter. matter486, 11921219. 10.1093/mnras/stz771

  • 119

    Trujillo I. Roman J. Filho M. Sánchez Almeida J. (2017). The nearest ultra diffuse galaxy: UGC 2162. Astrophys. J.836, 191. 10.3847/1538-4357/aa5cbb

  • 120

    van der Burg R. F. J. Hoekstra H. Muzzin A. Sifón C. Viola M. Bremer M. N. et al (2017). The abundance of ultra-diffuse galaxies from groups to clusters. UDGs are Relat. more common more massive haloes607, A79. 10.1051/0004-6361/201731335

  • 121

    van der Burg R. F. J. Muzzin A. Hoekstra H. (2016). The abundance and spatial distribution of ultra-diffuse galaxies in nearby galaxy clusters. 590, A20. 10.1051/0004-6361/201628222

  • 122

    van Dokkum P. Abraham R. Brodie J. Conroy C. Danieli S. Merritt A. et al (2016). A high stellar velocity dispersion and -100 globular clusters for the ultra-diffuse galaxy dragonfly. Astrophys. J. Lett.44, L6. 10.3847/2041-8205/828/1/L6

  • 123

    van Dokkum P. Abraham R. Romanowsky A. J. Brodie J. Conroy C. Danieli S. et al (2017). Extensive globular cluster systems associated with ultra diffuse galaxies in the coma cluster. Astrophys. J. Lett.844, L11. 10.3847/2041-8213/aa7ca2

  • 124

    van Dokkum P. Brammer G. Momcheva I. Skelton R. E. Whitaker K. E. (2013). 3D-HST data release v3.0: extremely deep spectra in the UDF and WFC3 mosaics in the 3D-HST/CANDELS fields. arXiv e-prints , arXiv:1305.2140. 10.48550/arXiv.1305.2140

  • 125

    van Dokkum P. Danieli S. Abraham R. Conroy C. Romanowsky A. J. (2019). A second galaxy missing dark matter in the NGC 1052 group. Astrophys. J. Lett.874, L5. 10.3847/2041-8213/ab0d92

  • 126

    van Dokkum P. Danieli S. Cohen Y. Merritt A. Romanowsky A. J. Abraham R. et al (2018a). A galaxy lacking dark matter. , 555, 629632. 10.1038/nature25767

  • 127

    van Dokkum P. Danieli S. Cohen Y. Romanowsky A. J. Conroy C. (2018b). The distance of the dark matter deficient galaxy NGC 1052-DF2. Astrophys. J. Lett.864, L18. 10.3847/2041-8213/aada4d

  • 128

    van Dokkum P. Shen Z. Keim M. A. Trujillo-Gomez S. Danieli S. Dutta Chowdhury D. et al (2022). A trail of dark-matter-free galaxies from a bullet-dwarf collision, 605, 435439. 10.1038/s41586-022-04665-6

  • 129

    van Dokkum P. G. Abraham R. Merritt A. Zhang J. Geha M. Conroy C. (2015a). “Forty-seven Milky way-sized,”. Astrophys. J.798. 10.1088/2041-8205/798/2/L45

  • 130

    van Dokkum P. G. Romanowsky A. J. Abraham R. Brodie J. P. Conroy C. Geha M. et al (2015b). Spectroscopic confirmation of the existence of large. Diffuse Galaxies Coma Clust.804, L26. 10.1088/2041-8205/804/1/L26

  • 131

    Venhola A. Peletier R. F. Salo H. Laurikainen E. Janz J. Haigh C. et al (2022). The fornax deep survey with the VST. XII. Low Surf. Bright. dwarf galaxies Fornax Clust.662, A43. 10.1051/0004-6361/202141756

  • 132

    Villaume A. Romanowsky A. J. Brodie J. van Dokkum P. Conroy C. Forbes D. A. et al (2022). Spatially resolved stellar spectroscopy of the ultra-diffuse galaxy dragonfly 44. iii. evidence for an unexpected star formation history under conventional galaxy evolution processes. Astrophysical J.924, 32. 10.3847/1538-4357/ac341e

  • 133

    Wang T. Liu G. Cai Z. Geng J. Fang M. He H. et al (2023). Science with the 2.5-meter wide field survey telescope (WFST). Sci. China Phys. Mech. Astronomy66, 109512. 10.1007/s11433-023-2197-5

  • 134

    Wittmann C. Lisker T. Ambachew Tilahun L. Grebel E. K. Conselice C. J. Penny S. et al (2017). A population of faint low surface brightness galaxies in the Perseus cluster core. Mon. Not. R. Astron. Soc.470, 15121525. 10.1093/mnras/stx1229

  • 135

    Yagi M. Koda J. Komiyama Y. Yamanoi H. (2016). Catalog of ultra-diffuse galaxies in the coma clusters from Subaru imaging data. Astrophys. J. Suppl. Ser.225, 11. 10.3847/0067-0049/225/1/11

  • 136

    Zahid H. J. Kudritzki R.-P. Conroy C. Andrews B. Ho I. T. (2017). Stellar absorption line analysis of local star-forming galaxies: the relation between stellar mass, metallicity. Dust Attenuation, Star Form. Rate847, 18. 10.3847/1538-4357/aa88ae

  • 137

    Zamojski M. A. Schiminovich D. Rich R. M. Mobasher B. Koekemoer A. M. Capak P. et al (2007). Deep GALEX imaging of the COSMOS HST field: a first look at the morphology of z - 0.7 star‐forming galaxies. 7 Star-forming Galaxies172, 468493. 10.1086/516593

  • 138

    Zaritsky D. Donnerstein R. Dey A. Karunakaran A. Kadowaki J. Khim D. J. et al (2023). Systematically measuring ultra-diffuse galaxies (SMUDGes). V. The complete SMUDGes catalog and the nature of ultradiffuse galaxies. V. Complete SMUDGes Catalog Nat. Ultradiffuse Galaxies267, 27. 10.3847/1538-4365/acdd71

  • 139

    Zhan H. (2011). Consideration for a large-scale multi-color imaging and slitless spectroscopy survey on the Chinese space station and its application in dark energy research. Sci. Sinica Phys. Mech. and Astronomica41, 14411447. 10.1360/132011-961

Summary

Keywords

galaxy formation, galaxy evolution, COSMOS field, ultra-diffuse galaxies, dwarf galaxies, extragalactic astronomy

Citation

Shi DD, Zheng XZ, Pan Z, Luo Y, Deng H, Hua Q, Luo X and Wu Q (2025) Searching for nearby diffuse dwarf galaxies in the COSMOS field. Front. Astron. Space Sci. 12:1560380. doi: 10.3389/fspas.2025.1560380

Received

14 January 2025

Accepted

12 February 2025

Published

05 March 2025

Volume

12 - 2025

Edited by

Mauro D’Onofrio, University of Padua, Italy

Reviewed by

Daniela Bettoni, Osservatorio Astronomico di Padova (INAF), Italy

Chiara Buttitta, Astronomical Observatory of Capodimonte (INAF), Italy

Updates

Copyright

*Correspondence: Dong Dong Shi, ; Xian Zhong Zheng,

Disclaimer

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Outline

Figures

Cite article

Copy to clipboard


Export citation file


Share article

Article metrics