Your new experience awaits. Try the new design now and help us make it even better

MINI REVIEW article

Front. Astron. Space Sci., 07 January 2026

Sec. Extragalactic Astronomy

Volume 12 - 2025 | https://doi.org/10.3389/fspas.2025.1708372

This article is part of the Research TopicTime Domain Astronomy: Insights into Variable and Transient SourcesView all 5 articles

Hydrogen-rich to stripped-envelope: observational continuity and biases in CCSNe

  • 1Department of Astronomy, Oskar Klein Center, Stockholm University, Stockholm, Sweden
  • 2Astrophysics Division, National Centre for Nuclear Research, Warsaw, Poland

Although historically classified into discrete subclasses, there is growing evidence that indicates that core-collapse supernovae (CCSNe) categories often overlap, reflecting continuous variations in progenitor structure, mass-loss history, and circumstellar environments rather than strictly distinct channels. In this review, we explore the proposed continua that link hydrogen-rich Type II SNe to stripped-envelope explosions (IIbIbIc), and that extend further into interaction-dominated and superluminous events. We discuss the physical processes—stellar winds, binary interaction, eruptive outbursts, and circumstellar interaction—that may produce graded outcomes across classes, while highlighting where observational evidence supports or challenges smooth transitions. We propose that CCSNe are better viewed as a multidimensional continuum of explosion outcomes, where traditional subclasses act as reference points rather than strict boundaries. Future progress will rely on large, homogeneous datasets and advanced modeling to disentangle true evolutionary sequences from apparent overlaps, ultimately connecting progenitor pathways to the observed diversity of explosions.

1 Introduction

Core-collapse supernovae (CCSNe) mark the terminal explosions of massive stars with zero-age main-sequence masses 8 M in the case of single-star evolution, and potentially as low as 5 M when in a binary system (Zapartas et al., 2021; Gilkis et al., 2025), whose nuclear burning stages ultimately lead to the formation of an inert iron core. Once the Chandrasekhar limit is exceeded, the core collapses catastrophically, driving densities to nuclear values and forming a proto-neutron star or, in extreme cases, a black hole. The release of gravitational binding energy (1053 erg) emerges predominantly as neutrinos, a small fraction of which re-energizes the stalled shock through neutrino heating, aided in many cases by hydrodynamic instabilities such as convection and the standing accretion shock instability (SASI, Bethe, 1990; Janka, 2012; Burrows and Vartanyan, 2021). While the neutrino-driven mechanism is widely accepted as the canonical pathway, rotation, magnetic fields, and fallback accretion may provide additional energy sources, particularly in highly asymmetric explosions or central-engine-powered transients.

The taxonomy of CCSNe originated as an empirical scheme based on observed spectra and light-curve morphology. Early work by Minkowski (1941) distinguished different “Types” of events based on spectroscopic similarities. The largest number of events was classified as “Type I”, while a fewer number of objects showing hydrogen (H) features was classified as “Type II”. Minkowski (1941) also proposed a potential third Type (Type III) composed by a single event that showed sufficiently different spectroscopic features. Later on, light curve characterization and further spectroscopic analysis (e.g., Kulikovskii, 1944; Zwicky, 1964) led to the designation of a fourth and fifth Type (Type IV and V). Zwicky (1964) noticed that only the light curves of the Type I events were reasonably consistent while other types had a variety of light curves differences, attributed to asymmetries, the presence of circumstellar material (CSM) or background contamination. Of all the types, only Types I and II survived. Over subsequent decades, this simple division blossomed into a wide family of subclasses—II-P/L, IIn, IIb, Ib, Ic, broad-lined Ic (Ic-BL), and, more recently, interaction-dominated Ibn and Icn—that reflect diverse photometric and spectroscopic features, hinting towards a diversity on their progenitors, circumstellar environments, and explosion conditions. As larger samples became available and theoretical modeling matured, it became increasingly clear that these subclass “boxes” are porous: many objects bridge categories, and distributions of luminosity, color, velocity, and spectral line strengths overlap substantially. In this sense, CCSNe could be understood as occupying a continuum of outcomes, with apparent subclasses emerging from combinations of envelope mass, chemical composition, pre-supernova (pre-SN) mass loss, and ejecta–CSM coupling, rather than from discrete progenitor channels alone (e.g., Anderson et al., 2014; Lyman et al., 2016; Prentice et al., 2019; Dessart et al., 2020).

Massive-star evolution proceeds along multiple pathways in which the residual hydrogen (H) and helium (He) at core collapse depend sensitively on metallicity-dependent winds, eruptive or binary-driven mass loss, rotation, and mixing (Laplace et al., 2021; Gilkis et al., 2025). Binary interaction is especially influential: Roche-lobe overflow and common-envelope phases efficiently peel away outer layers, yielding a spectrum of final envelope masses from H-rich II, to He-rich Ib, to He-poor Ic (e.g., Liu et al., 2016; Taddia et al., 2018; Prentice et al., 2019). The mass stripped prior to explosion sets the outer density/composition profile and, together with 56Ni mass and explosion energy, governs diffusion timescales and peak luminosity. Meanwhile, the density, composition, and geometry of any CSM laid down by winds or eruptions modulate the emergent observables via shock interaction, adding power and imprinting narrow/intermediate-width emission lines in spectra (flash features, IIn, Ibn, Icn; Gal-Yam et al., 2014; Khazov et al., 2016; Hosseinzadeh et al., 2017; Fraser, 2020; Pellegrino et al., 2022). Observationally, He identification in Ib depends on non-thermal excitation, which can blur the Ib/Ic boundary (Hachinger et al., 2012; Dessart et al., 2020); similarly, IIb events demonstrate how even a thin residual H envelope dramatically alters early spectra and light curves, bridging Type II and stripped-envelope (SE) SNe. Across this diversity, typical explosion energies cluster around 1051 erg, ejected masses range from a few to several tens of solar masses, and the synthesized 56Ni masses span 103 to 0.5 M (Hamuy et al., 2003; Pejcha and Prieto, 2015; Anderson, 2019). Their light curves and spectra encode information about progenitor structure, mass-loss history, and circumstellar environments, revealing the central role of stellar winds and binary interactions in shaping the explosion outcomes. In this review we consider all this and discuss the proposed continuity that links H-rich Type II SN to the SE-SN sequence (IIbIbIc).

2 Classes

As mentioned above, the presence or absence of certain spectral features determine the primary classification of a SN, however many classes have arisen that further highlight light curve features such as luminosity or overall morphology. Hybrid subclasses can also arise, such as SLSN IIn (e.g., Inserra et al., 2018) or Luminous SN I (Gomez et al., 2022), which combine characteristic high luminosities with the presence of narrow H features or the complete absence of H, respectively. Interpreting the dominant powering mechanism for each class becomes increasingly uncertain, with scenarios involving CSM interaction, progenitor structure, and energy deposition all remaining viable. As a result, sharp boundaries between classes tend to blur. Figure 1 intends to capture such overlap of different subclasses.

Figure 1
Diagram comparing supernova types SN II and SN I, showing categories like explosion mechanism, luminosity, light curve morphology, spectral features, and stellar outer layer composition. SN II is on the left with descriptors like flasher and low luminosity, while SN I on the right features include W-shape and superluminous candidates. CSM is referenced on both sides.

Figure 1. Schematic illustration of the current classification scheme of supernovae based on spectral features, light curve morphology and luminosity. Because spectral classification can overlap with photometric classification (e.g., SLSN IIn) we refrain from placing such classes, instead we place “superluminous” as a class based on luminosity and “narrow line” as a class based on spectral lines.

2.1 Type II SNe

Type II are the most abundant type of CCSNe (Li et al., 2011; Smith et al., 2011; Perley et al., 2020). Their light curves show a large diversity which was seen very early on, when the first comparative studies were performed on a handful of events (e.g., Pskovskii, 1967), and keeps appearing today, when analyzing samples that are orders of magnitude larger (e.g.,Anderson et al., 2024; Hinds et al., 2025). It becomes natural that the class of H-rich Type II supernovae (SNe II) is further subdivided based on specific light curve features.

Type IIP and IIL SNe belong to the oldest subdivision, which separates events based on the shape of the light curve after peak, and assigns the IIP subclass to events that show a “plateau”, and the IIL subclass to events that decline linearly (Barbon et al., 1979). Photometrically, they share similar rise times of 7–15 days in optical bands (Gall et al., 2015; González-Gaitán et al., 2015; Rubin et al., 2016; Valenti et al., 2016; Pessi et al., 2019; Hinds et al., 2025). Spectroscopically, they show comparable evolution of the characteristic Hα feature (Gutiérrez et al., 2017a).

The discovery of SN 1987A (Arnett et al., 1989; McCray, 2017), showing a peculiar light curve with a long, slow rise to peak, triggered the creation of the 87A-like subclass, that groups events with similarly long rising light curves. These are spectroscopically similar to SNe IIP/IIL, but show rise times of 80 days (Sit et al., 2023).

Following the discovery of events with unprecedented light curve peak luminosities (20 mag in optical bands), the SLSN II subclass was born (see Gal-Yam, 2019, for a review). Events that belong to this subclass show a large diversity of spectral and light curve features, although they are typically long lived, taking anywhere from 2 weeks to more than 80 days to rise, and up to more than a year to decline (Kangas et al., 2022; Pessi et al., 2025). This luminosity-based distinction from typical IIP/IIL light curves has further motivated the definition of two additional subclasses: low-luminosity SNe II (LLSNe II; Pastorello et al., 2004; Spiro et al., 2014; Das et al., 2025) and luminous SNe II (LSNe II; Pessi et al., 2023).

SNe II are also subdivided by the width of the Hα emission. Events showing a narrow, centrally peaked (“Eiffel-tower” like) Hα component are classified as SNe IIn (Schlegel, 1990). This narrow emission traces ejecta–CSM interaction with H-rich material rather than progenitor composition (Smith, 2017; Ransome et al., 2021). The persistence of the narrow feature varies widely, and objects may be labeled IIn even if the feature fades “early” (i.e., do not persist throughout the entire SN evolution). Some SNe II exhibit such narrow lines only at very early times (20 days) due to flash ionization of nearby CSM, these are known as “flashers” (Gal-Yam et al., 2014; Khazov et al., 2016; Bruch et al., 2021; 2023). The distinction between long flashers and SNe IIn with narrow lines that fade early remains unclear. The spectroscopic IIn label is often combined with photometric subclasses such as IIn-P and SLSN IIn (Mauerhan et al., 2013; Inserra et al., 2018).

A subclass exists that exhibits strong H features in its early spectra, which fade as the SN evolves, eventually revealing prominent He lines, similar to those of the SN Ib class. Thus, this subclass has been dubbed IIb (Filippenko et al., 1993; Clocchiatti et al., 1996). Their light curves may be either single- or double-peaked. When present, the first peak arises from emission in the shock-heated hydrogen envelope (Nakar and Piro, 2014), followed by a broader, bell-shaped peak with rise times of 16–26 days (Pessi et al., 2019), powered primarily by radioactive decay. The initial peak is often missed, either because the explosion occurs in a low-density environment or due to delayed follow-up observations. The transition from H-rich to H-poor spectra is attributed to the progenitor having lost a large fraction of its H outer envelope, with only a small amount of H remaining, which has led the community to consider SNe IIb as part of the SE-SN population (e.g., Clocchiatti et al., 1996; Matheson et al., 2001). As such, they are considered to be the link that bridges together the II-IIb-Ib-Ic classes.

2.2 Continuum between the H-rich SN subclasses

A continuum of light curve morphologies is observed across SNe IIP-IIL (Anderson et al., 2014; Sanders et al., 2015; Galbany et al., 2016; Rubin and Gal-Yam, 2016). Modeling distinct SNe light curve phases constrains progenitor and explosion properties (e.g., Martinez et al., 2022b). Thus, the photometric continuum plausibly reflects a continuum in progenitor characteristics, most prominently the H-envelope mass (Litvinova and Nadezhin, 1983; Bartunov and Blinnikov, 1992; Popov, 1993). In this picture, larger H envelopes produce longer plateaus; as the available H for recombination decreases, the plateau shortens and transitions toward a linear decline. The continuum extends to optical spectroscopy, where several spectral parameters correlate with photometric ones (Gutiérrez et al., 2017a), although such continuum seems to not extend to the NIR (Davis et al., 2019), where distinct behavior is seen primarily in the He I features of corresponding subclasses.

It has been proposed that progressive stripping of the H envelope could link SNe IIP/IIL to IIb, with the weakening and eventual disappearance of H features in SNe IIb reflecting a decreasing H mass in the progenitor, i.e., a putative IIP-IIL-IIb sequence. Binary-population and explosion models can indeed yield quasi-continuous outcomes (Eldridge et al., 2018; Dessart et al., 2024; Gilkis et al., 2025). However, observations do not support a smooth continuum: IIP/IIL and IIb exhibit distinct light-curve properties (Arcavi et al., 2012; Pessi et al., 2019; Stevance and Lee, 2023) and spectroscopic behavior (more noticeable 20 days after explosion González-Bañuelos et al., 2025).

Stripping of the progenitor’s outer H layers can contribute to the CSM, raising the question of where SNe IIn sit within a continuum of H-rich SNe. If the CSM is primarily built by pre-SN mass loss, a sequence with increasing mass loss is expected: (i) low mass loss yields regular SNe IIP/IIL; (ii) intermediate mass loss produces more luminous SNe II with broader, “boxy” Hα features (similar to those in Pessi et al., 2023) resulting from the expansion of a shell formed by the reverse shock from the ejecta-CSM interaction (Patat et al., 1995; Bevan and Barlow, 2016; Dessart and Hillier, 2022); and (iii) high mass loss produces either a progenitor with not enough H for the resulting SN to show H features throughout its entire evolution, or a dense CSM that is optically thick to electron scattering and generates narrow emission lines when ionized by the SN ejecta, while also producing more luminous light curves through the conversion of kinetic energy into radiation at the radiative shock (e.g., Smith, 2017). Thus we could think of two possible continua, one that considers SNe IIP–IIL–IIb and one that considers SNe IIP-IIL-LII-IIn/SLSN II. If both these continua are linked by progenitor mass/mass loss, then some intermediate “SN IIbn” should exist, where the interaction is evidenced by narrow lines throughout the SN evolution, but where prominent H lines disappear to give rise to prominent He lines. Some evidence exist hinting possible common features between SN IIb and IIn. Narrow flash ionization features indicative of CSM presence have been detected in SN IIb (e.g., Khazov et al., 2016). Yet, precursor outbursts associated with pre-explosion stellar mass loss (Smith et al., 2010; Matsumoto and Metzger, 2022; Tsuna et al., 2023), common among SNe IIn (Ofek et al., 2014; Strotjohann et al., 2021; Reguitti et al., 2024), appear to be rare in SNe IIb (Strotjohann et al., 2015). This suggests that, while both SNe IIn and SNe IIb progenitors undergo significant envelope loss, the underlying mass-loss mechanisms may differ. It has been proposed that some SNe Ibn may originate from a SN IIb explosion embedded in a dense CSM (Prentice et al., 2020). In such cases, the transient initially exhibit SN IIb-like features and subsequently evolve into a SN Ibn as the ejecta interact with He-rich CSM. This scenario implies that a subset of SN IIb progenitors may undergo not only extensive H envelope stripping but also substantial He loss prior to core collapse.

Some events appear to bridge the Type II and IIb classes, e.g.,: SN 2013ai (Davis et al., 2021); SN 2017ivv (Gutiérrez et al., 2020) and; SN 2018gk (Bose et al., 2021). SN 2013ai is spectroscopically a type II, but the velocity and strength of different features is more similar to those of stripped envelope SN, in addition its light curve rise time is significantly larger than typical SN II. SN 2017ivv and SN 2018gk are also considered to belong to the IIb class based on their broad Hα components and on the appearance of late time spectral features. Some transitional events have been proposed to link the IIb-Ib classes. For example, SN 2022crv, which showed early H that vanished quickly, and SN 2020cpg, which exhibited H features over otherwise SNe Ib characteristics (Dong et al., 2024; Gangopadhyay et al., 2023; Teffs et al., 2022; Medler et al., 2021). It has been shown that a fraction of SNe Ib exhibit weak H features in their spectra. These events are not classified as SNe IIb but rather support the existence of a spectral continuum between the Ib-IIb classes, evident in both the optical and NIR regimes (Liu et al., 2016; Shahbandeh et al., 2022).

2.3 Type I SNe

H-poor CCSNe—Types Ib, Ic, Ic-BL, SLSN-I and the interaction-dominated Ibn/Icn—are traditionally grouped as “Type I” CCSNe. Their photometric and spectroscopic properties reveal both overlaps and distinctions.

Type Ib SNe are characterized by prominent Hei lines, while Type Ic lack H and obvious He features, instead showing strong Si and Oi. Observations and detailed modeling demonstrates that small amounts of H and He can exist in SNe Ib and SN Ic, respectively, although it can remain undetected (Hachinger et al., 2012; Liu et al., 2016; Prentice et al., 2019; Dessart et al., 2020), implying a possible continuum in envelope stripping among these classes. Photometrically, SNe Ib and SNe Ic share similar rise times (10–20 days) and peak magnitudes (MV16.5 to 18 mag), with overlapping ejecta and 56Ni masses (Lyman et al., 2016).

Broad-lined Ic (Ic-BL) represent the high-velocity tail, with vph1.5×104 km s1, high kinetic energies (1052 erg), and frequent associations with long-duration gamma-ray bursts (Cano et al., 2017; Taddia et al., 2019). They demonstrate the extreme of the SE-SNe.

At the higher luminosity end of the SNe Ic, lie a group of members with peak absolute magnitudes of 21 mag defined as Type I superluminous SNe (SLSNe I—often termed SLSNe Ic). They often show hot, blue spectra dominated by broad C/O features (Quimby et al., 2011; Nicholl et al., 2015; Lunnan et al., 2018; Yan et al., 2017). Their light curves show wide diversity in rise times (from weeks to 100 d) and frequently exhibit an early “precursor” bump (Inserra et al., 2013; Leloudas et al., 2012; Nicholl et al., 2016; Lunnan et al., 2016). Post-peak, SLSNe Ic split into fast and slow decliners; while some slow events roughly track the 56Co decay rate, additional power (e.g., a central engine and/or CSM interaction) is generally required (Nicholl et al., 2015; Gal-Yam and Leonard, 2009; Gal-Yam, 2012; Moriya et al., 2017).

Interacting H-poor classes are primarily governed by the composition of the CSM into which the ejecta expands. SNe Ibn show narrow/intermediate-width He emission lines, rapid blue light curves, and evidence for dense He-rich CSM, with typical mass-loss rates of 102–0.1 M yr1, possibly associated to Wolf–Rayet (WR) or WR-like stars (Pastorello et al., 2008b; Hosseinzadeh et al., 2017; Fraser, 2020). Recently recognized SNe Icn are dominated by narrow/intermediate C lines and very blue early emission, signaling explosions within dense, C-rich CSM, likely linked to progenitors stripped even further of their outer layers (Gal-Yam et al., 2022; Pellegrino et al., 2022). These events demonstrate that extreme late-stage mass loss can strip progenitors nearly free of H and He, yielding C/O-rich winds just prior to collapse.

Table 1 summarizes different parameters for CCSNe, and shows that Type I subclasses form overlapping distributions in rise times, luminosities, Ni masses, velocities, and spectral diagnostics. Environmental studies show systematic trends: Ic occur preferentially at higher metallicities than Ib, consistent with stronger winds, while Ibn/Icn trace environments of massive WR-like progenitors (Sanders et al., 2012; Fremling et al., 2018). Together, these findings indicate that Type I CCSNe can represent a continuum of stripping outcomes, with Ib and Ic linked through varying He retention and with Ibn/Icn reflecting the most extreme CSM-loaded progenitors.

Table 1
www.frontiersin.org

Table 1. Summary of light-curve and spectral diagnostics for hydrogen-rich CCSNe.

Figure 2 was created using publicly available data collected from dedicated articles, the Open Supernova Catalog1 (Guillochon et al., 2017) and/or WiseRep (Yaron and Gal-Yam, 2012). The sample consists of: SNe II (including IIP, IIL, LSN II, SLSN II, IIn, LLSN II): 1987A (Hamuy and Suntzeff, 1990; Pun et al., 1995); 1998S (Fassia et al., 2000; 2001; Fransson et al., 2005); 1999em (Faran et al., 2014b; Galbany et al., 2016; Hamuy et al., 2001; Leonard et al., 2002); 2006Y, 2006ai, 2008bk (Anderson et al., 2014; Gutiérrez et al., 2017b; Anderson et al., 2024); 2008es (Gezari et al., 2009; Faran et al., 2014a); 2009aj (Gutiérrez et al., 2017b; Rodríguez et al., 2020; Anderson et al., 2024); 2014G (de Jaeger et al., 2019; Terreran et al., 2016); iPTF14hls (Arcavi et al., 2017; Sollerman et al., 2019); 2021acya (Salmaso et al., 2025); 2022lxg (Charalampopoulos et al., 2025); SNe II/IIb: 2013ai (Davis et al., 2021; Childress et al., 2016); 2018gk (Bose et al., 2021); SNe IIb: 1993J (Barbon et al., 1995; Richmond et al., 1996a); 2006T (Bianco et al., 2014; Stritzinger et al., 2023); 2008ax (Pastorello et al., 2008a; Tsvetkov et al., 2009; Taubenberger et al., 2011); 2011dh (Ergon et al., 2014); 2016gkg (Tartaglia et al., 2017); SNe Ib: 1999dn (Benetti et al., 2011); 1990I (Elmhamdi et al., 2004); 2007Y (Stritzinger et al., 2009); 2009jf (Valenti et al., 2011); iPTF13bvn (Srivastav et al., 2014). SNe Ic: 1994I (Richmond et al., 1996b); 2002ap (Foley et al., 2003); 2004aw (Taubenberger et al., 2006); 2007gr (Hunter et al., 2009); 2016coi (Kumar et al., 2018); SNe Ibn: 2006jc (Pastorello et al., 2008b); 2010 aL (Pastorello et al., 2015a); 2019uo (Gangopadhyay et al., 2020); 2019wep (Gangopadhyay et al., 2022); ASASSN-15ed (Pastorello et al., 2015b); SNe Icn: 2019hgp (Gal-Yam et al., 2022); 2019jc (Pellegrino et al., 2022); 2021ckj (Pellegrino et al., 2022); 2021csp (Pellegrino et al., 2022; Perley et al., 2022); 2022ann (Davis et al., 2023).

Figure 2
Two scatter plots compare supernovae properties against phase in days. On the left,

Figure 2. Luminosity L and expansion velocity vSN as functions of phase. CCSNe spread all over the phase space in the luminosities for different subtypes while for velocities, the velocity has higher value for SESNe than the interacting SNe as the latter are dominated by electron scattering wings. Error bars denote 1σ uncertainties. Note that SNe II include a large variety of subclasses including SNe IIn (see Sect.2). Different markers are used to separate the interacting and the non-interacting classes. Cautionary note: velocity tracers for interacting SNe are not directly comparable to photospheric velocities of non-interacting SNe. Measured velocities for interacting events (derived from narrow or intermediate-width lines) reflect slow CSM or post-shock gas, rather than ejecta photospheric speeds. Consequently, comparisons of (vSN) across classes are not strictly homogeneous. The apparent lack of a clear continuum in the plotted luminosity–velocity distribution may partly reflect measurement bias, rather than disproving an underlying physical continuum.

For our CCSN sample, we estimated the R/r-band luminosity at peak and 20 days post-peak by interpolating the light curves with Gaussian Processes using the GPy2 Python package (GPy, 2012). At the same epochs, we measured the full-width half-maximum velocities of key emission lines: Hydrogen (Type II), Helium (Type Ib, Ibn), Silicon (Type Ic), and Carbon (Type Icn). To this end, corresponding emission features were fit with Gaussians profiles using the lmfit Python package (Newville et al., 2014).

2.4 Continuum between the stripped envelope SN subclasses

Although H is present in the spectra of SNe IIb, they are still classified within the SE-SN group. Extensive spectroscopic and photometric samples show that SE-SNe—IIb, Ib, and Ic—represent a continuum of envelope stripping: SNe IIb retain a small amount of H, SNe Ib arise from He-rich but H-poor progenitors, and SNe Ic are produced by the most heavily stripped progenitors (Liu et al., 2016; Taddia et al., 2018; Prentice et al., 2019). Systematic trends have been found in He and O line strengths and in environmental metallicities that track the stripping sequence. Two opposing views suggest that either Ic are not hiding He but are genuinely more stripped than Ib (Fremling et al., 2018; Shivvers et al., 2019) or, that some SNe Ic may have a significant fraction of their He that is effectively transparent (Piro and Morozova, 2014). Evidence of the former is that the strength and characteristic velocity of the O 7774 Å absorption feature are higher in SNe Ic than in SNe Ib and IIb at phases near peak brightness highlighting a more stripped progenitor for SNe Ic than IIb/Ib. Evidence of the latter lies in theoretical modeling that indicates relatively low velocities with little velocity evolution, as are expected deep inside an exploding star, along with temperatures that are too low to ionize He, but no detailed observational testing has been done to validate such theoretical framework. Prentice and Mazzali (2017) through the pseudo-equivalent width measurements of SNe IIb/Ib lines have deciphered a continuity in the outer envelope and sub-classified them as IIb, IIb(I), Ib(II) and Ib, which represent H-rich to H-poor SNe. Detailed spectral analyses using recent Machine Learning algorithms also show weak high-velocity H in some Ib and hints of He in rare Ic, consistent with a continuum rather than sharp subtype divisions (Holmbo et al., 2023). Together, these studies argue that SE-SNe could form a spectroscopic and photometric continuum reflecting the extent of mass stripping prior to explosion. However, SNe Ic could be a fundamentally distinct category, rather than SNe IIb/Ib which are more linked by continuum of outer H/He envelope.

Observational evidence also supports a continuity between the interacting subclasses. The relative strengths of He, and C/O features provide a natural way to place events along the Ibn-Icn sequence. WR-stars of the WN sequence, with He-dominated winds, are natural progenitors of SNe Ibn, while WC/WO stars with C/O-rich winds provide a plausible channel for SNe Icn. Transitional events such as SN 2023xgo, which showed mixed He and stronger C features early on (Gangopadhyay et al., 2025b), suggest that Ibn and Icn are not entirely disjoint, but part of a continuous sequence tracing increasingly stripped progenitors. In this framework, SNe Ibn and Icn can be viewed as adjacent points along the same continuum of ejecta–CSM interaction, where the observational subclass reflects the chemical composition of the last layers shed by the star prior to explosion.

There is limited phenomenological continuity between SLSNe Ic and normal Ic. Spectroscopically, SLSNe Ic often evolve to Ic/Ic-BL-like appearances at late times with comparable photospheric velocities (Pastorello et al., 2010; Nicholl et al., 2016), and “luminous Ic”/Ic-BL events partly populate the intermediate luminosity regime, hinting at a bridge (Arcavi et al., 2016; Roy et al., 2016). However, population studies indicate a bimodal luminosity function—Ic peaking near Mbol17.5 to 18.5 (Taddia et al., 2015; Lyman et al., 2016) and SLSNe Ic clustered around Mbol21±0.5 (Nicholl et al., 2015)—with in between objects seemingly bridging the Ic-SLSN-I classes (Gomez et al., 2022). Moreover, SLSNe Ic generally require engine/interaction power beyond 56Ni (Gal-Yam, 2012; Moriya et al., 2017). Any “continuum” thus likely reflects varying engine strength and/or CSM interaction rather than a smooth extension of the Ic population in nickel yield. Some recent cases of SLSN I have some signatures of late-time CSM interaction with previously expelled shells which can be H-rich (Pursiainen et al., 2022). Some recent cases of SLSNe I such as 2018bsz (Anderson et al., 2018; Pursiainen et al., 2022), PTF13ehe (Hα emerging at 200–300 days), iPTF15esb and iPTF16bad (Yan et al., 2015; 2017) have shown late time interaction signatures which can probe mass-loss history of these SNe.

3 Looking into the luminosity and velocity of core-collapse SNe

We map the luminosity–velocity (LvSN) space for a heterogeneous sample of CCSNe; the sample definition and references are given in Supplementary Material (Sect 2). Our initial goal was to estimate mass-loss rates to trace the pre-SN progenitor history. However, the assumption that shock power alone drives the luminosity of these SNe does not hold across all CCSN sub-classes. We therefore adopt a model-agnostic comparison of the observables that enter mass-loss prescriptions (e.g., Chugai and Danziger, 1994): a bolometric luminosity and SN velocity proxy. Specifically, we use the R/r-band flux as a tracer of L and full-width half-maximum velocity of characteristic emission lines (H/He/Si/C) as SN velocity.

Figure 2 shows that across 10 to +30 d, CCSNe populate a largely continuous locus in luminosity L and line velocity vSN, with substantial overlap between different groups of CCSNe. At both 0 and 20 d, the monochromatic R/r-band luminosities do not cleanly separate interacting from non–interacting events and are fairly distributed all over the phase space. Ideally, we would expect the interacting SNe to be more luminous than their non-interacting counterparts as interaction drives as an additional luminosity powering source and not only radioactivity. The observed behaviour in Figure 2 is justified as interaction power is often emitted at bluer/UV and high–energy wavelengths; a single red optical band, therefore do not account for the full bolometric output and is highly sensitive to temperature, line blanketing, and extinction. The distribution further indicates that radioactive heating is not the sole luminosity source in many CCSNe and that additional power source contributes with phase and band-dependent visibility.

In velocity space, objects with clear interaction signatures tend to show lower measured vSN than non–interacting SNe. This reflects a measurement–tracer effect: for interacting SNe, the narrow/intermediate lines (with possible electron–scattering wings) predominantly trace slowly moving, pre–shock CSM or post–shock gas rather than the ejecta photosphere, whereas non–interacting SNe are measured from intrinsically broad P-Cygni ejecta features. Consequently, the quoted vSN values are not strictly homologous across sub–classes.

4 Discussion

This review discusses a continuity framework for CCSNe, wherein the traditional subclasses are best understood as overlapping regions in a small set of physically meaningful dimensions: residual H/He in the envelope, 56Ni mixing and heating, ejecta kinetic energy, and the density/composition of CSM. In this view, the familiar labels (II, IIb, Ib, Ic, Ic-BL; and the interacting IIn/Ibn/Icn) are not discrete boxes but landmarks along graded paths set by mass loss. Constraining the mass-loss history of a progenitor requires two readily observable parameters: the bolometric luminosity and the SN velocity at a given epoch (see Sect. 3), the latter typically estimated from the full-width half-maximum of characteristic spectral lines. In practice, however, true bolometric light curves are in most cases unavailable, and emission-line widths reflect not only bulk expansion but also additional broadening mechanisms such as electron scattering, optical depth effects, and radiative transfer. These factors complicate a direct interpretation of observables in terms of progenitor mass loss. Still, if interaction was the dominant contributor to the powering of the SNe, some trends could be expected in the luminosity and velocity distributions. In Figure 2 we do not see clear continuum among different CCSNe classes (see Sect. 3).

The literature has often invoked continuous distributions of various parameters to support the idea of a continuum across CCSN (see Table 2 for a summary). However, some of these claimed continua can be challenged. For example, it has been suggested that the main driver of SNe IIP/IIL light curve diversity may be the explosion energy (Kasen and Woosley, 2009; Martinez et al., 2022a). Moreover, Bronner et al. (2025) argue that the IIP/IIL morphologies arise from progenitors exploding in a compressed/expanded phase of a stellar pulsation. It is also still debated whether a continuum exists within the SN IIn class itself as multimodality has been observed in the decline rate of their light curves (Nyholm et al., 2020; Ransome and Villar, 2025) and on their radiated energies (Hiramatsu et al., 2024). Furthermore, although the continuum IIP-IIL-IIb is recovered by theoretical models, such continuum is not seen in the observed features, with only a small number of Type IIb events occupying the distributions of observational features of Type II events and viceversa (see Sect. 2.2). It seems like the conditions needed to produce a transitional II/IIb event in this case are much rarer than those necessary to produce “typical” events. On a similar note, it has been traditionally defined that the SESNe group of Type IIb, Ib, Ic should be linked by a continuum of outer envelope (Taddia et al., 2018). While Prentice et al. (2019) find that SNe IIb/Ib are linked by an outer envelope promoting further sub-classification through pseudo-equivalent width measurements of different sub-classes, extending this sequence to Ic is less secure. Population studies indicate that many SNe Ic are not merely Ib with “hidden He”; instead, their spectra favor genuinely more heavily stripped progenitors, as suggested by systematically stronger and higher–velocity O i λ7774 and related oxygen diagnostics (Fremling et al., 2018; Shivvers et al., 2019; Taddia et al., 2018). Thus, the transparent–helium hypothesis remains unproven observationally. Similarly for the SNe Ibn/Icn, certain events like SN 2023xgo indicates that the CSM around them is composed of both He and C (Gangopadhyay et al., 2025a), also implying similar progenitor channels of WR stars or low mass stars in binary companions (Moriya et al., 2025; Dessart et al., 2022) hinting towards a continuum.

Table 2
www.frontiersin.org

Table 2. Summary of proposed class continua.

This raises some fundamental questions: what is the physical significance of observing a continuum in supernova properties? Does a continuum in observables necessarily imply a corresponding continuum in progenitor characteristics and explosion mechanisms? While theoretical models can reproduce a wide range of outcomes, it remains uncertain whether all such outcomes are realized in nature. Theoretical modeling of CCSNe has advanced significantly in recent years, yet most explosion simulations remain restricted to one-dimensional treatments. Large uncertainties also persist from the stellar evolution side, particularly regarding the roles of binarity, metallicity, rotation, magnetic fields, and the relative importance of different mass-loss mechanisms across progenitors. It has been argued that progenitor mass alone does not uniquely determine the fate of a star, with the concept of “islands of explodability” emerging from modern simulations (Ertl et al., 2016; Sukhbold et al., 2016), suggesting that core collapse may occupy a discrete rather than continuous parameter space. Moreover, alternative explosion channels are expected at the extremes of the progenitor mass range: electron-capture SN, triggered by Ne-O deflagration, in the low-mass regime (e.g., Nomoto and Leung, 2017); and pair-instability SN, driven by thermonuclear runaway following e+e pair production, in the high-mass regime (e.g., Kasen et al., 2011; Renzo and Smith, 2024). While neither has yet been observationally confirmed with certainty, both may contaminate CCSN samples.

Multiwavelength time-domain surveys (and their early high-cadence follow-up) will greatly expand uniform samples. Coupling these data with binary-population synthesis, radiative-transfer tools and 3D modeling, should turn the qualitative “continuum” into predictive, multi-parameter maps linking progenitor pathways to observables. Such efforts will clarify which apparent continua in CCSN observables reflect genuine physical sequences and which arise from selection effects, degeneracies, or distinct progenitor channels. Ultimately, a unified framework will require mapping the multi-parameter space of mass loss, binarity, CSM structure, and explosion physics onto the rich phenomenology revealed by modern time-domain surveys. As larger and more homogeneous samples accumulate in the coming decade, the field is well positioned to transform the currently qualitative notion of “continuity” in CCSNe into a quantitatively testable, predictive paradigm.

Author contributions

AG: Writing – review and editing, Writing – original draft, Methodology, Conceptualization, Formal Analysis, Validation. PP: Writing – original draft, Methodology, Formal Analysis, Writing – review and editing.

Funding

The author(s) declared that financial support was received for this work and/or its publication. AG is supported by the research project grant “Understanding the Dynamic Universe” funded by the Knut and Alice Wallenberg under Dnr KAW 2018.0067. P.J.P is funded by the European Union (ERC, project number 101042299, TransPIre). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Acknowledgements

P.J.P thanks Laureano Martinez, Claudia Gutiérrez, Ragnhild Lunnan and the OKC supernova group for useful discussion. AG thanks all the OKC supernova group members for useful discussions.

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Footnotes

1Although the Open Supernova Catalog is no longer actively maintained, its data remain accessible in the repository at https://github.com/astrocatalogs/supernovae.

References

Anderson, J. P. (2019). A meta-analysis of core-collapse supernova 56Ni masses. A&A 628, A7. doi:10.1051/0004-6361/201935027

CrossRef Full Text | Google Scholar

Anderson, J. P., Dessart, L., Gutierrez, C. P., Hamuy, M., Morrell, N. I., Phillips, M., et al. (2014). Analysis of blueshifted emission peaks in type II supernovae. MNRAS 441, 671–680. doi:10.1093/mnras/stu610

CrossRef Full Text | Google Scholar

Anderson, J. P., Pessi, P. J., Dessart, L., Inserra, C., Hiramatsu, D., Taggart, K., et al. (2018). A nearby super-luminous supernova with a long pre-maximum and “plateau” and strong C II features. A&A 620, A67. doi:10.1051/0004-6361/201833725620A.67A

CrossRef Full Text | Google Scholar

Anderson, J. P., Contreras, C., Stritzinger, M. D., Hamuy, M., Phillips, M. M., Suntzeff, N. B., et al. (2024). Optical and near-infrared photometry of 94 type II supernovae from the carnegie supernova project. A&A 692, A95. doi:10.1051/0004-6361/202244401692A.95A

CrossRef Full Text | Google Scholar

Arcavi, I., Gal-Yam, A., Cenko, S. B., Fox, D. B., Leonard, D. C., Moon, D.-S., et al. (2012). Caltech core-collapse project (CCCP) observations of type II supernovae: evidence for three distinct photometric subtypes. ApJ 756, L30. doi:10.1088/2041-8205/756/2/L30756L.30A

CrossRef Full Text | Google Scholar

Arcavi, I., Wolf, W. M., Howell, D. A., Bildsten, L., Leloudas, G., Hardin, D., et al. (2016). Rapidly rising transients in the supernova—Superluminous supernova gap. ApJ 819, 35. doi:10.3847/0004-637X/819/1/35

CrossRef Full Text | Google Scholar

Arcavi, I., Howell, D. A., Kasen, D., Bildsten, L., Hosseinzadeh, G., McCully, C., et al. (2017). Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature 551, 210–213. doi:10.1038/nature24030

PubMed Abstract | CrossRef Full Text | Google Scholar

Arnett, W. D., Bahcall, J. N., Kirshner, R. P., and Woosley, S. E. (1989). Supernova 1987A. ARA&A 27, 629–700. doi:10.1146/annurev.aa.27.090189.003213

CrossRef Full Text | Google Scholar

Barbon, R., Ciatti, F., and Rosino, L. (1979). Photometric properties of type II supernovae. A&A 72, 287–292.

Google Scholar

Barbon, R., Benetti, S., Cappellaro, E., Patat, F., Turatto, M., and Iijima, T. (1995). SN 1993J in M 81: one year of observations at Asiago. A&AS 110, 513.

Google Scholar

Bartunov, O. S., and Blinnikov, S. I. (1992). Model of supernova 1979C with radiative transfer in the envelope. Sov. Astron. Lett. 18 (43), 18.

Google Scholar

Benetti, S., Turatto, M., Valenti, S., Pastorello, A., Cappellaro, E., Botticella, M. T., et al. (2011). The Type Ib SN 1999dn: one year of photometric and spectroscopic monitoring. MNRAS 411, 2726–2738. doi:10.1111/j.1365-2966.2010.17873.x

CrossRef Full Text | Google Scholar

Bethe, H. A. (1990). How Supernova shock revival was revealed. Phys. Today 43, 91. doi:10.1063/1.2810818

CrossRef Full Text | Google Scholar

Bevan, A., and Barlow, M. J. (2016). Modelling supernova line profile asymmetries to determine ejecta dust masses: SN 1987A from days 714 to 3604. MNRAS 456, 1269–1293. doi:10.1093/mnras/stv2651

CrossRef Full Text | Google Scholar

Bianco, F. B., Modjaz, M., Hicken, M., Friedman, A., Kirshner, R. P., Bloom, J. S., et al. (2014). Multi-color optical and near-infrared light curves of 64 stripped-envelope core-collapse supernovae. ApJS 213, 19. doi:10.1088/0067-0049/213/2/1919B

CrossRef Full Text | Google Scholar

Bose, S., Dong, S., Kochanek, C. S., Stritzinger, M. D., Ashall, C., Benetti, S., et al. (2021). ASASSN-18am/SN 2018gk: an overluminous Type IIb supernova from a massive progenitor. MNRAS 503, 3472–3491. doi:10.1093/mnras/stab629

CrossRef Full Text | Google Scholar

Bronner, V. A., Laplace, E., Schneider, F. R. N., and Podsiadlowski, P. (2025). Explosions of pulsating red supergiants: a natural pathway for the diversity of Type II-P/L supernovae. arXiv E-Prints , arXiv:2508.11077doi 703, A61. doi:10.48550/arXiv.2508.11077

CrossRef Full Text | Google Scholar

Bruch, R. J., Gal-Yam, A., Schulze, S., Yaron, O., Yang, Y., Soumagnac, M., et al. (2021). A large fraction of hydrogen-rich Supernova progenitors experience elevated mass loss shortly prior to explosion. ApJ 912, 46. doi:10.3847/1538-4357/abef05

CrossRef Full Text | Google Scholar

Bruch, R. J., Gal-Yam, A., Yaron, O., Chen, P., Strotjohann, N. L., Irani, I., et al. (2023). The prevalence and influence of circumstellar material around hydrogen-rich Supernova progenitors. ApJ 952, 119. doi:10.3847/1538-4357/acd8be952

CrossRef Full Text | Google Scholar

Burrows, A., and Vartanyan, D. (2021). Core-collapse supernova explosion theory. Nature 589, 29–39. doi:10.1038/s41586-020-03059-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Cano, Z., Izzo, L., de Ugarte Postigo, A., Thöne, C. C., Krühler, T., Heintz, K. E., et al. (2017). GRB 161219B/SN 2016jca: a low-redshift gamma-ray burst supernova powered by radioactive heating. A&A 605, A107. doi:10.1051/0004-6361/201731005

CrossRef Full Text | Google Scholar

Charalampopoulos, P., Kotak, R., Sollerman, J., Gutiérrez, C. P., Pursiainen, M., Killestein, T. L., et al. (2025). Luminous, rapidly declining supernovae as stripped transitional objects in low-metallicity environments: the case of SN 2022lxg. A&A 700, A138. doi:10.1051/0004-6361/202554648700A.138C

CrossRef Full Text | Google Scholar

Childress, M. J., Tucker, B. E., Yuan, F., Scalzo, R., Ruiter, A., Seitenzahl, I., et al. (2016). The ANU WiFeS SuperNovA Programme (AWSNAP). Publ. Astron. Soc. Aust. 33, e055. doi:10.1017/pasa.2016.473355C

CrossRef Full Text | Google Scholar

Chugai, N. N., and Danziger, I. J. (1994). SN 1988Z: low-mass ejecta colliding with the clumpy wind? MNRAS 268, 173–180. doi:10.1093/mnras/268.1.173

CrossRef Full Text | Google Scholar

Clocchiatti, A., Wheeler, J. C., Benetti, S., and Frueh, M. (1996). SN 1983N and the Nature of stripped envelope–core collapse supernovae. ApJ 459, 547. doi:10.1086/176919459

CrossRef Full Text | Google Scholar

Das, K. K., Kasliwal, M. M., Fremling, C., Sollerman, J., Perley, D. A., De, K., et al. (2025). Low-luminosity type IIP supernovae from the Zwicky Transient facility census of the local universe. I. Luminosity function, volumetric rate. PASP 137, 044203. doi:10.1088/1538-3873/adcaeb

CrossRef Full Text | Google Scholar

Davis, S., Hsiao, E. Y., Ashall, C., Hoeflich, P., Phillips, M. M., Marion, G. H., et al. (2019). Carnegie Supernova Project-II: Near-infrared spectroscopic diversity of type II supernovae. ApJ 887, 4. doi:10.3847/1538-4357/ab4c40887

CrossRef Full Text | Google Scholar

Davis, S., Pessi, P. J., Fraser, M., Ertini, K., Martinez, L., Hoeflich, P., et al. (2021). SN 2013ai: a link between hydrogen-rich and hydrogen-poor core-collapse supernovae. ApJ 909, 145. doi:10.3847/1538-4357/abdd36909

CrossRef Full Text | Google Scholar

Davis, K. W., Taggart, K., Tinyanont, S., Foley, R. J., Villar, V. A., Izzo, L., et al. (2023). SN 2022ann: a Type Icn supernova from a dwarf galaxy that reveals helium in its circumstellar environment. MNRAS 523, 2530–2550. doi:10.1093/mnras/stad1433

CrossRef Full Text | Google Scholar

de Jaeger, T., Zheng, W., Stahl, B. E., Filippenko, A. V., Brink, T. G., Bigley, A., et al. (2019). The Berkeley sample of Type II supernovae: BVRI light curves and spectroscopy of 55 SNe II. MNRAS 490, 2799–2821. doi:10.1093/mnras/stz2714

CrossRef Full Text | Google Scholar

Dessart, L., and Hillier, D. J. (2022). Modeling the signatures of interaction in Type II supernovae: UV emission, high-velocity features, broad-boxy profiles. A&A 660, L9. doi:10.1051/0004-6361/202243372660

CrossRef Full Text | Google Scholar

Dessart, L., Yoon, S.-C., Aguilera-Dena, D. R., and Langer, N. (2020). Supernovae Ib and Ic from the explosion of helium stars. A&A 642, A106. doi:10.1051/0004-6361/202038763

CrossRef Full Text | Google Scholar

Dessart, L., Hillier, D. J., and Kuncarayakti, H. (2022). Helium stars exploding in circumstellar material and the origin of Type Ibn supernovae. A&A 658, A130. doi:10.1051/0004-6361/202142436

CrossRef Full Text | Google Scholar

Dessart, L., Gutiérrez, C. P., Ercolino, A., Jin, H., and Langer, N. (2024). A sequence of Type Ib, IIb, II-L, and II-P supernovae from binary-star progenitors with varying initial separations. A&A 685, A169. doi:10.1051/0004-6361/202349066685A.169D

CrossRef Full Text | Google Scholar

Dong, Y., Valenti, S., Ashall, C., Williamson, M., Sand, D. J., Van Dyk, S. D., et al. (2024). Characterizing the rapid hydrogen disappearance in SN 2022crv: evidence of a continuum between type Ib and IIb Supernova properties. ApJ 974, 316. doi:10.3847/1538-4357/ad710e

CrossRef Full Text | Google Scholar

Eldridge, J. J., Xiao, L., Stanway, E. R., Rodrigues, N., and Guo, N. Y. (2018). Supernova lightCURVE POPulation Synthesis I: including interacting binaries is key to understanding the diversity of type II supernova lightcurves. Publ. Astron. Soc. Aust. 35, e049. doi:10.1017/pasa.2018.473549E

CrossRef Full Text | Google Scholar

Elmhamdi, A., Danziger, I. J., Cappellaro, E., Della Valle, M., Gouiffes, C., Phillips, M. M., et al. (2004). SN Ib 1990I: clumping and dust in the ejecta? A&A 426, 963–977. doi:10.1051/0004-6361:20041318

CrossRef Full Text | Google Scholar

Ergon, M., Sollerman, J., Fraser, M., Pastorello, A., Taubenberger, S., Elias-Rosa, N., et al. (2014). Optical and near-infrared observations of SN 2011dh - the first 100 days. A&A 562, A17. doi:10.1051/0004-6361/201321850562A

CrossRef Full Text | Google Scholar

Ertl, T., Janka, H. T., Woosley, S. E., Sukhbold, T., and Ugliano, M. (2016). A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. ApJ 818, 124. doi:10.3847/0004-637X/818/2/124818

CrossRef Full Text | Google Scholar

Faran, T., Poznanski, D., Filippenko, A. V., Chornock, R., Foley, R. J., Ganeshalingam, M., et al. (2014a). A sample of Type II-L supernovae. MNRAS 445, 554–569. doi:10.1093/mnras/stu1760

CrossRef Full Text | Google Scholar

Faran, T., Poznanski, D., Filippenko, A. V., Chornock, R., Foley, R. J., Ganeshalingam, M., et al. (2014b). Photometric and spectroscopic properties of Type II-P supernovae. MNRAS 442, 844–861. doi:10.1093/mnras/stu955

CrossRef Full Text | Google Scholar

Fassia, A., Meikle, W. P. S., Vacca, W. D., Kemp, S. N., Walton, N. A., Pollacco, D. L., et al. (2000). Optical and infrared photometry of the Type IIn SN 1998S: days 11-146. MNRAS 318, 1093–1104. doi:10.1046/j.1365-8711.2000.03797.x

CrossRef Full Text | Google Scholar

Fassia, A., Meikle, W. P. S., Chugai, N., Geballe, T. R., Lundqvist, P., Walton, N. A., et al. (2001). Optical and infrared spectroscopy of the type IIn SN 1998S: days 3-127. MNRAS 325, 907–930. doi:10.1046/j.1365-8711.2001.04282.x

CrossRef Full Text | Google Scholar

Filippenko, A. V., Matheson, T., and Ho, L. C. (1993). The “Type IIb” Supernova 1993J in M81: a close relative of type Ib supernovae. ApJ 415, L103. doi:10.1086/187043415L

CrossRef Full Text | Google Scholar

Foley, R. J., Papenkova, M. S., Swift, B. J., Filippenko, A. V., Li, W., Mazzali, P. A., et al. (2003). Optical photometry and spectroscopy of the SN 1998bw-like type Ic supernova 2002ap. PASP 115, 1220–1235. doi:10.1086/378242

CrossRef Full Text | Google Scholar

Fransson, C., Challis, P. M., Chevalier, R. A., Filippenko, A. V., Kirshner, R. P., Kozma, C., et al. (2005). Hubble space telescope and ground-based observations of SN 1993J and SN 1998S: CNO processing in the progenitors. ApJ 622, 991–1007. doi:10.1086/426495622

CrossRef Full Text | Google Scholar

Fraser, M. (2020). Supernovae and transients with circumstellar interaction. R. Soc. Open Sci. 7, 200467. doi:10.1098/rsos.200467

PubMed Abstract | CrossRef Full Text | Google Scholar

Fremling, C., Sollerman, J., Kasliwal, M. M., Kulkarni, S. R., Barbarino, C., Ergon, M., et al. (2018). Oxygen and helium in stripped-envelope supernovae. A&A 618, A37. doi:10.1051/0004-6361/201731701

CrossRef Full Text | Google Scholar

Gal-Yam, A. (2012). Luminous supernovae. Science 337, 927–932. doi:10.1126/science.1203601

PubMed Abstract | CrossRef Full Text | Google Scholar

Gal-Yam, A. (2019). The Most luminous supernovae. ARA&A 57, 305–333. doi:10.1146/annurev-astro-081817-051819

CrossRef Full Text | Google Scholar

Gal-Yam, A., and Leonard, D. C. (2009). A massive hypergiant star as the progenitor of the supernova SN 2005gl. Nature 458, 865–867. doi:10.1038/nature07934

PubMed Abstract | CrossRef Full Text | Google Scholar

Gal-Yam, A., Arcavi, I., Ofek, E. O., Ben-Ami, S., Cenko, S. B., Kasliwal, M. M., et al. (2014). A wolf-rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474. doi:10.1038/nature13304

PubMed Abstract | CrossRef Full Text | Google Scholar

Gal-Yam, A., Bruch, R., Schulze, S., Yang, Y., Perley, D. A., Irani, I., et al. (2022). A WC/WO star exploding within an expanding carbon-oxygen-neon nebula. Nature 601, 201–204. doi:10.1038/s41586-021-04155-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Galbany, L., Hamuy, M., Phillips, M. M., Suntzeff, N. B., Maza, J., de Jaeger, T., et al. (2016). UBVRIz light curves of 51 type II supernovae. AJ 151, 33. doi:10.3847/0004-6256/151/2/33.151

CrossRef Full Text | Google Scholar

Gall, E. E. E., Polshaw, J., Kotak, R., Jerkstrand, A., Leibundgut, B., Rabinowitz, D., et al. (2015). A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw. A&A 582, A3. doi:10.1051/0004-6361/201525868

CrossRef Full Text | Google Scholar

Gangopadhyay, A., Misra, K., Hiramatsu, D., Wang, S.-Q., Hosseinzadeh, G., Wang, X., et al. (2020). Flash ionization signatures in the type ibn Supernova SN 2019uo. ApJ 889, 170. doi:10.3847/1538-4357/ab6328

CrossRef Full Text | Google Scholar

Gangopadhyay, A., Misra, K., Hosseinzadeh, G., Arcavi, I., Pellegrino, C., Wang, X., et al. (2022). Evolution of a peculiar type Ibn Supernova SN 2019wep. ApJ 930, 127. doi:10.3847/1538-4357/ac6187

CrossRef Full Text | Google Scholar

Gangopadhyay, A., Maeda, K., Singh, A., Nayana, A. J., Nakaoka, T., Kawabata, K. S., et al. (2023). Bridging between type IIb and Ib supernovae: SN IIb 2022crv with a very thin hydrogen envelope. ApJ 957, 100. doi:10.3847/1538-4357/acfa94

CrossRef Full Text | Google Scholar

Gangopadhyay, A., Dukiya, N., Moriya, T. J., Tanaka, M., Maeda, K., Howell, D. A., et al. (2025a). SN 2021foa: the bridge between SN IIn and Ibn. MNRAS 537, 2898–2917. doi:10.1093/mnras/staf187

CrossRef Full Text | Google Scholar

Gangopadhyay, A., Sollerman, J., Tsalapatas, K., Maeda, K., Dukiya, N., Schulze, S., et al. (2025b). SN 2023xgo: helium rich Type Icn or Carbon-Flash Type Ibn supernova? arXiv e-prints. arXiv:2506.10700. doi:10.48550/arXiv.2506.10700

CrossRef Full Text | Google Scholar

Gezari, S., Halpern, J. P., Grupe, D., Yuan, F., Quimby, R., McKay, T., et al. (2009). Discovery of the ultra-bright type II-L Supernova 2008es. ApJ 690, 1313–1321. doi:10.1088/0004-637X/690/2/1313690.1313G

CrossRef Full Text | Google Scholar

Gilkis, A., Laplace, E., Arcavi, I., Shenar, T., and Schneider, F. R. N. (2025). The landscape of binary core-collapse supernova progenitors and the late emergence of Wolf–Rayet winds. MNRAS 540, 3094–3120. doi:10.1093/mnras/staf884

CrossRef Full Text | Google Scholar

Gomez, S., Berger, E., Nicholl, M., Blanchard, P. K., and Hosseinzadeh, G. (2022). Luminous supernovae: unveiling a population between superluminous and normal core-collapse supernovae. ApJ 941, 107. doi:10.3847/1538-4357/ac9842941

CrossRef Full Text | Google Scholar

González-Bañuelos, M., Gutiérrez, C. P., Galbany, L., and González-Gaitán, S. (2025). Statistical analysis of early spectra in type II and IIb supernovae. arXiv E-Prints , arXiv:2507.08731doi. doi:10.48550/arXiv.2507.08731

CrossRef Full Text | Google Scholar

González-Gaitán, S., Tominaga, N., Molina, J., Galbany, L., Bufano, F., Anderson, J. P., et al. (2015). The rise-time of Type II supernovae. MNRAS 451, 2212–2229. doi:10.1093/mnras/stv1097

CrossRef Full Text | Google Scholar

GPy (2012). GPy: a gaussian process framework in python. Available online at: http://github.com/SheffieldML/GPy.

Google Scholar

Guillochon, J., Parrent, J., Kelley, L. Z., and Margutti, R. (2017). An open catalog for Supernova data. ApJ 835, 64. doi:10.3847/1538-4357/835/1/64835

CrossRef Full Text | Google Scholar

Gutiérrez, C. P., Anderson, J. P., Hamuy, M., González-Gaitan, S., Galbany, L., Dessart, L., et al. (2017a). Type II Supernova spectral diversity. II. Spectroscopic and photometric correlations. ApJ 850, 90. doi:10.3847/1538-4357/aa8f428500G

CrossRef Full Text | Google Scholar

Gutiérrez, C. P., Anderson, J. P., Hamuy, M., Morrell, N., González-Gaitan, S., Stritzinger, M. D., et al. (2017b). Type II Supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. ApJ 850, 89. doi:10.3847/1538-4357/aa8f5285089G

CrossRef Full Text | Google Scholar

Gutiérrez, C. P., Pastorello, A., Jerkstrand, A., Galbany, L., Sullivan, M., Anderson, J. P., et al. (2020). SN 2017ivv: two years of evolution of a transitional Type II supernova. MNRAS 499, 974–992. doi:10.1093/mnras/staa2763

CrossRef Full Text | Google Scholar

Hachinger, S., Mazzali, P. A., Taubenberger, S., Hillebrandt, W., Nomoto, K., and Sauer, D. N. (2012). How much H and He is ’hidden’ in SNe Ib/c? - I. Low-mass objects. MNRAS 422, 70–88. doi:10.1111/j.1365-2966.2012.20464.x

CrossRef Full Text | Google Scholar

Hamuy, M., and Suntzeff, N. B. (1990). SN 1987A in the LMC. III. UBVRI photometry at cerro tololo. AJ 99, 1146. doi:10.1086/115403

CrossRef Full Text | Google Scholar

Hamuy, M., Pinto, P. A., Maza, J., Suntzeff, N. B., Phillips, M. M., Eastman, R. G., et al. (2001). The distance to SN 1999em from the expanding photosphere method. ApJ 558, 615–642. doi:10.1086/322450558

CrossRef Full Text | Google Scholar

Hamuy, M., Phillips, M. M., Suntzeff, N. B., Maza, J., González, L. E., Roth, M., et al. (2003). An asymptotic-giant-branch star in the progenitor system of a type Ia supernova. Nature 424, 651–654. doi:10.1038/nature01854

PubMed Abstract | CrossRef Full Text | Google Scholar

Hinds, K. R., Perley, D. A., Sollerman, J., Miller, A. A., Fremling, C., Moriya, T. J., et al. (2025). Inferring CSM properties of Type II SNe using a magnitude-limited ZTF sample. MNRAS 541, 135–165. doi:10.1093/mnras/staf888

CrossRef Full Text | Google Scholar

Hiramatsu, D., Berger, E., Gomez, S., Blanchard, P. K., Kumar, H., and Athukoralalage, W. (2024). Type IIn supernovae. I. Uniform light curve characterization and a bimodality in the radiated energy distribution. arXiv E-Prints , arXiv:2411.07287. doi:10.48550/arXiv.2411.07287

CrossRef Full Text | Google Scholar

Holmbo, S., Stritzinger, M. D., Karamehmetoglu, E., Burns, C. R., Morrell, N., Ashall, C., et al. (2023). The Carnegie Supernova Project I. Spectroscopic analysis of stripped-envelope supernovae. A&A 675, A83. doi:10.1051/0004-6361/202245334

CrossRef Full Text | Google Scholar

Hosseinzadeh, G., Arcavi, I., Valenti, S., McCully, C., Howell, D. A., Johansson, J., et al. (2017). Type Ibn Supernovae show photometric homogeneity and spectral diversity at maximum light. ApJ 836, 158. doi:10.3847/1538-4357/836/2/158

CrossRef Full Text | Google Scholar

Hosseinzadeh, G., McCully, C., Zabludoff, A. I., Arcavi, I., French, K. D., Howell, D. A., et al. (2019). Type Ibn Supernovae May not all come from massive stars. ApJ 871, L9. doi:10.3847/2041-8213/aafc61

CrossRef Full Text | Google Scholar

Hunter, D. J., Valenti, S., Kotak, R., Meikle, W. P. S., Taubenberger, S., Pastorello, A., et al. (2009). Extensive optical and near-infrared observations of the nearby, narrow-lined type Ic SN 2007gr: days 5 to 415. A&A 508, 371–389. doi:10.1051/0004-6361/200912896

CrossRef Full Text | Google Scholar

Inserra, C., Smartt, S. J., Jerkstrand, A., Valenti, S., Fraser, M., Wright, D., et al. (2013). Super-luminous type Ic supernovae: catching a magnetar by the tail. ApJ 770, 128. doi:10.1088/0004-637X/770/2/128

CrossRef Full Text | Google Scholar

Inserra, C., Smartt, S. J., Gall, E. E. E., Leloudas, G., Chen, T. W., Schulze, S., et al. (2018). On the nature of hydrogen-rich superluminous supernovae. MNRAS 475, 1046–1072. doi:10.1093/mnras/stx3179

CrossRef Full Text | Google Scholar

Janka, H.-T. (2012). Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451. doi:10.1146/annurev-nucl-102711-094901

CrossRef Full Text | Google Scholar

Kangas, T., Yan, L., Schulze, S., Fransson, C., Sollerman, J., Lunnan, R., et al. (2022). The Zwicky Transient Facility phase I sample of hydrogen-rich superluminous supernovae without strong narrow emission lines. MNRAS 516, 1193–1218. doi:10.1093/mnras/stac2218

CrossRef Full Text | Google Scholar

Kasen, D., and Woosley, S. E. (2009). Type II supernovae: model light curves and standard candle relationships. ApJ 703, 2205–2216. doi:10.1088/0004-637X/703/2/2205703.2205K

CrossRef Full Text | Google Scholar

Kasen, D., Woosley, S. E., and Heger, A. (2011). Pair instability supernovae: light curves, spectra, and shock breakout. ApJ 734, 102. doi:10.1088/0004-637X/734/2/102734

CrossRef Full Text | Google Scholar

Khazov, D., Yaron, O., Gal-Yam, A., Manulis, I., Rubin, A., Kulkarni, S. R., et al. (2016). Flash spectroscopy: emission lines from the ionized circumstellar material around <10-day-old type II supernovae. ApJ 818, 3. doi:10.3847/0004-637X/818/1/3818

CrossRef Full Text | Google Scholar

Kulikovskii, P. G. (1944). Supernovae and classification of their light curves. AZh 21, 211.

Google Scholar

Kumar, B., Singh, A., Srivastav, S., Sahu, D. K., and Anupama, G. C. (2018). ASASSN-16fp (SN 2016coi): a transitional supernova between Type Ic and broad-lined Ic. MNRAS 473, 3776–3788. doi:10.1093/mnras/stx2498

CrossRef Full Text | Google Scholar

Laplace, E., Justham, S., Renzo, M., Götberg, Y., Farmer, R., Vartanyan, D., et al. (2021). Different to the core: the pre-supernova structures of massive single and binary-stripped stars. A&A 656, A58. doi:10.1051/0004-6361/202140506

CrossRef Full Text | Google Scholar

Leloudas, G., Chatzopoulos, E., Dilday, B., Gorosabel, J., Vinko, J., Gallazzi, A., et al. (2012). SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN Survey. A&A 541, A129. doi:10.1051/0004-6361/201118498

CrossRef Full Text | Google Scholar

Leonard, D. C., Filippenko, A. V., Gates, E. L., Li, W., Eastman, R. G., Barth, A. J., et al. (2002). The distance to SN 1999em in NGC 1637 from the expanding photosphere method. PASP 114, 35–64. doi:10.1086/32478535L

CrossRef Full Text | Google Scholar

Li, W., Leaman, J., Chornock, R., Filippenko, A. V., Poznanski, D., Ganeshalingam, M., et al. (2011). Nearby supernova rates from the Lick Observatory Supernova Search - II. The observed luminosity functions and fractions of supernovae in a complete sample. MNRAS 412, 1441–1472. doi:10.1111/j.1365-2966.2011.18160.x

CrossRef Full Text | Google Scholar

Litvinova, I. I., and Nadezhin, D. K. (1983). Hydrodynamical models of Type-II supernovae. Ap&SS 89, 89–113. doi:10.1007/BF0100838789L

CrossRef Full Text | Google Scholar

Liu, Y.-Q., Modjaz, M., Bianco, F. B., and Graur, O. (2016). Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. ApJ 827, 90. doi:10.3847/0004-637X/827/2/90

CrossRef Full Text | Google Scholar

Lunnan, R., Chornock, R., Berger, E., Milisavljevic, D., Jones, D. O., Rest, A., et al. (2016). PS1-14bj: a hydrogen-poor superluminous supernova with a long rise and slow decay. ApJ 831, 144. doi:10.3847/0004-637X/831/2/144

CrossRef Full Text | Google Scholar

Lunnan, R., Fransson, C., Vreeswijk, P. M., Woosley, S. E., Leloudas, G., Perley, D. A., et al. (2018). A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nat. Astron. 2, 887–895. doi:10.1038/s41550-018-0568-z

CrossRef Full Text | Google Scholar

Lyman, J. D., Bersier, D., James, P. A., Mazzali, P. A., Eldridge, J. J., Fraser, M., et al. (2016). Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. MNRAS 457, 328–350. doi:10.1093/mnras/stv2983

CrossRef Full Text | Google Scholar

Martinez, L., Anderson, J. P., Bersten, M. C., Hamuy, M., González-Gaitán, S., Orellana, M., et al. (2022a). Type II supernovae from the Carnegie Supernova Project-I. III. Understanding SN II diversity through correlations between physical and observed properties. A&A 660, A42. doi:10.1051/0004-6361/202142555660A

CrossRef Full Text | Google Scholar

Martinez, L., Bersten, M. C., Anderson, J. P., Hamuy, M., González-Gaitán, S., Stritzinger, M., et al. (2022b). Type II supernovae from the Carnegie Supernova Project-I. I. Bolometric light curves of 74 SNe II using uBgVriYJH photometry. A&A 660, A40. doi:10.1051/0004-6361/202142075660A

CrossRef Full Text | Google Scholar

Matheson, T., Filippenko, A. V., Li, W., Leonard, D. C., and Shields, J. C. (2001). Optical spectroscopy of type IB/C supernovae. AJ 121, 1648–1675. doi:10.1086/319390.121.1648M

CrossRef Full Text | Google Scholar

Matsumoto, T., and Metzger, B. D. (2022). Supernova Precursor emission and the origin of pre-explosion stellar mass loss. ApJ 936, 114. doi:10.3847/1538-4357/ac892c936

CrossRef Full Text | Google Scholar

Mauerhan, J. C., Smith, N., Silverman, J. M., Filippenko, A. V., Morgan, A. N., Cenko, S. B., et al. (2013). SN 2011ht: confirming a class of interacting supernovae with plateau light curves (type IIn-P). MNRAS 431, 2599–2611. doi:10.1093/mnras/stt360

CrossRef Full Text | Google Scholar

McCray, R. (2017). “The physics of Supernova 1987A,” in Handbook of Supernovae. doi:10.1007/978-3-319-21846-5_96

CrossRef Full Text | Google Scholar

Medler, K., Mazzali, P. A., Teffs, J., Prentice, S. J., Ashall, C., Amenouche, M., et al. (2021). SN 2020cpg: an energetic link between Type IIb and Ib supernovae. MNRAS 506, 1832–1849. doi:10.1093/mnras/stab1761

CrossRef Full Text | Google Scholar

Minkowski, R. (1941). Spectra of supernovae. Publ. Astronomical Soc. Pac. 53, 224. doi:10.1086/12531553

CrossRef Full Text | Google Scholar

Moriya, T. J., Tanaka, M., Morokuma, T., and Ohsuga, K. (2017). Superluminous transients at AGN centers from interaction between Black hole disk winds and broad-line Region clouds. ApJ 843, L19. doi:10.3847/2041-8213/aa7af3

CrossRef Full Text | Google Scholar

Moriya, T. J., Mueller, B., Blinnikov, S. I., Ushakova, M., Sorokina, E. I., Tauris, T. M., et al. (2025). Type Ibn supernovae from ultra-stripped supernova progenitors. arXiv E-Prints 77, 1385–1392. doi:10.48550/arXiv.2507.05506

CrossRef Full Text | Google Scholar

Nakar, E., and Piro, A. L. (2014). Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes. ApJ 788, 193. doi:10.1088/0004-637X/788/2/193788

CrossRef Full Text | Google Scholar

Newville, M., Stensitzki, T., Allen, D. B., and Ingargiola, A. (2014). LMFIT: Non-Linear least-square minimization and curve-fitting for python. doi:10.5281/zenodo.11813

CrossRef Full Text | Google Scholar

Nicholl, M., Smartt, S. J., Jerkstrand, A., Inserra, C., Sim, S. A., Chen, T. W., et al. (2015). On the diversity of superluminous supernovae: ejected mass as the dominant factor. NRAS 452, 3869–3893. doi:10.1093/mnras/stv1522

CrossRef Full Text | Google Scholar

Nicholl, M., Berger, E., Margutti, R., Chornock, R., Blanchard, P. K., Jerkstrand, A., et al. (2016). Superluminous Supernova SN 2015bn in the nebular phase: evidence for the engine-powered explosion of a stripped massive star. ApJ 828, L18. doi:10.3847/2041-8205/828/2/L18

CrossRef Full Text | Google Scholar

Nomoto, K., and Leung, S.-C. (2017). “Electron capture supernovae from super asymptotic giant branch stars,”. Handbook of Supernovae, 483, 483–512. doi:10.1007/978-3-319-21846-5_118

CrossRef Full Text | Google Scholar

Nyholm, A., Sollerman, J., Tartaglia, L., Taddia, F., Fremling, C., Blagorodnova, N., et al. (2020). Type IIn supernova light-curve properties measured from an untargeted survey sample. A&A 637, A73. doi:10.1051/0004-6361/201936097637A

CrossRef Full Text | Google Scholar

Ofek, E. O., Sullivan, M., Shaviv, N. J., Steinbok, A., Arcavi, I., Gal-Yam, A., et al. (2014). Precursors Prior to type IIn Supernova explosions are common: precursor rates, properties, and correlations. ApJ 789, 104. doi:10.1088/0004-637X/789/2/104789

CrossRef Full Text | Google Scholar

Pastorello, A., Zampieri, L., Turatto, M., Cappellaro, E., Meikle, W. P. S., Benetti, S., et al. (2004). Low-luminosity Type II supernovae: spectroscopic and photometric evolution. MNRAS 347, 74–94. doi:10.1111/j.1365-2966.2004.07173.x74P

CrossRef Full Text | Google Scholar

Pastorello, A., Kasliwal, M. M., Crockett, R. M., Valenti, S., Arbour, R., Itagaki, K., et al. (2008a). The Type IIb SN 2008ax: spectral and light curve evolution. MNRAS 389, 955–966. doi:10.1111/j.1365-2966.2008.13618.x

CrossRef Full Text | Google Scholar

Pastorello, A., Mattila, S., Zampieri, L., Della Valle, M., Smartt, S. J., Valenti, S., et al. (2008b). Massive stars exploding in a He-rich circumstellar medium - I. Type Ibn (SN 2006jc-like) events. MNRAS 389, 113–130. doi:10.1111/j.1365-2966.2008.13602.x

CrossRef Full Text | Google Scholar

Pastorello, A., Smartt, S. J., Botticella, M. T., Maguire, K., Fraser, M., Smith, K., et al. (2010). Ultra-bright optical transients are linked with type Ic supernovae. ApJ 724, L16–L21. doi:10.1088/2041-8205/724/1/L16

CrossRef Full Text | Google Scholar

Pastorello, A., Benetti, S., Brown, P. J., Tsvetkov, D. Y., Inserra, C., Taubenberger, S., et al. (2015a). Massive stars exploding in a He-rich circumstellar medium - IV. Transitional Type Ibn supernovae. MNRAS 449, 1921–1940. doi:10.1093/mnras/stu2745

CrossRef Full Text | Google Scholar

Pastorello, A., Prieto, J. L., Elias-Rosa, N., Bersier, D., Hosseinzadeh, G., Morales-Garoffolo, A., et al. (2015b). Massive stars exploding in a He-rich circumstellar medium - VII. The metamorphosis of ASASSN-15ed from a narrow line Type Ibn to a normal Type Ib Supernova. MNRAS 453, 3649–3661. doi:10.1093/mnras/stv1812

CrossRef Full Text | Google Scholar

Patat, F., Chugai, N., and Mazzali, P. A. (1995). Late-time Hα emission from the hydrogen shell of SN 1993J. A&A 299 (715P), 715–799.

Google Scholar

Pejcha, O., and Prieto, J. L. (2015). A global model of the light curves and expansion velocities of type II-plateau supernovae. ApJ 799, 215. doi:10.1088/0004-637X/799/2/215

CrossRef Full Text | Google Scholar

Pellegrino, C., Howell, D. A., Terreran, G., Arcavi, I., Bostroem, K. A., Brown, P. J., et al. (2022). The diverse properties of type Icn Supernovae point to multiple progenitor channels. ApJ 938, 73. doi:10.3847/1538-4357/ac8ff6

CrossRef Full Text | Google Scholar

Perley, D. A., Fremling, C., Sollerman, J., Miller, A. A., Dahiwale, A. S., Sharma, Y., et al. (2020). The Zwicky transient facility Bright transient Survey. II. A public statistical sample for exploring Supernova demographics. ApJ 904, 35. doi:10.3847/1538-4357/abbd9890435P

CrossRef Full Text | Google Scholar

Perley, D. A., Sollerman, J., Schulze, S., Yao, Y., Fremling, C., Gal-Yam, A., et al. (2022). The type icn SN 2021csp: implications for the origins of the fastest supernovae and the fates of Wolf-Rayet stars. ApJ 927, 180. doi:10.3847/1538-4357/ac478e

CrossRef Full Text | Google Scholar

Pessi, P. J., Folatelli, G., Anderson, J. P., Bersten, M., Burns, C., Contreras, C., et al. (2019). Comparison of the optical light curves of hydrogen-rich and hydrogen-poor type II supernovae. MNRAS 488, 4239–4257. doi:10.1093/mnras/stz1855

CrossRef Full Text | Google Scholar

Pessi, P. J., Anderson, J. P., Folatelli, G., Dessart, L., González-Gaitán, S., Möller, A., et al. (2023). Broad-emission-line dominated hydrogen-rich luminous supernovae. MNRAS 523, 5315–5340. doi:10.1093/mnras/stad1822

CrossRef Full Text | Google Scholar

Pessi, P. J., Lunnan, R., Sollerman, J., Schulze, S., Gkini, A., Gangopadhyay, A., et al. (2025). Sample of hydrogen-rich superluminous supernovae from the Zwicky Transient Facility. A&A 695, A142. doi:10.1051/0004-6361/202452014695A

CrossRef Full Text | Google Scholar

Piro, A. L., and Morozova, V. S. (2014). Transparent Helium in stripped envelope Supernovae. ApJ 792, L11. doi:10.1088/2041-8205/792/1/L11

CrossRef Full Text | Google Scholar

Popov, D. V. (1993). An analytical model for the Plateau stage of type II supernovae. ApJ 414, 712. doi:10.1086/173117414

CrossRef Full Text | Google Scholar

Prentice, S. J., and Mazzali, P. A. (2017). A physically motivated classification of stripped-envelope supernovae. Mon. Notices R. Astronomical Soc. 469, 2672–2694. doi:10.1093/mnras/stx980

CrossRef Full Text | Google Scholar

Prentice, S. J., Ashall, C., James, P. A., Short, L., Mazzali, P. A., Bersier, D., et al. (2019). Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors? MNRAS 485, 1559–1578. doi:10.1093/mnras/sty3399

CrossRef Full Text | Google Scholar

Prentice, S. J., Maguire, K., Boian, I., Groh, J., Anderson, J., Barbarino, C., et al. (2020). SN 2018gjx reveals that some SNe Ibn are SNe IIb exploding in dense circumstellar material. MNRAS 499, 1450–1467. doi:10.1093/mnras/staa2947

CrossRef Full Text | Google Scholar

Pskovskii, Y. P. (1967). The photometric properties of supernovae. Sov. Ast 11 (11), 63.

Google Scholar

Pumo, M. L., Cosentino, S. P., Pastorello, A., Benetti, S., Cherubini, S., Manicò, G., et al. (2023). Long-rising Type II supernovae resembling supernova 1987A - I. A comparative study through scaling relations. MNRAS 521, 4801–4818. doi:10.1093/mnras/stad861

CrossRef Full Text | Google Scholar

Pun, C. S. J., Kirshner, R. P., Sonneborn, G., Challis, P., Nassiopoulos, G., Arquilla, R., et al. (1995). Ultraviolet observations of SN 1987A with the IUE satellite. ApJS 99, 223. doi:10.1086/19218599

CrossRef Full Text | Google Scholar

Pursiainen, M., Leloudas, G., Paraskeva, E., Cikota, A., Anderson, J. P., Angus, C. R., et al. (2022). SN 2018bsz: a type I superluminous supernova with aspherical circumstellar material. A&A 666, A30. doi:10.1051/0004-6361/202243256

CrossRef Full Text | Google Scholar

Quimby, R. M., Kulkarni, S. R., Kasliwal, M. M., Gal-Yam, A., Arcavi, I., Sullivan, M., et al. (2011). Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489. doi:10.1038/nature10095

PubMed Abstract | CrossRef Full Text | Google Scholar

Ransome, C. L., and Villar, V. A. (2025). Unveiling the diversity of type IIn supernovae via systematic light-curve modeling. ApJ 987, 13. doi:10.3847/1538-4357/adce0398713R

CrossRef Full Text | Google Scholar

Ransome, C. L., Habergham-Mawson, S. M., Darnley, M. J., James, P. A., Filippenko, A. V., and Schlegel, E. M. (2021). A systematic reclassification of Type IIn supernovae. MNRAS 506, 4715–4734. doi:10.1093/mnras/stab1938

CrossRef Full Text | Google Scholar

Reguitti, A., Pignata, G., Pastorello, A., Dastidar, R., Reichart, D. E., Haislip, J. B., et al. (2024). Searching for precursor activity of Type IIn supernovae. A&A 686, A231. doi:10.1051/0004-6361/202348679686A

CrossRef Full Text | Google Scholar

Renzo, M., and Smith, N. (2024). Pair-instability evolution and explosions in massive stars. arXiv E-Prints. doi:10.48550/arXiv.2407.16113

CrossRef Full Text | Google Scholar

Richardson, D., Jenkins, R. L., III, Wright, J., and Maddox, L. (2014). Absolute-magnitude distributions of supernovae. AJ 147, 118. doi:10.1088/0004-6256/147/5/118

CrossRef Full Text | Google Scholar

Richmond, M. W., Treffers, R. R., Filippenko, A. V., and Paik, Y. (1996a). UBVRI Photometry of SN 1993J in M81: days 3 to 365. AJ 112, 732. doi:10.1086/118048.112

CrossRef Full Text | Google Scholar

Richmond, M. W., van Dyk, S. D., Ho, W., Peng, C. Y., Paik, Y., Treffers, R. R., et al. (1996b). UBVRI photometry of the type IC SN 1994I in M51. AJ 111, 327. doi:10.1086/117785

CrossRef Full Text | Google Scholar

Rodríguez, Ó., Pignata, G., Anderson, J. P., Moriya, T. J., Clocchiatti, A., Förster, F., et al. (2020). Luminous Type II supernovae for their low expansion velocities. MNRAS 494, 5882–5901. doi:10.1093/mnras/staa1133

CrossRef Full Text | Google Scholar

Roy, R., Sollerman, J., Silverman, J. M., Pastorello, A., Fransson, C., Drake, A., et al. (2016). SN 2012aa: a transient between Type Ibc core-collapse and superluminous supernovae. A&A 596, A67. doi:10.1051/0004-6361/201527947

CrossRef Full Text | Google Scholar

Rubin, A., and Gal-Yam, A. (2016). Unsupervised clustering of type II Supernova light curves. ApJ 828, 111. doi:10.3847/0004-637X/828/2/111828

CrossRef Full Text | Google Scholar

Rubin, A., Gal-Yam, A., De Cia, A., Horesh, A., Khazov, D., Ofek, E. O., et al. (2016). Type II Supernova energetics and comparison of light curves to shock-cooling models. ApJ 820, 33. doi:10.3847/0004-637X/820/1/3382033R

CrossRef Full Text | Google Scholar

Salmaso, I., Cappellaro, E., Tartaglia, L., Anderson, J. P., Benetti, S., Bronikowski, M., et al. (2025). The diversity of strongly interacting Type IIn supernovae. A&A 695, A29. doi:10.1051/0004-6361/202451764695A

CrossRef Full Text | Google Scholar

Sanders, N. E., Soderberg, A. M., Valenti, S., Foley, R. J., Chornock, R., Chomiuk, L., et al. (2012). SN 2010ay is a luminous and broad-lined type Ic Supernova within a low-metallicity host galaxy. ApJ 756, 184. doi:10.1088/0004-637X/756/2/184

CrossRef Full Text | Google Scholar

Sanders, N. E., Soderberg, A. M., Gezari, S., Betancourt, M., Chornock, R., Berger, E., et al. (2015). Toward characterization of the type IIP supernova progenitor population: a statistical sample of light curves from Pan-STARRS1. ApJ 799, 208. doi:10.1088/0004-637X/799/2/208799

CrossRef Full Text | Google Scholar

Schlegel, E. M. (1990). A new subclass of type II supernovae. MNRAS 244, 269–271.

Google Scholar

Shahbandeh, M., Hsiao, E. Y., Ashall, C., Teffs, J., Hoeflich, P., Morrell, N., et al. (2022). Carnegie Supernova Project-II: Near-infrared spectroscopy of stripped-envelope core-collapse supernovae. ApJ 925, 175. doi:10.3847/1538-4357/ac4030925

CrossRef Full Text | Google Scholar

Shivvers, I., Filippenko, A. V., Silverman, J. M., Zheng, W., Foley, R. J., Chornock, R., et al. (2019). The Berkeley sample of stripped-envelope supernovae. MNRAS 482, 1545–1556. doi:10.1093/mnras/sty2719

CrossRef Full Text | Google Scholar

Sit, T., Kasliwal, M. M., Tzanidakis, A., De, K., Fremling, C., Sollerman, J., et al. (2023). Long-rising type II supernovae in the Zwicky Transient facility census of the local universe. ApJ 959, 142. doi:10.3847/1538-4357/ad036959

CrossRef Full Text | Google Scholar

Smith, N. (2017). “Interacting supernovae: types IIn and Ibn,” in Handbook of Supernovae. doi:10.1007/978-3-319-21846-5_38

CrossRef Full Text | Google Scholar

Smith, N., Miller, A., Li, W., Filippenko, A. V., Silverman, J. M., Howard, A. W., et al. (2010). Discovery of precursor luminous blue variable outbursts in two recent optical transients: the fitfully variable missing links UGC 2773-OT and SN 2009ip. AJ 139, 1451–1467. doi:10.1088/0004-6256/139/4/1451

CrossRef Full Text | Google Scholar

Smith, N., Li, W., Filippenko, A. V., and Chornock, R. (2011). Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. MNRAS 412, 1522–1538. doi:10.1111/j.1365-2966.2011.17229.x

CrossRef Full Text | Google Scholar

Sollerman, J., Taddia, F., Arcavi, I., Fremling, C., Fransson, C., Burke, J., et al. (2019). Late-time observations of the extraordinary Type II supernova iPTF14hls. A&A 621, A30. doi:10.1051/0004-6361/201833689621A

CrossRef Full Text | Google Scholar

Spiro, S., Pastorello, A., Pumo, M. L., Zampieri, L., Turatto, M., Smartt, S. J., et al. (2014). Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors. MNRAS 439, 2873–2892. doi:10.1093/mnras/stu156

CrossRef Full Text | Google Scholar

Srivastav, S., Anupama, G. C., and Sahu, D. K. (2014). Optical observations of the fast declining Type Ib supernova iPTF13bvn. MNRAS 445, 1932–1941. doi:10.1093/mnras/stu1878

CrossRef Full Text | Google Scholar

Stevance, H. F., and Lee, A. (2023). What can Gaussian processes really tell us about supernova light curves? Consequences for Type II(b) morphologies and genealogies. MNRAS 518, 5741–5753. doi:10.1093/mnras/stac3523

CrossRef Full Text | Google Scholar

Stritzinger, M., Mazzali, P., Phillips, M. M., Immler, S., Soderberg, A., Sollerman, J., et al. (2009). The He-Rich core-collapse Supernova 2007Y: observations from X-Ray to radio wavelengths. ApJ 696, 713–728. doi:10.1088/0004-637X/696/1/713

CrossRef Full Text | Google Scholar

Stritzinger, M. D., Holmbo, S., Morrell, N., Phillips, M. M., Burns, C. R., Castellón, S., et al. (2023). The Carnegie Supernova Project I. Optical spectroscopy of stripped-envelope supernovae. A&A 675, A82. doi:10.1051/0004-6361/202243376675A

CrossRef Full Text | Google Scholar

Strotjohann, N. L., Ofek, E. O., Gal-Yam, A., Sullivan, M., Kulkarni, S. R., Shaviv, N. J., et al. (2015). Search for precursor eruptions among type IIb supernovae. ApJ 811, 117. doi:10.1088/0004-637X/811/2/117811

CrossRef Full Text | Google Scholar

Strotjohann, N. L., Ofek, E. O., Gal-Yam, A., Bruch, R., Schulze, S., Shaviv, N., et al. (2021). Bright, months-long stellar outbursts announce the explosion of interaction-powered supernovae. ApJ 907, 99. doi:10.3847/1538-4357/abd03290799S

CrossRef Full Text | Google Scholar

Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. M., and Janka, H. T. (2016). Core-collapse Supernovae from 9 to 120 Solar Masses based on Neutrino-powered explosions. ApJ 821, 38. doi:10.3847/0004-637X/821/1/3882138S

CrossRef Full Text | Google Scholar

Taddia, F., Stritzinger, M. D., Sollerman, J., Phillips, M. M., Anderson, J. P., Boldt, L., et al. (2013). Carnegie Supernova Project: observations of Type IIn supernovae. A&A 555, A10. doi:10.1051/0004-6361/201321180555A

CrossRef Full Text | Google Scholar

Taddia, F., Sollerman, J., Fremling, C., Pastorello, A., Leloudas, G., Fransson, C., et al. (2015). Metallicity at the explosion sites of interacting transients. A&A 580, A131. doi:10.1051/0004-6361/201525989

CrossRef Full Text | Google Scholar

Taddia, F., Stritzinger, M. D., Bersten, M., Baron, E., Burns, C., Contreras, C., et al. (2018). The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves. A&A 609, A136. doi:10.1051/0004-6361/201730844

CrossRef Full Text | Google Scholar

Taddia, F., Sollerman, J., Fremling, C., Barbarino, C., Karamehmetoglu, E., Arcavi, I., et al. (2019). Analysis of broad-lined Type Ic supernovae from the (intermediate) Palomar Transient Factory. A&A 621, A71. doi:10.1051/0004-6361/201834429

CrossRef Full Text | Google Scholar

Tartaglia, L., Fraser, M., Sand, D. J., Valenti, S., Smartt, S. J., McCully, C., et al. (2017). The Progenitor and early evolution of the type IIb SN 2016gkg. ApJ 836, L12. doi:10.3847/2041-8213/aa5c7f836L

CrossRef Full Text | Google Scholar

Taubenberger, S., Pastorello, A., Mazzali, P. A., Valenti, S., Pignata, G., Sauer, D. N., et al. (2006). SN 2004aw: confirming diversity of Type Ic supernovae. MNRAS 371, 1459–1477. doi:10.1111/j.1365-2966.2006.10776.x

CrossRef Full Text | Google Scholar

Taubenberger, S., Navasardyan, H., Maurer, J. I., Zampieri, L., Chugai, N. N., Benetti, S., et al. (2011). The He-rich stripped-envelope core-collapse supernova 2008ax. MNRAS 413, 2140–2156. doi:10.1111/j.1365-2966.2011.18287.x

CrossRef Full Text | Google Scholar

Teffs, J., Mazzali, P. A., Medler, K., and Hachinger, S. (2022). A massive, energetic model for the luminous transitional Type Ib/IIb SN 2020cpg. MNRAS 517, 5678–5686. doi:10.1093/mnras/stac3077

CrossRef Full Text | Google Scholar

Terreran, G., Jerkstrand, A., Benetti, S., Smartt, S. J., Ochner, P., Tomasella, L., et al. (2016). The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase. MNRAS 462, 137–157. doi:10.1093/mnras/stw1591

CrossRef Full Text | Google Scholar

Tsuna, D., Takei, Y., and Shigeyama, T. (2023). Precursors of supernovae from mass eruption: prospects for early warning of nearby core-collapse supernovae. ApJ 945, 104. doi:10.3847/1538-4357/acbbc6945

CrossRef Full Text | Google Scholar

Tsvetkov, D. Y., Volkov, I. M., Baklanov, P., Blinnikov, S., and Tuchin, O. (2009). Photometric observations and modeling of type IIb Supernova 2008ax. Perem. Zvezdy 29, 2. doi:10.48550/arXiv.0910.4242

CrossRef Full Text | Google Scholar

Valenti, S., Fraser, M., Benetti, S., Pignata, G., Sollerman, J., Inserra, C., et al. (2011). SN 2009jf: a slow-evolving stripped-envelope core-collapse supernova. MNRAS 416, 3138–3159. doi:10.1111/j.1365-2966.2011.19262.x

CrossRef Full Text | Google Scholar

Valenti, S., Howell, D. A., Stritzinger, M. D., Graham, M. L., Hosseinzadeh, G., Arcavi, I., et al. (2016). The diversity of Type II supernova versus the similarity in their progenitors. MNRAS 459, 3939–3962. doi:10.1093/mnras/stw870

CrossRef Full Text | Google Scholar

Yan, L., Quimby, R., Ofek, E., Gal-Yam, A., Mazzali, P., Perley, D., et al. (2015). Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. ApJ 814, 108. doi:10.1088/0004-637X/814/2/108

CrossRef Full Text | Google Scholar

Yan, L., Quimby, R., Gal-Yam, A., Brown, P., Blagorodnova, N., Ofek, E. O., et al. (2017). Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous Supernova Gaia16apd. ApJ 840, 57. doi:10.3847/1538-4357/aa6b02

CrossRef Full Text | Google Scholar

Yaron, O., and Gal-Yam, A. (2012). WISeREP—An interactive Supernova data repository. PASP 124, 668–681. doi:10.1086/666656

CrossRef Full Text | Google Scholar

Zapartas, E., de Mink, S. E., Justham, S., Smith, N., Renzo, M., and de Koter, A. (2021). Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, type II supernova progenitors. A&A 645, A6. doi:10.1051/0004-6361/202037744645A6Z

CrossRef Full Text | Google Scholar

Zwicky, F. (1964). Nuclear physics in the supernova problem. Ann. d’Astrophysique 27, 300–327.

Google Scholar

Keywords: continuum, core-collapse supernova, photometry, spectroscopy, supernova

Citation: Gangopadhyay A and Pessi PJ (2026) Hydrogen-rich to stripped-envelope: observational continuity and biases in CCSNe. Front. Astron. Space Sci. 12:1708372. doi: 10.3389/fspas.2025.1708372

Received: 18 September 2025; Accepted: 05 December 2025;
Published: 07 January 2026.

Edited by:

Milan S. Dimitrijevic, Astronomical Observatory, Serbia

Reviewed by:

Lih-Sin The, Clemson University, United States

Copyright © 2026 Gangopadhyay and Pessi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Anjasha Gangopadhyay, YW5qYXNoYS5nYW5nb3BhZGh5YXlAYXN0cm8uc3Uuc2U=; Priscila J. Pessi, cHJpc2NpbGEucGVzc2lAbmNiai5nb3YucGw=

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.